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Abstract

In recent years, the attention mechanism has been widely used in computer vision. Se-
mantic segmentation, as one of the fundamental tasks of computer vision, has been sub-
ject to tremendous development as a result. But because of its huge computing overhead,
attention-based approaches are difficult to use for real-time applications such as self-driving.
In this paper, we propose a self-calibration method baesd on self-attentiion that successfully
applies the attention mechanism to real-time semantic segmentation. Specifically, a spatial
attention module to adjust the edges of the coarse segmentation results which gained from
the real-time semantic segmentation backbone network, and obtain more granular segmen-
tation results. We refer to this method as the Efficient Attentional Calibration Network
(EACNet). Experiments on the Cityscapes dataset validate the efficiency and performance
of the method. With the high-resolution input and without any post-processing, EACNet
achieved 72.4% mIoU of accuracy while running at 116.9 FPS. Compared to other state-of-
the-art methods for real-time semantic segmentation, our network gained a better balance
between performance and speed.
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1. Introduction

Image semantic segmentation is one of the fundamental tasks of computer vision and
has a wide range of applications in areas such as autopilot and medical image diagnosis.
Its purpose is to predict the category of each pixel in an image, i.e., pixel-level image
classification. In recent years, a large number of high-accuracy semantic segmentation
algorithms have been proposed, resulting in a significant improvement in the accuracy of
the algorithms on major benchmark data sets. A large number of researchers set out to
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enhance the real-time nature of semantic segmentation algorithms, giving birth to a range
of real-time methods.

Current real-time semantic segmentation methods mostly use an encoder-decoder struc-
ture (Romera et al. (2018); Mehta et al. (2018)) based on a fully convolutional network
(Shelhamer et al. (2017)). The structure uses a series of lightweight full convolution net-
works as encoders for the network and feeds the feature map extracted by the encoder
into a lightweight decoder module to obtain segmentation results. Such a structure, while
seemingly compact, actually uses lightweight decoders that are too simple to recover useful
information from the feature map for segmentation to speed up the inference of the net-
work. On the other hand, the encoder-only network (Wu et al. (2018)) proposed by some
researchers further accelerates the network by abandoning the use of decoders and directly
up-sampling the results obtained by the encoder network to obtain the final segmentation
results.

While these networks can run in a real-time environment, their overly speed-seeking
design makes it difficult to accurately reconstruct the spatial details that are lost during
encoding. The lightweight decoder design doesn’t even apply to the decoder making the
partitioning results too coarse and is especially noticeable in terms of object edges and small
object partitions. As a result, some works propose a multi-branch structure. Feature maps
of different resolutions are extracted by using multiple lightweight networks in parallel,
and these feature maps are then aggregated to obtain richer spatial information. But this
approach takes too much advantage of the characteristics of the layers, and the network
structure is too complex, with a lot of information and computational redundancy. And its
performance is dependent on the lightweight network used.

The attentional mechanism enables the network to learn richer contextual information
by establishing correlations between pixels. Some recent works have demonstrated that
spatial attention has a significant effect on optimizing the segmentation of object edges, and
they have designed an attention-based approach that significantly improves the accuracy
of segmentation. But because of their huge computational volume, these spatial attention-
based approaches are difficult to achieve real-time segmentation.

We propose to use spatial attentional mechanisms (Wang et al. (2018)) to optimize real-
time semantic segmentation. To enable the attention mechanism to be used for real-time
semantic segmentation, we propose a novel network structure called an efficient attention
calibration network. Specifically, we propose a self-calibrating spatial attention embedding
approach and design a self-calibrating attention module. A classification layer is used on
the feature map to obtain the coarse segmentation results, which are then fed into the
self-calibration attention module to obtain the final fine segmentation results. We establish
correlations by treating coarse segmentation results rather than individual channels of the
feature map, which is more conducive to minimizing gaps within classes while maximizing
gaps between classes. And this approach avoids processing large amounts of channel infor-
mation and reduces computational redundancy. As far as we know, there are not many ways
to introduce attentional mechanisms into real-time semantic segmentation and to achieve a
fast and effective framework for real-time semantic segmentation.

In summary, our main contributions can be summarized as follows:
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• We propose a novel attentional method called Self-Calibration Attention Module for
real-time semantic segmentation, which establishes a correlation for each object to be
segmented.

• Based on the Self-Calibration Attention Module, we propose Efficient Attention Cali-
bration Network(EACNet), which uses the attention mechanism for real-time semantic
segmentation.

• Experiments on the cityscapes dataset demonstrate that EACNet can improve the
performance of existing high speed semantic segmentation methods, especially at ob-
ject edges.

2. Related Work

Convolutional neural networks were originally created to solve the image classification
task (Deng et al. (2009)). FCN (Shelhamer et al. (2017)) is a pioneer of convolutional neural
networks for semantic segmentation tasks. It removes the fully connected layer of VGG-
16 (Simonyan and Zisserman (2015)) and replaces it with a convolutional layer, achieving
pixel-level classification of images. Subsequent studies based on FCN have produced a
large number of variants and improvements. As a result, the accuracy of image semantic
segmentation has improved considerably.

Real-time semantic segmentation

ENet (Paszke et al. (2016)) is arguably the first attempt at real-time semantic seg-
mentation. It achieves high-speed inference by reducing the number of network channels.
However, this increase in speed leads to a significant decrease in accuracy. To solve this
problem, Romera et al. (2018) designed a new encoder-only network by using residual con-
nections (He et al. (2016)) and convolutional decomposition (Chollet (2017)) to construct
a new convolutional block. Accuracy is ensured while efficiency is maintained. The authors
of CGNet Wu et al. (2018) propose a Context Guided module for learning local features
and features of the surrounding environment. The module consists of a regular convolu-
tional nucleus and an expanding convolution, which form a parallel structure. They propose
CGNet, which builds a decoders lightweight FCN network that achieves better real-time
accuracy while maintaining network accuracy. Li and Kim (2019) proposes a more efficient
Depth-wise Asymmetric Bottleneck (DAB) module that improves the CG module using
depth separation convolution and convolutional decomposition, and again compresses the
depth of the network with faster operation and higher accuracy than CGNet. Lo et al.
(2019) uses an asymmetric convolutional structure with a combination of expanded con-
volution and dense connections to achieve high efficiency with low computational cost and
model scale.

On the other hand, some multi-branching approaches are proposed. Zhao et al. (2018a)
proposed ICNet and Oršic et al. (2019) designed SwiftNet use multiple resolution inputs of
images to build multi-branch networks that take full advantage of the semantic information
of low-resolution plots and the detailed information of high-resolution plots to enable the
network to recover and refine segmentation predictions step-by-step with low computational
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effort. Yu et al. (2018) proposed BiSeNet which use a two-path network to take into
account both accuracy and speed. Li et al. (2019a) designed sub-network aggregation
and sub-stage aggregation to aggregate features of different stages of the three backbone
networks to improve the network speed while maintaining segmentation accuracy. These
multi-branching approaches are mostly based on a fast and efficient backbone network, so
we believe that the multi-branching approaches rely on single-branch network performance
improvements.

Attentional Models

Attentional mechanisms have been applied in various areas of deep learning in recent
years and Vaswani et al. (2017) uses them for machine translation. In the field of computer
vision, Hu et al. (2018) constructed a channel-level attention module by extracting channel-
level information and propose Squeeze-and-Excitation Networks. On the other hand, Wang
et al. (2018) proposed Non-local Neural Networks which use of spatial attention mechanisms
to capture long-range dependencies between pixels. PSANet (Zhao et al. (2018b)) gains con-
textual information from all locations of the feature map by learning an adaptive attention
map for each location connected to other locations. Fu et al. (2019) proposed DANet which
use adaptive attention to capture contextual information. CCNet(Huang et al. (2019)) ac-
quires contextual information from the surrounding pixels on the cross path of each pixel
by building a cross attention module. While all of these methods have achieved significant
improvements, their attentional modules are all computationally complex, greatly reducing
the speed of the algorithm’s reasoning. To improve the speed of the attentional model, Zhu
et al. (2019) proposes ANNNet, which use asynchronous Non-local to reduce the computa-
tional resources and improve the performance of Non-local Networks. At the same time, Li
et al. (2019b) proposed to express the attentional mechanism as an expectation-maximizing
approach, and in doing so, made a more compact estimate of the attentional graph, which
greatly reduced the use of memory and computational complexity.

Inspired by DANet but different from it, we propose to use the attentional mechanism
for the output of real-time semantic segmentation rather than feature maps, thus reducing
the large consumption of computational resources by the attentional module. On the other
hand, inspired by ANNNet(Zhu et al. (2019), they scaled the feature vector after point-wise
convolution in Non-Local Network. We use the segmentation maps with its downsampled
maps to solving the attention graph, this can further speed up the inference of all networks.

3. Methodology

In this section,the architecture of the proposed network EACNet is introduced (shown
in Figure 1(a)subfigure). The self-calibrating attention module used in our method is
then shown. Finally, we describe how to build EACNet to complete real-time semantic
segmentation in conjunction with the current real-time semantic segmentation network.

3.1. Network Architecture

We found that the self-attention module was applied to learn long-term dependencies
between classes and improve compactness and semantic consistency within classes. The
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(a) Efficient Attention Calibration Network Architecture

(b) Pipeline for High-Accurate methods

Figure 1: Pipeline Comparison of EACNet and High-Accuracy Attention Methods

previous approachs (Wang et al. (2018); Fu et al. (2019)) was to use a feature map F input
module with a channel C (the network structure is shown in Figure 1(b)subfigure).

Seg = Cla(Attention(F)) (1)

where F represents the feature map extracted by the backbone network, Attention(·) rep-
resents the whole attention module operation, Cla(·) represents the classification layer and
Seg represents the segmentation result.

A notable problem is that the amount of operations is too large, and such operations
create a lot of semantic redundancy at the channel level. Since the purpose of the attention
module is to learn intra-class and inter-class correlations, the number of classes that are also
used for real-time semantic segmentation on autopilot is usually limited (Cityscapes has 19
classes). Therefore, we propose an attentional calibration embedding method. The method
uses feature maps extracted from the backbone network to obtain coarse segmentation
results Segcoarse(whose channel is equal to the kinds of segmentation target) through the
classification layer. Then, use Segcoarse as an input to the attention module to establish
correlations directly to the individual pixel results of the segmentation map, thus achieving
a refinement of the coarse segmentation result:

Segfine = Attention(Segcoarse) (2)

the coarse segmentation result Segcoarse can be expressed as:

Segcoarse = Cla(F) (3)

Combined with equation (2) and (3), the entire network pipeline can be expressed as:

Segfine = Attention(Cla(F)) (4)

Following this line of thought, we propose a method called the Attentional Calibration
Network. Figure 2(b)subfigure represents the structure of our network. Compared to the
structure of Non-Local(Wang et al. (2018))(shown in Figure 2(a)subfigure), the approach
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we use makes the network more compact and more consistent with attention in its sense.
Specifically, for each of the categories to be classified, we establish correlations within their
classes. Such a network model is more like a refinement of the segmentation results of the
network using the self-attentive mechanism, which can be seen as an internal calibration.
At the same time, such a structure simplifies the amount of computation and computational
overhead and improves the efficiency of the network. To differentiate the attention modules
used by other networks,the attention module used in this paper is named as Self-Calibration
Attention Module. The entire network architecture is called the Efficient Attention Cali-
bration Network (EACNet).

3.2. Self-Calibration Attention Module

(a) Non-Local Module (b) Self-Calibration Attention Module

Figure 2: Self-Attention Module

First, consider the Non-local module used in method (Wang et al. (2018)) (shown in
Figure 2(a)subfigure), where the feature map FA ∈ RC×H×W extracted from the backbone
network is used as input to the module, and three new feature maps FB,FC ,FD are generated
by the corresponding convolution, where FB,FC ,FD ∈ RC×W×H . Then reshape them to
RC×N , where N = H ×W . then the FB is transposed and multiplied with FC , and apply
the softmax function to the matrix multiplication result to obtain the spatial attention
graph S ∈ RN×N.

S = softmax(F ′B,FC) (5)

Each value in S indicates the degree of similarity between the two locations in the feature
map, and the more similar the feature representations of the two locations, the stronger
the correlation between them (Li and Kim (2019)). Then, the resulting attention map S
was multiplied with the feature map FD by another matrix multiplication, and the resulting
results were reconstructed as RC×W×H . Finally, multiplying this result by a scale parameter
α performs element-level addition with the module’s input FA to obtain the module’s final
output FE ∈ RC×H×W :

FE = α(S · FD) + FA (6)

where α is a weight initialized to zero, which constantly changes itself during network
training. Combined with equation (5) and (6), the entire attention module can be expressed
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as:

Attention(FA) = α(S · FD) + FA

= α(softmax(FB′ · FC) · FD) + FA

= α(softmax(h′(FA) · g(FA)) · f(FA)) + FA (7)

Throughout the attention module, similar semantic features achieve mutual gain, thus im-
porving intra-class compact and semantic consistency. It is known from Equation (7) that
the final feature of each location is the weighted sum of the features of all locations with
the original features. As a result, it has a global context view and selectively aggregates
contexts based on the spatial attention map.

The direct use of attentional modules causes a depletion of computational resources, A
customary method is reduce the number of channels of the feature map FB, FC , and FD by
point-wise convolution. Specifically, it will take the feature graph FA ∈ RC×W×H to get the
feature graph FB,FC ,FD ∈ RC′×W×H , C ′ = C/4. However, since the input of the attention
module of EACNet is the coarse-segmentation results, and the whole module is built on
the segmentation maps of the individual categories, the reduction of channels will make
the correlation of some categories not be established accurately. Therefore, We propose
a simpler and more efficient way to designed the self-calibration module. Specifically, to
make the module lighter and less time-consuming, we first downsample the input coarse-
segmentation results:

Segdown = Down(Segcoarse) (8)

Then, generate a spatial attention map Segfine ∈ RC×N based on the downsampling results
Segdown:

Segfine = Attention(Segcoarse)

= α(softmax(h(Segcoarse) · g(Segdown) · f(Segdown))) + Segcoarse (9)

Where Down(·) denotes the downsampling operation, and the resulting Segdown ∈ RC×N ′
,

N ′ = W ′ ×H ′ is the resolution of the downsampled coarse-segmentation result Segfine.

3.3. Attentional Calibration Embedding

As shown in Figure 1(a)subfigure, EACNet consists of a backbone network and an at-
tentional calibration module. In theory, EACNet can use any regular single-branch network
as the backbone. In this paper, we use the state-of-the-art single-branch real-time semantic
segmentation network as the backbone for EACNet. Specifically, it can be divided into two
cases. the first one is that our network can use any encoder of the encoder-decoder network
as the backbone. The feature map extracted by the encoder is passed through the classifier
to get the coarse segmentation results, which are then fed into the self-calibration module.
In another case, we use the whole encoder-only real-time semantic segmentation network as
the backbone for EACNet. the segmentation results are fed into the self-calibration module.
The detailed will be described in the experimental section below.
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4. Experiments

In this section, we will experimentally verify the validity of our approach. This chapter
is divided as follows: the first section describes our experimental setup, including the data
set, the platform for training evaluation, and the setup of hyperparameters. In the second
section, a series of comparison experiments are set up to verify the enhancement of our
method relative to baseline models. In the end, we compare our method with other state-
of-the-art methods.

4.1. Experiment Settings

Datasets

Cityscapes (Cordts et al. (2016)) is an urban segmentation dataset.It contains 5,000
finely labeled images and 20,000 roughly labeled images collected from 50 different cities.
Each image has a resolution of 1024 × 2048, with 19 classes for semantic segmentation
evaluation. We train our network using only finely labeled images. They were divided into
three sections: 2975 for the training, 500 for the validation, and 1525 for the test.

CamVid(Brostow et al. (2009)) is another street scene dataset which images are anno-
tated into 11 classes. It contains 701 annotation frames are divided into 367,101 and 233
for train, validation and test respectively.

Network

To demonstrate the performance of EACNet, we choose ERFNet (Romera et al. (2018))
and DABNet (Li and Kim (2019)) as the baseline models. ERFNet is a real-time semantic
segmentation network with an encoder-decoder structure, and the DABNet is a encoder-
only ResNet-like network. We use the encoder part of ERFNet and the entire network of
DABNet as the backbone of EACNet, by removing the decoder structure of ERFNet and
adding a classifier to its encoder to generate the coarse partition results, which are then
fed into our proposed self-calibration module and generate the final partition results. For
DABNet, we added the self-calibration module directly to the network’s classifier and used
it to get our results. Whether we use ERFNet or DABNet as our backbone, our network is
trained in a hierarchical way, i.e., the backbone is trained first, then the trained backbone
is used to initialize EACNet and train the entire network. The final experiment proves
that our EACNet can enhance the performance of existing high-speed semantic segmented
networks and that this performance does not slow down the reasoning of the network.

Implementation Details

We implement our method based on Pytorch. All evaluation metrics are done on a
single RTX2080Ti graphics card, Ubuntu OS. Our hyperparameters are consistent with the
original network settings. For ERFNet, however, we used the online difficult sample mining
(OHEM) strategy (Shrivastava et al. (2016)) to train hard-to-optimize categories. For data
enhancement, we used random horizontal flip, mean subtraction, and random scale transfor-
mations for the input images during training. Dimensions include 0.75,1.0,1.25,1.5,1.75,2.0.
We trained by randomly cropping the image to a fixed size (1024x512). We do not use any
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other data set for pre-training. No data enhancement techniques and testing techniques are
used during testing.

4.2. Comparison Experiments

(a) Comparison of Parameters (b) Comparison of FLOPs

Figure 3: Effect of Different Inputs on Attention Module

Attentional Calibration Embedding is Efficient

To verify that EACNet’s attention module uses fewer computational resources than
the attention module of the high-accuracy method, Comparison of EACNet’s attentional
calibration embedding method with the attentional module of the high accuracy method in
terms of parameters and FLOPs. The resolution of the experimental inputs was uniformly
64×128. As shown in Figure 3, since EACNet relies on the number of segmentation classes,
it has a huge advantage in the cityscapes dataset of 19 target categories, both in terms of
parameters and FLOPS, even the feature map with only 128 input channels (yet actually
much more than that), our method has a nearly twenty-times advantage.

Experiments on Encoder-Decoder Baseline Model

Table 1: Comparison of Performance and Speed on Cityscapes Validation Set

Model FLOPS Parameters Speed(ms) FPS Mean IoU(%)

ERFNet-base 30.055 B 2.067 M 11.76 85 72.46
ERFNet-enc 21.698 B 1.876 M 8.20 121.95 70.60
EACNet-erf-nl 21.707 B 1.878 M 10.26 97.46 73.94
EACNet-ERF 21.702 B 1.878 M 8.57 116.95 73.74

Comparative experiments in the Cityscapes validation set demonstrates EACNet’s per-
formance. Specifically, we reproduced ERFNet and compared several different variants: the
full ERFNet(ERFNet-base), the ERFNet encoder with classify layers(ERFNet-enc), and
EACNet using the ERFNet encoder as the backbone(EACNet-ERF). The results are shown
in Table 1.
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Compared to the results reported by the authors in their paper (70.0% mIoU in Cityscapes
valid sets) (Romera et al. (2018)), our replicated ERFNet-base has better performance on
validation sets (72.46% on mIoU), which may be due to our use of OHEM to train classes
which are difficult to optimize. The ERFNet-enc only use the encoder is faster than the
full ERFNet, but at the same time, the accurate has decrease. However, compared with
ERFNet encoder, EACNet-ERF uses ERFNet encoder as the backbone improved 3.14% on
mIoU. It also has a more than 1% mIoU improvement over the full ERFNet (ERFNet-base).
More importantly, EACNet-ERF is more accurate and at the same time faster (3 ms faster,
nearly 30% improvement) than the baseline method of ERFNet-base.

We also compared the performance of EACNet-ERF with the EACNet uses the origi-
nal non-local module as the self-calibrating module(EACNet-erf-nl). The results(shown in
Table 1) indicate that, compare to Non-Local module, the self-calibrating module allows
faster inference speed(1.63 ms faster and nearly 15% faster) while maintaining the same
accuracy(only 0.02% mIou of performance degradation). More importantly, the results on
the cityscapes test sets show that our self-calibrated modules have better generalization
capabilities (shown in Table 2).

Table 2: Comparison of performance and speed on cityscapes validation set
Method Ave road side buil wall fenc pole ligh sign vege terr sky pers rid car truc bus trai moto bic

ERFNet-base 72.5 97.8 82.8 91.6 53.5 58.6 63.0 65.5 74.7 91.9 62.3 93.5 79.0 57.5 93.7 63.3 74.6 44.5 55.7 73.5
EACNet-erf-nl(val) 73.9 97.8 82.8 91.2 58.9 59.3 61.1 64.6 73.2 91.5 61.2 92.9 79.1 56.5 93.6 63.4 80.4 67.9 56.3 73.2
EACNet-ERF(val) 73.7 97.7 82.6 91.4 57.5 56.8 60.9 65.0 74.1 91.7 62.3 93.5 79.0 56.0 94.1 70.8 79.1 59.9 55.4 73.4
EACNet-erf-nl(test) 71.0 97.9 81.9 90.9 52.6 51.2 59.3 66.3 70.8 92.3 70.7 94.3 82.3 63.2 94.1 53.0 56.9 46.1 56.1 68.5
EACNet-ERF(test) 72.4 98.0 82.4 91.0 51.3 52.8 59.3 65.9 70.9 92.4 71.1 94.0 82.0 63.1 94.2 57.1 67.2 56.8 56.9 69.5

On the other hand, we qualitatively analyzed the improvement of our approach over the
baseline approach (shown in Figure 4). Compared to ERFNet, since our method is able
to establish intra-class correlations between pixels, in the first graph (first row), relative to
ERFNet (third column of the first row), EACNet (fourth column of the first row) eliminates
the intraclass ambiguity of the car on the right side of the graph, and the car has a more
refined profile. In the second and third images, it can be seen that EACNet has not only
improved the edges of the objects, but also the identification of some small objects is more
accurate (the rider in the middle of the second image and the head of the pedestrian obscured
by vehicle on the right side of the third image).

Experiment on Encoder-only Baseline Model

As discussed in section 3, EACNet can be well embedded in any current single-branch
real-time semantic segmentation framework. To verify that EACNet also works well for
encoder-only networks. We reproduce DABNet and use its entire network as the encoder
for EACNet. The output from DABNet’s classification layer as input to our self-calibration
module. The results are shown in Table 3. Compared to the baseline model, EACNet
has a significantly improvement of 2.61% mIoU with only a small increase in parameters
and calculations (0.001M for the parameter increase and 0.015B more for the FLOPs). In
terms of inference speed, the reduction of 4 FPS seems insignificant compared to the speed
of 101.94 FPS. At the same time, such a result also demonstrates that our approach can
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Figure 4: Visualization results on the Cityscapes validation dataset. From left to right are
(a) Input, (b) Ground truth, (c) ERFNet and (d) EACNet

substantially improve the performance of encoder-only networks with only a few additional
parameters and computations.

Table 3: Comparison of performance and speed of EACNet using DABNet as a backbone
on the Cityscapes validation set.

Model FLOPS Parameters Speed(ms) FPS Mean IoU(%)

DABNet 10.375 B 0.757 M 9.81 101.94 69.57
EACNet-DAB 10.380 B 0.758 M 10.21 97.92 72.18

4.3. Comparison with the state-of-the-arts methods

Through a series of experiments, our EACNet is able to bring performance improve-
ments to current single-branch real-time semantic segmentation methods. It also improves
the performance of the codec structure network by reducing the time consumed for rea-
soning and greatly increasing the reasoning speed. Finally, we compare EACNet to the
current state-of-the-art single-branch model on the cityscapes test set. All results are de-
rived from the performance of the methods reported individually on the paper or on the
official cityscapes server. The final results of the comparison are shown in Table 4.

As can be seen from the results reported in Table 4, compared to other state-of-the-art
methods, our model has a new performance on the trade-off between speed and perfor-
mance. Compared to our baseline models ERFNet and DABNet, our approach has better
performance on the test set (72.4% vs 68.0%, and 71.9% vs 70.1% on mIoU). And the
advantages of our approach are even more pronounced for the instance-level metric miIoU
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(Cordts et al. (2016)) for the key classes of scenarios. Compared to other approaches, our
approach has significant advantages in both mIoU and miIoU. In terms of speed, RPNet
(Chen et al. (2019)) is a bit faster than our approach (only 7 FPS), but its performance is
far less than our approach (4.5% mIoU less). And it should be noted that the methods we
report are based on single-scale tests and no testing tricks is used(including no TensorRT
optimized inference).

The results of our method compared with other methods on per classes are shown
in Table 5. It can be seen that EACNet exceeds the current state-of-the-art approach in
almost every class. And the performance of the iIoU metric is far superior to other real-time
methods.

We also evaluated our network on the CamVid dataset. The results as shown in the
Table 6. our EACNet again achieves outstanding performance in efficiency and accuracy.
The visualization results are shown in Figure 5.

Table 4: Comparison of performance and speed with other state-of-the-art methods on the
Cityscapes test set.

Method Pretrain InputSize mIoU(%) miIoU(%) FPS Params FLOPs

ENet ImageNet 512×1024 58.3 34.36 76.9 0.37M -
ERFNet No 512×1024 68.0 40.42 41.7 2.07M -
ESPNet No 512×1024 60.3 31.82 112 - 4.5B
ESPNetv2 No 512×1024 66.2 36.03 - - 2.7B
CGNet No 1024×2048 64.8 35.89 50 0.5M -
DABNet No 512×1024 70.1 42.86 104.2 0.76M -
EDANet No 512×1024 67.3 41.78 108.7 0.68M 8.97B
RPNet(ERFNet) No 512×1024 67.9 44.9 123 1.89M 20.71B
EACNet-DAB No 512×1024 71.9 47.39 97.9 0.76M 10.38B
EACNet-ERF No 512×1024 72.4 46.9 116.9 1.87M 21.70B

Table 5: Comparison of performance per classes on the cityscapes test set.
Method roa sid bui wal fen pol lig sig veg ter sky per rid car tru bus tra mot bic mIoU miIoU

ENet 96.3 74.2 85.0 32.2 33.2 43.5 34.1 44.0 88.6 61.4 90.6 65.5 38.4 90.6 36.9 50.5 48.1 38.8 55.4 58.3 34.4
ERFNet 97.7 81.0 89.8 42.5 48.0 56.2 59.8 65.3 91.4 68.2 94.2 76.8 57.1 92.8 50.8 60.1 51.8 47.3 61.6 68.0 40.4
ESPNet 95.7 73.3 86.6 32.8 36.4 47.1 46.9 55.4 89.8 66.0 92.5 68.5 45.8 89.9 40.0 47.7 40.7 36.4 54.9 60.3 31.8
ESPNetv2 97.3 78.6 88.8 43.5 42.1 49.3 52.6 60.0 90.5 66.8 93.3 72.9 53.1 91.8 53.0 65.9 53.2 44.2 59.9 66.2 36.0
CGNet 95.9 73.9 89.9 43.9 46.0 52.9 55.9 63.8 91.7 68.3 94.1 76.7 54.2 91.3 41.3 56.0 32.8 41.1 60.9 64.8 35.9
DABNet 96.8 78.5 91.0 45.4 50.2 59.1 65.2 70.8 92.5 68.2 94.7 80.6 58.5 92.7 52.7 67.3 51.0 50.5 65.7 70.1 42.9
EDANet 97.8 80.6 89.5 42.0 46.0 52.3 59.8 65.0 91.4 68.7 93.6 75.7 54.3 92.4 40.9 58.7 56.0 50.4 64.0 67.3 41.8
RPNet 97.9 81.2 89.8 40.2 45.7 56.3 61.6 67.8 91.7 68.0 94.5 78.2 57.4 92.9 48.3 57.8 56.1 49.6 62.2 68.3 43.6
EACNet-DAB 98.0 82.6 91.3 49.4 51.9 58.9 66.3 71.3 92.5 70.5 94.6 81.8 61.4 94.0 54.5 68.0 53.7 54.8 69.6 71.9 47.4
EACNet-ERF 98.0 82.4 91.0 51.3 52.8 59.3 65.9 70.9 92.4 71.1 94.0 82.0 63.1 94.2 57.1 67.2 56.8 56.9 69.5 72.4 46.9

5. Conclusion

In this paper, a new single-branch real-time semantic segmentation structure is pro-
posed in which the semantic segmentation results are entered into the attention module as
feature graphs. Thus, the application of the self-attention approach to real-time semantic
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Table 6: Comparison of performance and speed with on the CamVid test set.

Method mIoU(%) FPS Params FLOPs

ENet 51.3 111 0.37M 1.50B
ERFNet 65.0 133 2.07M 8.43B
ESPNet 62.6 205 0.68M 0.87B
CGNet 65.6 - 0.5M -
DABNet 66.4 104.2 0.76M -
EDANet 66.4 - 0.68M 8.97B
RPNet(ERFNet) 64.82 149 1.89M 6.78B
EACNet-DAB 69.6 100 0.76M 3.42B
EACNet-ERF 69.3 123 1.87M 7.15B

Figure 5: Visualization results on the CamVid (480×360) test dataset. From left to right
are (a) Input, (b) Ground truth, (c) EACNet-ERF and (d) EACNet-DAB
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segmentation networks is achieved. And the advanced nature of this structure has been
experimentally demonstrated. At the same time, we have optimized the self-attention mod-
ule and proposed an attention module that is more suitable for our attention calibration
network. More accurate and efficient segmentation is achieved. Experiments on bench-
mark dataset demonstrate the pervasiveness of our approach to the current single-branch
real-time semantic segmentation approach. In the future, we focus on the application of at-
tention mechanisms to real-time semantic segmentation, including the use of more accurate
and efficient backbone networks, as well as proposing faster attention modules.
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