
Barshan*, Brunet*, Dziugaite

A Connection between the Fisher and

Hessian

The Fisher information matrix of a conditional distri-
bution parameterized by ✓, p✓(y|xi), where we do not
have an explicit representation for p(x), is

F✓ =
1

n

nX

i=1

Ep✓r✓ log p✓(y|xi)r✓ log p✓(y|xi)
T

=
1

n

nX

i=1

h
Ep✓

r2
✓p✓(y|xi)

p✓(y|xi)| {z }
=0

�Ep✓r2
✓ log p✓(y|xi)

i

= � 1

n

nX

i=1

Ep✓r2
✓ log p✓(y|xi).

The second equality can be obtained by carrying out
the di↵erentiation r2

✓ log p✓(y|x). The third equality
critically relies on the expectation being taken with re-
spect to the model’s distribution, as well as being able
to switch the order of the expectation and di↵erentia-
tion.

When our model has learned a distribution p✓(y|x)
close to the ”true” distribution p(y|x), we may ap-
proximate F✓ by replacing Ep✓ with a Monte Carlo
estimate based on the target values, yi, in the training
set. This gives us

F✓ ⇡ � 1

n

nX

i=1

r2
✓ log p✓(yi|xi) = H✓.

The final equality with H✓ (as defined in Eq. (2)) holds
when `(z, ✓) = � log p✓(yi|xi). Therefore, our two ex-
pressions for influence, Eq. (3) and Eq. (6), approxi-
mately agree when the loss is the negative log likeli-
hood, and y given x is actually distributed as p✓⇤(y|x).
In practice, we have found that the Fisher and Hessian
return similar examples when used to compute Itest,i.

B Proofs of RelatIF

Recall Proposition 3.1: Assume that Eq. (4) and

Eq. (5) hold with equality. Then Eq. (10) is equivalent
to

argmax
i2{1,...,n}

|Itest,i|
kH�1

✓⇤ gik
. (14)

Proof. The argmax in Eq. (10) is just a search over
the n examples in our training set. Therefore the solu-
tion to Eq. (10) amounts to solving max|`(ztest, ✓⇤i,✏i)�
`(ztest, ✓⇤)| subject to the constraints for each i, then
choosing the zi for which this quantity is largest. We
assume Eq. (5) holds with equality, and so it follows

|`(ztest, ✓⇤i,✏i)� `(ztest, ✓
⇤)| = |Itest,i✏i|.

Note, that Itest,i✏i is a linear function in ✏i. The max-
imum of its absolute value will therefore be on one of
the endpoints imposed by the constraint on ✏i.

We assume that approximation in Eq. (4) is exact,
yielding ✓⇤i,✏i � ✓

⇤ = �H
�1
✓⇤ gi✏i. Using this equality to

describe the change in parameters, the constraint in
Eq. (10) can be written as

kH�1
✓⇤ gi✏ik2  �

2 =) |✏i| 
|�|

kH�1
✓⇤ gik

.

We now have an explicit constraint on ✏i. Plugging
either endpoint of this interval into |Itest,i✏i| yields the
same value. Substituting that value into the outer
argmax we get,

argmax
i2{1,...,n}

|Itest,i||�|
kH�1

✓⇤ gik
.

Since � does not depend on i, it can be dropped from
the argmax, and the result follows.

Recall Proposition 3.3: Assume Eq. (8) and Eq. (9)
hold with equality. Then Eq. (12) is equivalent to

argmax
i2{1,...,n}

|Itest,i|p
Ii,i

. (15)

Proof. The proof follows the proof of Proposition 3.1.
We need only consider the new constraint. Assuming
Eq. (9) holds with equality, we have

`(zj , ✓
⇤
i,✏i)� `(zj , ✓

⇤) = Ij,i✏i = �g
T
j F

�1
✓⇤ gi✏i.

We introduce the notation g(z) = r✓`(z, ✓⇤) to signify
the gradient of the loss of a point z = (x, y) sampled
from the model’s distribution, p⇤✓. We substitute into
the constraint, which yields

Ep✓⇤ (�g(z)TF�1
✓⇤ gi✏i)

2  �
2
.

Expanding and rearranging the left hand side, yields

Ep✓⇤ (g(z)
T
F

�1
✓⇤ gi✏i)

T (g(z)TF�1
✓⇤ gi✏i)

= g
T
i F

�1
✓⇤ Ep✓⇤

⇥
g(z)g(z)T

⇤
F

�1
✓⇤ gi✏

2
i ,

where we have moved the constant terms outside of the
expectation. Because our loss functions here is nega-
tive log-likelihood, Ep✓⇤ [g(z)g(z)

T] is the is the defini-
tion of the Fisher information matrix, F ⇤

✓ . It agrees
with the presentation in Section 2.2 when we replace
the expectation over z = (x, y) with

P
j Ep✓⇤ (y|xj).

Thus the constraint can be reduced to

g
T
i F

�1
✓⇤ gi✏

2
i = Ii,i✏2i  �

2
.

The Fisher, F✓⇤ , is positive definite, therefore Ii,i is
positive, and the constraint is equivalent to |✏i| 

|�|p
Ii,i

. The rest of the proof follows Proposi-

tion 3.1.

RelatIF

C Computational Considerations

Inverting the Hessian The Hessian of the total
loss, H✓⇤ , is positive definite if ✓⇤ is the local mini-
mum of the objective function. If the requirements for
positive definiteness of H✓ are not met, for example
because the optimization procedure has not fully con-
verged, we can add a damping term to the Hessian to
make it invertible (i.e., H̃✓ = H✓ + �I where I is the
identity matrix). Adding the damping term is equiva-
lent to L2 regularization, and allows us to form a con-
vex quadratic approximation to the loss function. Koh
& Liang (2017) demonstrate that influence functions
computed with a damping term still give meaningful
results in practice. Empirically we have also found this
to be the case (see Fig. 6).

IF and RelatIF in large models The Hessian of
the total loss, H✓⇤ , is a P by P matrix, where P is the
number of model parameters. In even just mid-sized
models, it becomes near impossible to explicitly form
H✓⇤ in memory. Koh & Liang (2017) propose using
LiSSA (Agarwal et al., 2017) to estimate the inverse
Hessian vector products needed to compute influence.
We have found that this works well in practice after
some tuning. However, because the denominator in
RelatIF is a function of the training example zi we
cannot use the same stest trick suggested by Koh &
Liang (2017). This has led us to explore using a num-
ber of block diagonal approximations to the Hessian,
principally motivated by K-FAC (Martens & Grosse,
2015). Specifically, we use these approximations to
pre-compute the denominator in RelatIF (

p
Ii,i or

kH�1
✓⇤ gik) for every training example zi. We are then

able to use stest.

D Qualitative comparison of

✓-RelatIF and `-RelatIF

Fig. 7 o↵ers a comparison between the top positively
influential training examples recovered by `-RelatIF
and ✓-RelatIF. As this figure shows, the examples re-
turned by both method are visually similar.

E More explanation examples

Fig. 8 and Fig. 9 o↵er more examples of using Re-
latIF and IF for explaining the prediction of a Con-
vNet trained on CIFAR10 data set.

F Comparison to support vectors

Consider a soft-SVM optimization problem, with a di-
mensionality of the feature space lower than the num-

ber of training points. Via working with a dual for-
mulation of the objective, one can uncover that the
optimal weights w? lie in the linear span of some train-
ing samples, called support vectors (see, e.g., (Shalev-
Shwartz & Ben-David, 2014), Ch.15).

Let (·) map inputs x to a feature space. Define a
kernel function K(xi, xj) = h (xi), (xj)i for all in-
puts xi, xj . Let w

⇤ be an output of a solution to a
soft-margin SVM.

The support vectors are the training samples in-
dexed by i, such that yihw⇤

, (xi)i  1, i.e., sup-
port vectors are the training samples that are inside
the margin or misclassified. By computing the gra-
dients of a soft-SVM objective, one can see that IF
induces a ranking of training samples according to
yiytestK(xi, xtest), where {xi}i are support vectors
(IF equals to zero for training samples that are not
support vectors). In other words, the highest influ-
ence samples are support vectors that are most sim-
ilar to the test point in the feature space. Similarly,
repeating the same calculation for the loss-relative in-
fluence, one would rank the support vectors based on
yiytestK(xi, xtest)/

p
K(xi, xi).

In summary, IF gives a way to distinguish which of
the training samples among all support vectors are the
ones that are most similar to the test sample in the
feature space. RelatIF normalizes this similarity in the
feature space by the norm of the training sample in the
feature space, which is equivalent to IF evaluated on
training samples that are unit vectors in the feature
space.

G Application of example-based

explanations

Consider the example shown in Fig. 10. The input
image in the top left corner is classified as a bird, how-
ever, the predicted probability for class plane is also
very high. Using RelatIF we can identify the top rel-
evant training examples to each label (i.e., bird and
plane) and assess the model’s decision based on them.
Comparing the similarity between the test image and
relevant training examples to each class, suggests that
this image should be classified as a plane. Also, these
explanations could be used as a guide to collect more
training examples for improving the model perfor-
mance (e.g., what kind of training examples are useful
for correcting a specific misclassification).

Barshan*, Brunet*, Dziugaite

(a) Logistic Regression on MNIST (b) ConvNet on MNIST (c) AlexeNet on small ImageNet

Figure 6: Evaluating the accuracy of the estimated error for leave-one-out retraining by influence functions
with di↵erent hessian approximations. in the figure, “exact” refers to exact Hessian, “gradient” referes to using
identity matrix for Hessian and “lissa” refers to using the LiSSA method for approximating inverse Hessian
vector products. In the case of AlexNet, the results are only reported for LiSSA due computational/memory
complexity. For all of these models a small damping coe�cient has been added to the diagonal of the Hessian
to make it invertible. As this figure shows, in the case of LiSSA and exact Hessian, the correlation between
influence function estimation for change of loss and the actual leave-one-out retraining loss is high.

H Qualitative comparison with

k-nearest neighbors

Fig. 11 o↵ers a qualitative comparison between using
RelatIF and k-nearest neighbors for explaining the pre-
diction of a ConvNet trained on CIFAR10 data set.

RelatIF

Figure 7: Comparison of the top positively influential training examples recovered by `-RelatIF and ✓-RelatIF.
The classifier is a logistic regression trained on MNIST. Each row shows a test sample and the top five positively
influential training examples for the predicted label selected by each method. The true class and the predicted
label for each example is marked. The example returned by both method are visually similar.

Barshan*, Brunet*, Dziugaite

Figure 8: Generating example-based explanation using IF and RelatIF for the model prediction. The model is a
ConvNet trained on CIFAR10 data set. For each test sample in the left column, the recovered training examples
for explaining the model prediction using IF and RelatIF are depicted in the first and second row, respectively.

RelatIF

Figure 9: Generating example-based explanation using IF and RelatIF for the model prediction. The model is a
ConvNet trained on CIFAR10 data set. For each test sample in the left column, the recovered training examples
for explaining the model prediction using IF and RelatIF are depicted in the first and second row, respectively.

Barshan*, Brunet*, Dziugaite

Figure 10: Using RelatIF to identify training examples with the top positive relevant influence on the the
predicted (bird) and true label (plane).

RelatIF

I The connection between RelatIF

and leave-one-out retraining

RelatIF is an approximation for the ratio of change
in the test sample loss to global changes of the model
(i.e., norm of change in the model parameters or root
sum of square change in loss over the training set)
resulted from leave-one-out retraining. Table 4 reports
this ratio for di↵erent methods.

Method �`test/k�✓k �`test/
pP

(�`i)2

IF 0.311± 0.167 0.016± 0.008
✓-RelatIF 0.459± 0.226 0.026± 0.010
`-RelatIF 0.475± 0.229 0.027± 0.010
Nearest-N 0.304± 0.182 0.018± 0.009

Table 4: The ratio of change in the test loss (�`test)
to the global changes, i.e., the norm of the change in
the model parameters (k�✓k), or root sum of square
change in loss over the training set (

pP
(�`i)2). The

results come from removing the mostly positively in-
fluential training sample as determined by di↵erent
methods, then retraining the model (i.e., leave-one-out
retraining). The model is a logistic regression trained
on MNIST. The experiment is repeated for 100 ran-
domly selected test samples. The mean ± standard
error are reported. One can approximate the leave-
one-out change of these ratios using ✓-RelatIF and `-
RelatIF, respectively. Note that these ratios are higher
for the samples identified by RelatIF than for those
identified by IF or NN. This is due to the fact that
RelatIF identifies the points that maximize these ra-
tios.

Barshan*, Brunet*, Dziugaite

Figure 11: Comparing the k-nearest neighbors (k-NN) to the most (positive) relatively influential samples (Re-
latIF) for a convolutional neural network trained on CIFAR10. The two test samples were correctly classified by
the model. The k-nearest neighbors are similar in pixel composition, but are semantically di↵erent from the test
sample. They provide no evidence to explain why the model has correctly classified the test sample. Conversely,
the samples returned by RelatIF are of the matching class. They suggest the model has been exposed to relevant
training data, and has learned something useful.

