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Abstract

We tackle the blackbox issue of deep neural networks in the settings of reinforcement learning
(RL) where neural agents learn towards maximizing reward gains in an uncontrollable way. Such
learning approach is risky when the interacting environment includes an expanse of state space
because it is then almost impossible to foresee all unwanted outcomes and penalize them with
negative rewards beforehand. We propose Action-conditional β-VAE (AC-β-VAE) that allows
succinct mappings of action-dependent factors in desirable dimensions of latent representations
while disentangling environmental factors. Our proposed method tackles the blackbox issue by
encouraging an RL policy network to learn interpretable latent features by distinguits influen-
shing ices from uncontrollable environmental factors, which closely resembles the way humans
understand their scenes. Our experimental results show that the learned latent factors not only
are interpretable, but also enable modeling the distribution of entire visited state-action space.
We have experimented that this characteristic of the proposed structure can lead to ex post
facto governance for desired behaviors of RL agents.

Keywords: Transparent Policy Network, AI Governance

1. Introduction

Despite many recent successful achievements that deep neural networks (DNN) have allowed in
machine learning fields (Krizhevsky et al. (2012); LeCun et al. (2015); Mnih et al. (2015)), the
legibility of their high-level representations are noticeably less studied compared to the relevant
studies which rather prioritize performance enhancements or task completions (Burrell (2016)).
While the opaqueness of DNNs comes handy when strict labels are available for every data
sample, its blackbox issue is a great element of risk especially in reinforcement learning (RL)
settings where machines, or agents, are allowed to have highly intertwined interactions with their
environments. Since an RL agent’s policy on action selection is optimized towards maximizing
the rewards, it may produce undesirable outcomes if these outcomes are not primarily penalized
with negative reward signals. Yet, too much regulation would, contrarily, result in misusing the
full potential of the technology (Rahwan (2018)); RL is proven of its strength over humans by,
for an example of learning the game of Go, figuring to learn unprecedented winning moves (Silver
et al. (2017)). Our problem setting is thus whether human is able to control and even govern
machine’s efficacy resulted by precedently optimized for an environment. Motivated so, we desire
to build a deep RL framework that is interpretable while learning its way towards maximizing
the cumulative rewards so that we can control its behavior according to our preference.

To induce a transparent policy network, our fundamental aim is to disentangle the con-
trollable factors and uncontrollable factors in the reinforcement learning settings. Sharing the
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same hypothesis with the works of Thomas et al. (2017), Sawada (2018) and Oh et al. (2015),
we, in this paper, propose a method that allows training a deep RL policy network of which
latent features are disentangled into independently controllable and uncontrollable factors so
that their inner mechanism becomes interpretative. We intend to accomplish this by training an
RL agent with an action-conditional β-VAE (AC-β-VAE). Adding supplementary implication of
action-conditions between sequential state transitions, β-VAE, an unsupervised method that dis-
entangles meaningful factors of variation from a distribution, efficiently disentangles controllable
and uncontrollable factors. We strategically design the AC-β-VAE module to share a backbone
structure with a policy network to overcome the blackbox issue, supporting the transparency of
deep RL. We, later in the paper, empirically compare our proposed method against the baseline
models, and furthermore extends the experiment on assessing regulating the learned behavioral
components.

2. Related Works

Deep learning methods are praised of their unruled pattern extraction that yields better perfor-
mance in many tasks than machines trained under human prior knowledge (Günel; Moore and
Lu (2011); Vanderbilt (2012)), but as stated earlier, the blackbox characteristic of DNNs can be
precarious especially in the RL setting. One of the safety factors of AI development suggested in
(Amodei et al. (2016)) is avoidance of negative side effects when training an agent to complete
a goal task with a strict reward function.

Attempts to open the blackbox of DNN and to understand the inner system of neural net-
works have been made in many recent works (Lipson and Kurman (2016); Zeiler and Fergus
(2014); Bojarski et al. (2017); Greydanus et al. (2017)). Its inherent learning phenomena are
reversely analyzed by observing the resultingly learned understructure. While the training
progress is also analytically interpreted via information theory (Shwartz-Ziv and Tishby (2017);
Saxe et al. (2018)), it is still challenging to anticipate how and why high-level features in neural
models are learned in a certain way before training them. Since learning a disentangled represen-
tation encourages its interpretability (Bengio et al. (2013); Higgins et al. (2016)), it is previously
reported that features of convolutional neural networks (CNN) can also be learned in a visually
explainable way (Zhang and Zhu (2018)) through disentangled representation learning.

Prospection of future states conditioned by current actions is meaningful to RL agents in
many ways, and action-conditional (variational) autoencoders are learned to predict sequent
states in the works of Ha and Schmidhuber (2018); Oh et al. (2015) and Thomas et al. (2017).
DARLA (Higgins et al. (2017)) utilizes disentangled latent representations for cross-domain
zero-shot adaptations. It aims to prove its representation power in multiple similar but different
environments.

While having good data representations is important for learning success of a model (Ben-
gio et al. (2013)), disentangled representation learning has been reported to be a catalyst for
many AI tasks, allowing faster convergences (Jaderberg et al. (2016); Lake et al. (2017)). A
disentangled latent factor is largely dependable for an independent data generative factor while
being insensitive to other factors. InfoGAN (Chen et al. (2016)), an extension of the generative
adversarial network (GAN) (Goodfellow et al. (2014)), maximizes the mutual information be-
tween the data and a subset latent noise. Compact information, as a result, is encoded in each
dimension of the latent representation. Dual swap disentangling method (Feng et al. (2018))
switches certain dimension(s) of two encoded latent vectors of paired input data and trains an
auto-encoder to reconstruct the observation, forcing the factor in the switched dimension(s) to
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learn the same attribute among the pair inputs. Additional to β-VAE (Higgins et al. (2016)),
β-TCVAE (Chen et al. (2018)) and FactorVAE (Kim and Mnih (2018)) are introduced with
better disentanglement performances and finer synthesized generations, but the unsupervised
disentanglement methods require careful calibration of the β to ensure disentangling controllable
and uncontrollable factors.

Although it is known that deep RL methods naturally connote attentiveness on important
features that influence much on maximizing cumulative rewards (Wang et al. (2015); Greydanus
et al. (2017)), performance can be enhanced if additional attentive features with agent’s self-
identity are engineered along (Jaderberg et al. (2016); Pathak et al. (2017); Choi et al. (2018)).
Many recent related works engage dynamic model to distinguish or identify controllable features
from (inverse) modeling dynamics of the environment. (Oh et al. (2015); Agrawal et al. (2016)),
while some works focus on learning the meaningful feature representations (Jaderberg et al.
(2016); Achiam et al. (2018)).

Disentanglement of controllable and uncontrollable factors have been recently studied and
introduced of its importance. The most noticeable related works on disentangling visual control-
lable and uncontrollable factors within the latent space (Sawada (2018); Thomas et al. (2018,
2017)) require more than one network to solve the problem. In the work of Thomas et al.
(2018), a selectivity loss is applied additional to the reconstruction term on an auto-encoding
structure to grasp independently controllable factors through interactions with a given world.
A separate network that optimizes the disentanglement of independently controllable factors is
required to evaluate the selectivity score. However, the method is not able to disentangle the
uncontrollable factors, which is why Sawada (2018) has proposed another method structured
with two DNNs each of which separately disentangles controllable and uncontrollable factors
with the pretrained models from the work of Thomas et al. (2018). Our proposed method is
unique in its way of learning disentangled latent representations of independently controllable
and uncontrollable factors in the latent space with a single network of variational auto-encoder,
which greatly lowers computation burden. And by sharing the backbone structure with a policy
network, AC-β-VAE enables an RL agent to learn latent features that are disentangled and
interpretable on-policy.

3. Preliminary: β-VAE

Variational autoencoder (VAE) (Kingma and Welling (2013)) works as a generative model based
on the distribution of training samples (Co-Reyes et al. (2018); Babaeizadeh et al. (2017)).
VAE’s goal is to learn the marginal likelihood of a sample x from a distribution parametrized
by generative factors z. In doing so, a tractable proxy distribution qφ(z|x) is used to estimate
an intractable posterior pθ(z|x) with two different parameter vectors φ and θ. The marginal
likelihood of a data point x can be defined as:

log pθ(x) = DKL(qφ(z|x)||pθ(z|x)) + L(θ, φ, x, z). (1)

Since the KL divergence term DKL(·||·) is non-negative, Lvae , L(θ, φ,x, z) sets a variational
lower bound for the likelihood log pθ(x) and the best approximation qφ(z|x) for pθ(z|x) can be
obtained by maximizing this lower bound:

Lvae = Eqφ(z|x)[log pθ(x|z)]−DKL(qφ(z|x)||p(z)). (2)

In practice, qφ and pθ are respectively encoder and decoder that are parameterized by deep
neural networks, and the prior p(z) is usually set to follow Gaussian distribution N (0, I). The
gradients of the lower bound can be approximated using the reparametrization trick.
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Figure 1: Structural diagram of AC-β-VAE with a sharing policy network. Without a sharing
policy network, AC-β-VAE can be trained with MDP tuple datasets. A data sample must be
composed of st, at and st+1 which flow with the model structure as illustrated. st can be repre-
sented as a stack along with few previous states, depending on environment complexity. With a
policy network attached, AC-β-VAE can also be trained on-the-fly through interactions with an
environment, assisting policy network.

β-VAE (Higgins et al. (2016)) extends the work and drives VAE to learn disentangled latent
features, weighting the KL-divergence term from the VAE loss function (negative of the lower
bound) with a hyper-parameter β > 1 :

Lβvae = Eqφ(z|x)[log pθ(x|z)]− βDKL(qφ(z|x)||p(z)). (3)

When β is ideally selected and does not severely interfere the reconstruction optimization, each
latent factor of z is learned to be not only independent of each other, but also often interpretable,
producing features with physio-visual characteristics of a given world. For better training sta-
bility, equation 3 is re-engineered into the following loss function in Burgess et al. (2018):

Lβvae = Eqφ(z|x)[log pθ(x|z)]− γ|DKL(qφ(z|x)||p(z))− C|. (4)

where C represents the annealing capacity control hyperparemeter targetted by the KL-divergence
term.

Higgins et al. (2016) models an environment with the β-Variational Autoencoder (β-VAE)
to generate disentangled latent features, inducing the learned features to be interpretable. How-
ever, unsupervised methods of learning disentangled representations without labeled samples
(Tang et al. (2013); Chen et al. (2018, 2016); Cohen and Welling (2014); Kim and Mnih (2018))
including β-VAE are considered unstable when certain factors are desired to be disentangled.
We, in the following section, propose a method that exploits the strong disentanglement power
of β-VAE with additional action-conditioning in desirable dimensions to stably disentangle con-
trollable and uncontrollable factors of the latent representations.

4. The Proposed Model

Our proposed model is composed of two structures: a policy gradient RL method and the
action-conditional β-VAE (AC-β-VAE). As shown in Figure 1, both components are designed
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Algorithm 1 AC-β-VAE with an actor-critic policy network

Initialize encoder qφ(h|s) and decoder pθ(s|z)z∼N (h).
Initialize critic Vw(s), actor πψ(a|h) and state s.
while NOT stop-criterion do

tstart = t
while t− tstart ≥ number of step or NOT sterminal do

Take an action at with policy πψ
Receive new state st+1 and reward rt

end

R =

{
0 for terminal st
Vw(st) for non-terminal st

while i ∈ {t− 1, ..., tstart} do
R⇐ ri + γR
Compute A(si, ai) (for A2C or PPO)
Sample zi ∼ N (hi) and create amapi

Predict pθ(ŝi+1|zi + amapi )
Compute Lpolicy and Lac−βvae Update encoder, actor and decoder based on:
Ltotal = Lpolicy + αLac−βvae
Update critic by minimizing the loss:
Lcritic(w) = (R− Vw(si))

2

end

end

to strategically share first layers of the encoding network so that the latent features of AC-β-
VAE can also become the input of the policy network. This simple shared architecture enables
human-level interpretations on behaviors of deep RL methods.

Consider a reinforcement learning setting where an actor plays a role of learning policy
πψ(at|st) and selects an action a ∈ A given a state s ∈ S at time t, and there exists a critic that
estimates value of the states Vw(s) to lead the actor to learn the optimal policy. Here, ψ and
w respectively denote the network parameters of the actor and the critic. Training progresses
towards the direction of maximizing the objective function based on cumulative rewards, J(θ) =
Eπψ [

∑
t γ

trt] where rt is the instantaneous reward at time t and γ is a discount factor. The
policy update objective function to maximize is defined as follows:

Lpolicy = Eπ[log πψ(st, at)A
π(st, at)]. (5)

Here, Aπ(s, a) is an advantage function, which is defined as it is in asynchronous advantage
actor-critic method (A3C) (Mnih et al. (2016)):

Aπ(st, at) =

k−1∑
i=0

γir(st+i, at+i) + γkV π
w (st+k)− V π

w (st),

where k denotes the number of steps. We have used the update method of Advantage Actor
Critic (A2C) (Wu et al. (2017)), a synchronous and batched version of A3C, for Atari domain
environments (Bellemare et al. (2013)). Proximal Policy Optimization (PPO) (Schulman and
Klimov (2017)) is also used for our experiments in continuous control environments, which
reformulates the update criterion with the use of clipping objective constraint C in the form of:
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Lpolicy = Eπ

[
πψ(a|s)
πoldψ (a|s)

A(s, a)

]
− CDKL(πoldψ (·|s)||πψ(·|s)). (6)

Here, the subscript t for a, s and A is omitted for brevity.

Figure 2: The results of traversing the latent factor of our trained model on Atari game en-
vironment Breakout with z ∈ R5, where z1:4 are mapped with variant features of a ∈ R4

and z5 is condensed with other environmental factors. Since the factors in the latent vector z
of AC-β-VAE are defined by the vectors of mean and standard deviation µ, σ, traversing i-th
value of the latent vector zi is almost equivalent to traversing µi. The input DNN feature h of
the policy network is the concatenation of µ and σ, and thus the next state due to its output
actions aselected caused by traversed µi factor would be probabilistically predictable by the visual
consequence estimated by the decoder with traversed zi.

4.1. Action-Conditional β-VAE (AC-β-VAE)

With a given environment, the policy network combined with the encoder produces rollouts of
typical Markov tuples that consist of (st, at, rt, st+1). A raw state st feeds into the encoder model
and gets encoded into a representation h ∈ R2n, where n is the dimension of the the latent space.
Since the policy network and AC-β-VAE share the parameters until this encoding process, the
representation h = [µT , σT ]T represents a DNN feature which is inputted to the policy network
while also representing a concatenated form of the mean and the standard deviation vectors
µ, σ ∈ Rn. The vectors are reparametrized into a posterior variable z ∈ Rn through the AC-β-
VAE pipeline. The output of the encoder feed-flows into the policy network π(a|h) to output
an optimal action a ∈ Rm where m < n so that an RL environment responds accordingly. The
action vector a is then concatenated with a vector of zeros in length of Rn−m to create, we call,
an action-mapping vector amap = [aT , 0T ]T ∈ Rn. An element-wise sum of the latent variable z
and the action-mapping vector amap is performed in order to map action-controllable factors into
the latent vector. This causes the latent variable sampled to be constrained by the probability
of actions. The resultant vector zt + amapt is fed into the decoder network to predict the next
state ŝt+1. The prediction is then compared with the real state st+1 given by the environment
after the action taken. For an MDP tuple collected at time t, the loss of AC-β-VAE is computed
with the following loss function:

Lac−βvae = Eqφ(ht|st)[log pθ(st+1|zt + amapt )]zt∼N (ht) − βDKL(qφ(zt|st)||N (0, I)). (7)

As one can see, the AC-β-VAE model can be trained either simultaneously with the policy
network or separately, and all our experiments are performed with the former because it is more
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practical. At each iteration of update, the total objective function value is calculated with the
weighted sum of objective function values from both models:

Ltotal = Lpolicy + αLac−βvae (8)

where α is the weight balance parameter. Since exploration based on the error between generated
outputs and the ground-truths have already been proven on the training enhancement in many
RL related works (Oh et al. (2015); Ha and Schmidhuber (2018); Tang et al. (2017)) our model
rather focuses on feasible training of a transparent neural policy network and modeling self-
efficacy of agents, not on RL performance improvement. We thus choose relatively small-valued
α not to confuse the policy network too much. A basic pseudo-code for the training scenario of
our proposed structure is provided in Algorithm 1.

4.2. Mapping Action-Controllable Factors

Learning visual influence was previously introduced of its importance and implicitly solved in
the works of Oh et al. (2015) and Greydanus et al. (2017). Distinguishing directly-controllable
objects and environment-dependent objects reflects much of how a human perceives the world.
Restricting in the world of Atari game domains as an example, it is intuitive for a human agent
to first figure out ‘where I am in the screen’ or ‘what I am capable of with my actions’ and then
work their ways towards achieving the highest score.

We show in the experiment section that AC-β-VAE allows RL agents not only to explicitly
learn visual influences of their actions, but also learn them in a human-friendly way. By travers-
ing each element of the latent vector, we are able to interpret which dimensions are mapped
with actions and which are mapped with other environmental factors.

4.3. Transparent Policy Network

As mentioned earlier, the encoder and the policy network can be grouped as one bigger policy
network model with an interpretable layer constrained by the AC-β-VAE loss. Unlike high-
level features from conventional DNN models, the inner features of our policy network are
consequentially interpretable.

Figure 2 illustrates how our policy network becomes transparent. If the action-dependent
factors are disentangled in the latent vector z ∈ Rn and mapped into z1:m, then so they are in
µ1:m and σ1:m because they define the sampling distribution of zi where i denotes the dimensional
location. The variational samplings from the latent space of VAE is defined as: zi = µi + σiεi
where ε is an auxiliary noise variable ε ∼ N (0, 1). Since the σ value controls mainly the scale
of sampled ε, traversing zi is almost equivalent to traversing µi Thus, traversing µi encourages
the policy network to cause actions as predictions of each traversing value of zi for i ≤ m.

5. Experiments

In this section, we present experimental results that demonstrate the following key aspects of
our proposed method:

• By mapping actions into the latent vector of β-VAE, action-controllable factors are disen-
tangled from other environmental factors.

• Governance over the optimized behavior of an agent can be made based on human-level
interpretation of learned latent behavioral factors.
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Figure 3: The figures are better seen when zoomed in. Visual qualitative results of AC-β-VAE
trained on-policy with a random policy through interactions with the dSprites environment with-
out extrinsic rewards. AC-AE and AC-β-VAE are conducted with action-conditioning. Actions
of vertical/horizontal moving, rotating, and scaling are respectively mapped into the first four
dimensions ordered 1st to 10th from left to right. Deterministic AC-AE is not able to disen-
tangle the environmental factor (the color variations), and is also composed of uninterepretable
high-level representations. β-VAE’s disentanglement results do not guarantee disentanglement
of controllable and uncontrollable factors. Training hyper-parameters and the objective function
are selected as done in Burgess et al. (2018).

VAE β-VAE AC-VAE AC-β-VAE
(β=1) (β=6) (β=1) (β=6)

Avg. Disent. 0.191 0.813 0.798 0.865
Avg. Compl. 0.217 0.741 0.754 0.766

Table 1: The quantitative scores of disentanglement and completeness averaged over dimensions
of the latent vector learned with (st, at, st+1) tuples from dSprites environment.

We have experimented our method in three different environment types: dSprites, Atari and
MuJoCo.
dSprites Environment is an environment we have designed with the dSprites dataset (Matthey
et al. (2017)). The environment provides 64×64 sized visual states of a heart-shaped object based
on action inputs without extrinsic rewards. When an episode starts with the object randomly
positioned, randomly rotated, randomly scaled, and randomly colored, and each episode ends
when the number of interactions reaches 30. At each step, the heart-shaped object responds
to a 4-dimensional action vector composed of the following discrete independent action input:
move vertically (upward, downward or no-action) and horizontally (left, right or no-action),
scale (enlarge, shrink or no-action) and rotate (left, right or no-action) by a unit. Each action
factor is independently chosen by an uniform distribution, and the color of the heart object is
changing from red to green, to blue, and then back to red (R→G→B→R) independently from
the agent’s actions1

Atari Learning Environment is a software framework for assessing RL algorithms (Bellemare
et al. (2013)). Each frame is considered as a state and immediate rewards are given for every
state transitions. Our method is experimented in the Atari game environments of Breakout,
Seaquest and Space-Invaders.

1. If environmental factor is not patterned during sequent transitions from st to st+1, VAE framework is not
able to learn transition distribution.
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Figure 4: The images are the estimated next states obtained by traversing the latent vector z ∈ R5

learned by AC-β-VAE with β=10 and α=0.001 on the Atari game environment Breakout. The
factors at z1:4 are mapped with the control factors such as movements of the paddle, and z5 is
mapped with the environmental factors such as bricks and the scoreboard.

MuJoCo Environment provides a physics engine system for rigid body simulations (E. Todorov
and Tassa. (2012); G. Brockman and Zaremba. (2016)). Four robotics tasks are engaged in our
experiments: Walker2d, Hopper, Half-Cheetah and Swimmer. A state vector represents
the current status of a provided robotic figure, each factor of which is unknown of its physical
meaning.

As an encoder and a decoder, we have used a convolutional neural network (CNN) for Atari
environments and fully-connected MLP networks for dSprites and MuJoCo environments. For
the stochastic policy network, we have used a fully-connected MLP. PPO and A2C are applied to
optimize agent’s policy for continuous control and discrete actions, respectively. Most of hyper-
parameters for the policy optimization are referred from the works of (Schulman and Klimov
(2017); Wu et al. (2017)).

5.1. Disentanglement & Interpretability

To demonstrate the disentanglement performance and interpretability of the proposed algorithm,
we have experimented our method with (st, at, st+1) tuples from environments mentioned above.

Figure 3 and Table 1 illustrate the results for the dSprites environment. The metric frame-
work suggested by Eastwood and Williams (2018) with a random forest regressor is applied to
present the quantitative results of disentanglement and completeness. Since the metric system
is based on the disentanglement for the conventional VAE and β-VAE where predictions are
targetted by the inputs, our metric results are not strictly comparable to the ones reported in
the original work.
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Figure 5: The images are the estimated sequent states obtained by traversing the latent vector z ∈
R20 learned by A2C policy and AC-β-VAE with β=10 and α=0.001 on Atari game environments
Seaquest (top) and Space-Invaders (bottom) with action spaces of R18 and R6, respectively.
Because of a small movement per action, we have enlarged the ego at a fixed location (red box).

For Figure 3, AC-β-VAE and other entries are trained on-policy with 1.1M time-steps of
interactions by a random policy. In other words, no policy network is needed to train in this
experiment, but the datasets for the candidate entries depend on a policy that generates random
actions. The baseline models include an action-conditional version of a deterministic autoen-
coder, labeled as AC-AE, and β-VAE trained with inputs and targets of either st or st+1, each
with 50% of chance for the fair comparison. In this paper, β-VAE is considered sufficient to
represent other unsupervised methods of disentangling latent representations that have followed
its work since our aim is to disentangle indenpendently controllable factors and uncontrollable
factors, rather than disentangling all variational factors. All candidate methods have learned to
generate latent vectors with action-dependent factors mapped in desired dimensions (first-four
dimensions from the left in the figure), except for β-VAE. AC-AE is shown to be difficult to
strictly disentangle uncontrollable factors (the color variations), and some of the captured vari-
ations are high-level and uninterpretable. β-VAE strongly disentangles variational factors, but
as mentioned earlier, its learning is unstable to guarantee the disentanglement of controllable
and uncontrollable factors. Although the same weight on the KL-diveregence term and the
same action trajectories are applied for both AC-β-VAE and β-VAE during traning, AC-β-VAE
performs better disentangling independently controllable and uncontrollable factors.

The results for the Atari environments in Figure 4 and Figure 5 show that the latent vector
trained with our method models the given environment successfully. All the visited state space
and learned behaviors can be projected by traversing each dimension of the latent vector. In that
sense, our method can be considered as an action-conditional generative model. Because AC-β-
VAE can model the world in an egocentric perspective, all the sequences of (state-action-next
state) can be re-simulated. Such trait may advance many RL methods since similar models are
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used for an exploration guidance (Tang et al. (2017)) or as the imagery rehearsals for training
(Ha and Schmidhuber (2018)).

(a) Walker2d (a ∈ R6, z ∈ R12, a1:6 → z1:6) (b) Hopper (a ∈ R6, z ∈ R12, a1:6 → z1:6)

(c) Half-Cheetah (a ∈ R3, z ∈ R6, a1:3 → z1:3) (d) Swimmer (a ∈ R2, z ∈ R4, a1:2 → z1:2)

Figure 6: Traverse results in the MuJoCo environments. The vertical axis represents the di-
mensions of the latent vector, and the horizontal axis represents the dimensions of the states.
The numbers in the boxes represent the standard deviations of each dimensional factor of the
following state, st+1, when traversing the corresponding dimensional factor of the latent vector.
Compared to the traverse for unmapped dimensions, the standard deviations of state values in
the action-mapped dimensions are larger. Right arrows indicate action-mapping dimensional
locations.

Figure 6 shows the quantitative results of the traverse experiment on the MuJoCo environ-
ment. Numbers on the heat-map represent the standard deviations for each dimension’s state
values when traversing dimensional factor. The higher standard deviation value in the traverse
of a specific dimension means the more effects the traversing dimension have on immediate state
changes. Unlike other environments, the MuJoCo environment has no environmental factors,
and the current state is represented by the preceding movement of the given robotic body. As
shown in Figure 6, since the standard deviation of the state values during the traverse of the
dimensions that are mapped with actions is larger than the unmapped ones, we can see the
proposed algorithm is able to learn the disentangled action-dependent latent features. However,
it is limited from clear visual interpretation compared to the experimental cases in other en-
vironments because the actions in the MuJoCo environment is defined as a continuous control
of torques for all joints and it is conjectured that the movement of one joint affects the whole
status of the body.

5.2. Controlling and Governing efficacy

To verify the controllability of an agent’s optimized efficacy, we traverse the latent factors over
the environment-specific range during an episode on the learned network. In order to examine
st+1, the environment output, the traversal is conducted before reparameterization (µ vector).
Furthermore, to get a clear view on the effect of action-mapped dimensions of the latent vector,
we set all of the value of action mapped dimensions to zero except for the traversing one and
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those unmapped dimension of the latent vector. These experiments are conducted on the Mujoco
environments, and traverse range is set as [-5, 5] for every tasks.

The learned behavior in each latent dimension is also depicted in Figure 7. The resultant
traverses of action-mapped dimensions on latent factors yield in behavioral movements that
are combinations of multiple joint torque values. Unlike in Atari environments with discrete
action spaces, AC-β-VAE is constrained with various combinations of continuous action values
during training simulations. When the policy network is optimized to accomplish a goal behavior
such as walking, the action-mapped latent factors are learned to represent required behavioral
components of spreading or gathering the legs. Therefore, µ vector represents variations in
combinations of multiple joint movements, which allows for ease of visual comprehension on
agent’s optimized efficacy. This clearly shows the possibility of governance over an RL agent’s
efficacy with human-level interpretations through controlling the values of the µ vector in the
latent space.

We have taken the advantage of our transparent policy network and derived another behavior
by controlling learned behavioral components. An RL agent is able to learn with a reward
function defined by human preference to perform, for example, a back-flip motion in Hopper
environment (Christiano et al. (2017)). Showing a promising result of human enforcements
on an RL model, our method enables governance over the agent’s optimized behavior in Half-
Cheetah environment. After identification of behavioral components by traversing each element
of the µ vector, we are able to express another behavior of the agent, a back-flip in this case, as
shown in Figure 8.

Figure 7: For Half-Cheetah environment with
continuous control, latent behavioral factors can be
interpreted by traversing latent values in time. As
a result, each action-mapped latent feature is re-
sponsible for a behavioral factor.

Figure 8: Example of governing the agent
movement in MuJoCo environment of
Half-Cheetah. The robotic body is
conducting a back-flip movement which
is induced by controlling latent values at
first and second dimensions of the learned
µ vector shown in Figure 7 .
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6. Conclusion

In this paper, we propose the action-conditional β-VAE (AC-β-VAE) which, for a given input
state st at time t, predicts next state st+1 conditioned on an action at, sharing a backbone
structure with a policy network during a deep reinforcement learning process. Our proposed
model not only learns disentangled representations but distinguishes action-mapped factors and
uncontrollable factors by partially mapping control-dependent variant features into the latent
vector. Since the policy network combined with the preceding encoder can be considered as
one bigger policy network that takes raw states as inputs, with AC-β-VAE, we are able to
build a transparent RL agent of which latent features are interpretable to human, overcoming
conventional blackbox issue of Deep RL. Such transparency allows human governance over the
agent’s optimized behavior with adjustments of learned latent factors. We plan on the relevant
studies for applications of the action-mapped latent vector.
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