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Abstract
For any pattern p ∈ {U,L,UU,UD,DU,DD}, we enumerate the equivalence classes
of skew Dyck paths, where two skew Dyck paths of the same semilength are p-
equivalent whenever the positions of the occurrences of the pattern p are the same.
In this paper we use generating functions, bijective arguments, and recurrence re-
lations to obtain the main results.

1. Introduction and Notation

A skew Dyck path is a lattice path in the first quadrant of the xy-plane that starts
at the origin, ends on the x-axis, and is made of up-steps U = (1,1), down-steps
D = (1,−1), and left steps L = (−1,−1) so that up and left steps do not overlap.
Whenever we do not permit the step L, we retrieve the well known definition of
Dyck paths (see [5]). We let SD denote the set of all skew Dyck paths, D the
set of Dyck paths, and ∣P ∣ the length of the path P , i.e., the number of its steps,
which is an even non-negative integer. Let λ be the skew Dyck path of length zero.
For example, Figure 1 shows all skew Dyck paths of length 6, or equivalently of
semilength 3.
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Figure 1: Skew Dyck paths of semilength 3.

The concept of skew Dyck path was introduced by Deutsch, Munarini, and Ri-
naldi [6]. Some additional studies can be found in [4, 7, 11], where the authors
present enumerative results according to different parameters and some bijections
with other combinatorial objects, as hex trees, tree-like polyhexes, and 3-Motzkin
paths.

In the following, a pattern consists of consecutive steps in a path. We will say
that a pattern is at position i ≥ 1 in a path whenever the first step of the pattern
appears at the i-th step of the path, the second step at the (i + 1)-th step, and so
on. The height of an occurrence of a pattern is the minimal ordinate reached by its
points. For instance, the skew Dyck path P = UDUUDL contains two occurrences
of the pattern UD at positions 1 and 4, and the heights of these occurrences are
respectively 0 and 1.

Recently in [1, 2, 3, 12], the authors investigate equivalence relations on the
sets of Dyck paths, Motzkin paths, Łukasiewicz paths, and Ballot paths where two
paths of the same length are equivalent whenever they coincide on all occurrences
of a given pattern. In this paper, we extend these studies for skew Dyck paths by
considering the analogous equivalence relation on SD:

Two skew Dyck paths of the same semilength are p-equivalent whenever they have
the same positions of the occurrences of the pattern p.

For instance, the skew Dyck path UDUUDL is L-equivalent with UUDUDL

since the occurrences of L appear at the same positions in the two paths.
For some patterns p of length one or two, we provide generating functions for

the number of p-equivalence classes in SD with respect to the semilength. The
general method used consists in providing bijections between equivalence classes and
some subsets of skew Dyck paths, and then, evaluating algebraically the generating
functions for these subsets. We handle the cases p ∈ {U,L,UU,UD,DU,DD}, and
we leave the other cases as open problems. As a byproduct, we characterize skew
Dyck paths entirely fixed by the positions of its left steps L, and we count them
using generating functions and recurrence relations. We also provide and conjecture
asymptotic approximations for the number of p-equivalence classes of skew Dyck
paths of semilength n.
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2. Equivalence Classes Modulo Patterns of Length One

In this part, we focus on the patterns p of length one, that is p ∈ {U,D,L}. Table
1 presents the first few values for the number of p-equivalence classes. We do not
succeed to solve the case D which is left as an open question (for this case, values
in Table 1 are experimentally obtained).

Pattern Sequence OEIS([13]) an, 1 ≤ n ≤ 9

U Catalan A000108 1, 2, 5, 14, 42, 132, 429, 1430, 4862
L New 1, 2, 4, 9, 21, 50, 123, 308, 781
D Open problem New 1, 3, 10, 35, 129, 488, 1881, 7341, 28876

Table 1: Number of p-equivalence classes for skew Dyck paths.

2.1. The Pattern U

The number of U -equivalence classes is given by the Catalan numbers cn = 1
n+1(

2n
n
)

since we can establish a bijection between Dyck paths and the set of U -equivalence
classes of skew Dyck paths. Indeed, each equivalence class of skew Dyck paths of
length 2n can be represented by a word of length 2n using the symbols 1 and 0. The
symbol 1 represents a diagonal up step U , and the symbol 0 represents an absence
of the step U , or a down step D in a Dyck path. For example, Figure 2 shows the
case for the paths of semilength 2.

(1, 1, 0, 0)
(1, 0, 1, 0)

Figure 2: Bijection between Dyck paths and U -equivalence classes of SD.

2.2. The Pattern L

In order to study the equivalence classes modulo L, we define the subclass L of skew
Dyck paths avoiding the patterns UDD and DDD, and where all occurrences of
UDU and DDU are at height 0.

Theorem 1. There is a bijection between L and the set of L-equivalence classes of
SD.

Proof. First, we will prove that for every P ∈ SD there exists P ′ ∈ L such that P
and P ′ belong to the same equivalence class modulo left steps. Let us consider the
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sequence of skew Dyck paths P = P0, P1, . . . , Pk = P ′ with k ≥ 1, where for any i,
0 ≤ i ≤ k−1, Pi+1 is obtained from Pi by performing the first possible transformation
among the four described below, until the path belongs to L.

(1) Remove occurrences UDU at height greater than 0.

If Pi contains such a pattern, Pi = αUDUβ, then we define Pi+1 = αDUUβ.
Notice that if Pi+1 avoids UDU at height h > 0 and contains an occurrence of
DD at height k > 0, then before it, there is necessarily an occurrence UUU at
height k − 1.

(2) Remove occurrences DDU at height greater than 0.

If Pi contains such a pattern, then Pi = αDDUβ where α contains the pat-
tern UUU . Considering the rightmost pattern UUU in α, we have Pi =
α1UUUα2DDUβ and we define Pi+1 = α1UDUα2DUUβ.

(3) Remove occurrences UDD.

If Pi contains such a pattern, Pi = αUDDβ, then we define Pi+1 = αDUDβ.

(4) Remove occurrences DDD.

If Pi contains such a pattern, then Pi = αDDDβ where α has the pattern
UUU . Considering the rightmost UUU in α, we have Pi = α1UUUα2DDDβ

and we define Pi+1 = α1UDUα2DUDβ.

Since the process do not modify the positions of the left steps L, the paths P
and P ′ belong to the same equivalence class. An example of this process is shown
in Figure 3.

Now, let us prove that if P and P ′ with the same length ` both belong to L
and are in the same equivalence class modulo L, then P = P ′. Any P ∈ L can be
decomposed

P = (
n−1
∏
i=0

αiL
ki)αn,

where L does not belong in αi, 0 ≤ i ≤ n, and ki ≥ 1 for 0 ≤ i ≤ n − 1.
First, if P does not contain L, then P is a Dyck path, and as P ∈ L, P = (UD)`/2.

With a similar argument for P ′, we obtain directly P = P ′.
The second case is when P and P ′ have at least one occurrence of L. Since P

belongs to L, we can determine the form of αi.

• Case i = 0. We have α0 = (UD)s1Us2D with s1 ≥ 0 and s2 ≥ 2.

• Case 1 ≤ i < n. The endpoint of αi−1Lki−1 must be at the height h ≥ 1.

– If h = 1, αi =D(UD)t1U t2D with t1 ≥ 0 and t2 ≥ 2.
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Figure 3: Construction of a path in L from a skew Dyck path.

– If h = 2, αi is either D, D2(UD)t3U t4D, or DU t5D with t3 ≥ 0, t4 ≥ 2,
t5 ≥ 1.

– If h ≥ 3, αi is either D, D2, or DU tD with t ≥ 1.

• Case i = n. The endpoint of αn−1Lkn−1 must be at height h = 0,1,2.

– If h = 0, αn = λ.
– If h = 1, αn =D(UD)r1 with r1 ≥ 0.

– If h = 2, αn =D2(UD)r2 with r2 ≥ 0.

Now, let us suppose that P ≠ P ′. Since P and P ′ are in the same class, we have
P ′ = (∏n−1

i=0 α
′
iL

ki)α′n with ∣αj ∣ = ∣α′j ∣, and there exists j such that αj ≠ α′j . We take
the greatest j satisfying this condition.

Let us assume j = n. If r = ∣αn∣ = ∣α′n∣ is even, then we have either αn = α′n = λ or
αn = α′n = D2(UD) r−2

2 ; if r = ∣αn∣ = ∣α′n∣ is odd, then we have αn = α′n = D(UD) r−1
2

which gives a contradiction with P ≠ P ′.
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Let us assume 1 ≤ j < n. In this case, the endpoints of αj and α′j are at the same
height h. Since P ≠ P ′ and using the form of αj defined above, we necessarily have
∣αj ∣ ≥ 3. So, let us suppose that αj and α′j are of the form DU tD or D(UD)t1U t2D.

Let analyze the following two cases:

• αj = DU t1D and α′j = DU t2D. Since ∣αj ∣ = ∣α′j ∣, we have αj = α′j which is a
contradiction.

• αj =DU tD and α′j =D(UD)t1U t2D with t1, t2 ≥ 1. Due to the fact that they
have the same length, we conclude that t = 2t1 + t2, and due to the fact that
they belong to L, we conclude that t2 = h + 1, as the occurrence UDU must
appear at height 0. As a result, t > h+ 1 and consequently, the path αj is not
well defined because it crosses the x-axis. So, this case throws a contradiction.

• αj = D(UD)t1U t2D and α′j = D(UD)s1Us2D with t1, s1 ≥ 1 t2, s2 ≥ 2. As
they have the same length, 2t1 + t2 = 2s1 + s2. If αj ≠ α′j then without loss
of generality we can suppose t1 < s1 and conclude that t2 ≥ 2 + s2. This
establishes a contradiction because αj would have a pattern UDU at height
greater than 2.

A similar reasoning allows us to conclude that α0 = α′0 and therefore, P = P ′.

Theorem 2. The generating function of equivalence classes modulo L is given by
L(x), where L(x) is a root of

(4x − 1)L4(x) − 3L3(x) − (7x − 10)L2(x) + (5x − 8)L(x) − x + 2 = 0.

The series expansion of L(x) is

1 + x + 2x2 + 4x3 + 9x4 + 21x5 + 50x6 + 123x7 + 308x8 + 781x9 + 2008x10 +O(x11).

Proof. Let us define the following subsets of SD:

- A is the subset of paths in SD avoiding UDU , DDU , UDD, and DDD, and
not ending with an occurrence of UD or DD;

- B is the subset of paths in SD avoiding UDU , DDU , UDD, and DDD;

- C is the subset of paths in SD avoiding UDU , DDU , UDD, and DDD, and
not ending with an occurrence of D.

In order to find the generating function of L we consider the first return decom-
position of a path P ∈ L: either P is empty, or P = UαDβ, or P = UγL, with α ∈ A,
β ∈ L and γ ∈ B/{λ}. Consequently, if L(x),A(x),B(x), and C(x) are respec-
tively the generating functions for the sets L,A,B, and C, we obtain the functional
equation (cf. [8])

L(x) = 1 + xA(x)L(x) + x(B(x) − 1).
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A nonempty path P ∈ A is either P = UαDβ or P = UγL with α ∈ C/{λ}, β ∈ A
and γ ∈ B/{λ}. Therefore, we have

A(x) = 1 + x(C(x) − 1)A(x) + x(B(x) − 1).

A nonempty path P ∈ B is either P = UD, or P = UαDβ or P = Uα′D, or
P = UγL, with α ∈ C/{λ}, β, γ ∈ B/{λ}, and α′ ∈ A/{λ}. Therefore we have

B(x) = 1 + x + x(C(x) − 1)(B(x) − 1) + x(A(x) − 1) + x(B(x) − 1).

A nonempty path P ∈ C is either P = UαDβ, or P = UγL with α,β ∈ C/{λ} and
γ ∈ B/{λ}. Therefore we have

C(x) = 1 + x(C(x) − 1)2 + x(B(x) − 1).

Using Gröbner basis on the polynomial equations for L(x),A(x),B(x), and C(x)
we obtain the desired result.

Remark 1. Since the generating function of equivalence classes modulo L satisfies
an algebraic equation of order four, the counting sequence an ∶= [xn]L[x] satisfies a
recurrence relation with polynomial coefficients. This can be automatically solved
with Kauers’s algorithm [9]. In particular we obtain that an satisfies the recurrence
relation

p0(n)an + p1(n)an+1 + p2(n)an+2 + p3(n)an+3 + p4(n)an+4 + p5(n)an+5 + p6(n)an+6 = 0,

for n ≥ 6, where pi(n) (i = 0,1, . . . ,6) are polynomials in n. From the package
Asymptotics for Mathematica, see [10], we conjecture that

an ∼ c ⋅
( 3
2
+
√
2)n

n3/2
,

where c ≈ 2.111031048.

2.3. Equivalence Classes of Size One

In the previous section, we proved that equivalence classes of size one are in one-
to-one correspondences with the set B, which means that every skew Dyck path
in B is entirely fixed by the position of its L steps. Consequently, the number of
skew Dyck paths in B with exactly k occurrences of L is finite. In this section,
we study the number of skew Dyck paths in B having exactly n left steps L. We
take two points of view: first, we provide an expression of the generating function
B(y) = ∑n≥0 bnyn, where bn is the number of skew Dyck paths in B with n left steps
L, and next we provide a recursive formula for bn.

First, it is worth noticing that as a skew path in B avoids UDU , DDU , UDD, and
DDD, the last left step of a path must be at the last four positions. Consequently,
as shown in Figure 4, there are four paths with one left step.
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Figure 4: Skew Dyck paths in B with one occurrence of L.

2.3.1. Using Generating Functions

Theorem 3. The generating function B(y) for the number of skew Dyck paths in
B with respect to the number of left steps L is a root of

y2B4(y) + (y3 + y2)B3(y) + (2y2 + y)B2(y) + (3y − 1)B(y) + 1 = 0.

The series expansion of B(y) is

1+4y+24y2+181y3+1549y4+14312y5+139142y6+1402646y7+14527909y8+O(x9).

Proof. As mentioned above, a nonempty skew Dyck path in B/{UD} ends with
either L, LD, LDD, or LDUD. Let B1(y) (resp. B2(y), B3(y), B4(y)) be the
generating function for the number of skew Dyck paths in B ending with L (resp.
LD, LDD, LDUD).

A skew Dyck path P ending with L can be written P = αUβL where α ∈ B is
either empty or ends with LD and β ∈ B. So, we have the functional equation

B1(y) = (1 +B2(y))y(1 +B1(y) +B2(y) +B3(y) +B4(y)).

A skew Dyck path P ending with LD can be written P = αUβD where α ∈ B is
either empty or ends with LD and β ∈ B and ends with L. So, we have

B2(y) = (1 +B2(y))B1(y).

A skew Dyck path P ending with LDD can be written P = αUβD where α ∈ B
is either empty or ends with LD and β ∈ B and ends with LD. So, we have

B3(y) = (1 +B2(y))B2(y).

A skew Dyck path P ending with LDUD can be written P = αUD where α ∈ B
ends with LD. So, we have

B4(y) = B2(y).

Using Gröbner basis on the polynomial equations for each generating function
we obtain the desired result.
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Remark 2. Let bn be the n-th coefficient of B[y], that is, bn ∶= [yn]B[y]. From a
similar approach as in the Remark 1, we conjecture that

bn ∼ c ⋅ α
n

n3/2
,

where c ≈ 0.6011640677 and α = 0.650096.

2.3.2. Using Recurrence Relation

Theorem 4. Let ai(n) denote a family of sequences where a0(n) = n, and for all
i ≥ 1

ai(n) = ai−1(n) + ai−1(n + 1) +
n−i−3
∑
k=0

ai−1(n + 2 − k).

The number of skew Dyck paths in B with exactly k ≥ 2 left steps, is given by
ak−1(k + 3).

Proof. Let us denote by Bl the set of all prefixes ending with L of skew Dyck paths
in B. Such a path will be called a meander.

Let us prove by induction on i that ai(n) is the number of meanders in Bl with
i + 2 occurrences of L and ending with an occurrence of L at height n − i − 5.

First, let us assume that i = 0. A meander in Bl ending at height n− 5, with two
occurrences of L, ends with either LL, LDL, LDDL, or LDUkDL, 1 ≤ k ≤ n − 3.
Therefore, there are n − 3 + 3 = a0(n) paths. Figure 5 shows the case when n = 5.

Figure 5: Skew Dyck paths in B with 2 occurrences of L and s1 = 1

Now, assume that aj(n) satisfies the statement for j ≤ i. Let us count the number
ai+1(n) of meanders in Bl ending at height n − i − 6, with i + 3 occurrences of L.
Taking into account all possible ways of a meander in Bl ends:

- there are ai(n) such paths ending with LL,

- there are ai(n + 1) such paths ending with LDL,

- there are ai(n + 2) such paths ending with LDDL,

- there are ai(n + 2 − k) paths ending with LDUkDL, 1 ≤ k ≤ n − i − 4.
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Consequently, we have:

ai+1(n) = ai(n) + ai(n + 1) + ai(n + 2) +
n−i−4
∑
k=1

ai(n + 2 − k)

which completes the induction.
Finally, as skew Dyck paths in B/{UD} end with L, LD, LDD, or LDUD, this

implies that the number of skew Dyck paths in B with exactly k ≥ 2 left steps is
given by

ak−1(k + 3) = ak−2(k + 3) + ak−2(k + 4) + ak−2(k + 5) + ak−2(k + 4).

3. Equivalence Classes Modulo Patterns of Length Two

In this section, we focus on equivalence classes modulo patterns of length two. We
start by giving a general result that allows us to solve the cases of patterns that
do not contain occurrences of L and DD. Indeed, for these patterns the number of
p-equivalence classes on the set SD of skew Dyck paths also is the same on the set
D of Dyck paths, which is already given in [1]. We also deal with the pattern DD
and leave as an open question the cases of patterns in {DL,LD,LL}. We refer to
Table 2 for an overview of these numbers for small values of the length (the last
three cases are obtained experimentally).

Pattern Sequence OEIS an, 1 ≤ n ≤ 9

UU 1−x+
√
1−2x−3x2

1−3x+x2+x3+(1−x2)
√
1−2x−3x2

A244886 1, 2, 4, 9, 22, 56, 147, 393, 1065

UD (1−x)(1−5x+7x2−x3)
(1−2x)2(1−3x+x2) A244885 1, 2, 5, 14, 41, 121, 354, 1021, 2901

DU 1−2x
1−3x+x2 A001519 1, 2, 5, 13, 34, 89, 233, 610, 1597

DD 2(1+x)
x+x2+(2+x)

√
1−2x−3x2

New 1, 2, 5, 12, 31, 81, 216, 583, 1590

DL Open question New 1, 2, 3, 6, 12, 23, 49, 102, 212
LD Open question New 1, 1, 2, 4, 7, 15, 31, 62, 136
LL Open question New 1, 1, 2, 4, 8, 15, 30, 63, 134

Table 2: Number of p-equivalence classes for skew Dyck paths.

Proposition 1. If p is a pattern of length at least 2 avoiding L and DD, then the
number of p-equivalence classes is the same in SD and D.

Proof. Let p be a pattern of length at least 2 avoiding L andDD, and let us consider
P ∈ SD. We will show that there exists a path P ′ ∈ D such that P and P ′ belong
to the same equivalence class.
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We can decompose P = α0∏n
i=1 p

diαi or P = α0, where αi is a sub-skew Dyck
path avoiding p and di ≥ 1. We can define P ′ = α′0∏n

i=1 p
diα′i or P

′ = α′0, depending
on the decomposition of P , where each α′i is obtained from αi by replacing all steps
L with D. As p and α′i avoid L, P

′ ∈ D. Moreover, in a skew Dyck path, L cannot
be contiguous with a step U , which implies that the operation of changing a step L
by D does not create a pattern p whenever p avoids DD. Consequently, P and P ′

belong to the same p-equivalence class.

3.1. Pattern DD

Let E denote the set of skew Dyck paths where all occurrences of UDU are at height
0 or 1, all occurrences of UDkL, with k ≥ 1, are at height 0, and the patterns UUDU
and UUDL do not appear. For instance, Figure 6 shows two skew Dyck paths that
do not belong to E , whereas Figure 7 shows a skew Dyck path that belongs to E .

Figure 6: Skew Dyck paths that do not belong to E .

Figure 7: Skew Dyck path that belongs to E .

Lemma 1. For every skew Dyck path P , there exists a skew Dyck path P ′ ∈ E in
the same equivalence class modulo DD.

Proof. Let P be a skew Dyck path such that P ∉ E . Consider the sequence of skew
Dyck paths P = P0, P1, P2, . . . , Pk−1, Pk = P ′, k ≥ 1, defined as follows:

For any i, 1 ≤ i ≤ k, the skew Dyck path Pi+1 is obtained from Pi by performing
the first possible transformation among the four described below, until the path
belongs to E :

(1) Remove occurrences of UUDU .



INTEGERS: 22 (2022) 12

If Pi has such a pattern, then Pi = αUkDUβ with k ≥ 2 and α does not end
with U . So, we define Pi+1 = αUDUkβ. Figure 8 shows a step of this process.
Repeat this operation until the path does not contain UUDU .

Figure 8: Removing UUDU .

(2) Remove occurrences UUDL at height 0.

If Pi has such a pattern, Pi = αUUDL, where α is a skew Dyck path, then we
define Pi+1 = αUDUD. Figure 9 shows this process.

α α

Figure 9: Removing UUDL at height 0.

(3) Remove maximal occurrences of UDkLm, for k,m ≥ 1, except when the oc-
currence is at height 0 with m = 1.

Since m is maximal, the chain Lm is followed by an occurrence of Ds for s ≥ 0.
We write Pi = (∏d−1

i=1 U
siαi)UsdDkLmβ where αi is nonempty and avoids U ,

and β is either empty or starts with Ds with s ≥ 1. We consider three cases
depending if m ≥ 3, m = 2 and m = 1.

• Case m ≥ 3. The maximum ordinate reached by the occurrence UDkLm

is p ≥ m + k ≥ 4. Since the path reaches the ordinate p ≥ 4, and since Pi

avoids UUDU , there is at least one si such that si ≥ 3; we choose the
rightmost i.
The path Pi+1 is obtained by replacing Usi with UDUUsi−3, and by
replacing UDkLm with UDkUDLm−2. This operation deletes the oc-
currence UDkLm and creates another occurrence UDL with maximum
ordinate p − 3. See Figure 10.
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Figure 10: Removing UDkLm if m ≥ 3.

• Case m = 1. The maximal ordinate reached by the occurrence UDkLm =
UDkL is at least three, and (as above) there is some si such that si ≥ 3;
we choose the rightmost i.
The path Pi+1 is obtained by replacing Usi with UDUUsi−3, and by
replacing UDkLm = UDkL with UDkU . This operation deletes the oc-
currence UDkLm. See Figure 11.

Figure 11: Removing UDkLm if m = 1.

• Casem = 2. The maximal ordinate p reached by the occurrence UDkLm =
UDkL2 is at least three, and (as above) there is some si such that si ≥ 3;
we choose the rightmost i. Moreover, if p ≥ 5 then either there is si ≥ 5

or there are two indices i0, i1, such that 3 ≤ i0 ≤ 4 and 3 ≤ i1 ≤ 4; we
choose the rightmost indices with these properties.
If s = 0 then UDkLL is at the end of Pi, and Pi+1 is obtained by replacing
UDkLL with UDkUD, and by replacing Usi with UDUUsi−3.
Now, let us consider s ≥ 1.

- If UDkLL is followed by D and Pi ends after D, then Pi+1 is ob-
tained by replacing UDkLLD with UDkUDL and by replacing the
rightmost Usi for si ≥ 3 with UDUUsi−3.

- If UDkLL is followed by DUU then we replace UDkLLDU with
UDkUDUD and we replace the rightmost Usi for si ≥ 3 with
UDUUsi−3.
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- If UDkLL is followed by DUD then we replace UDkLLDUD with
UDkUUDLD and we replace the rightmost Usi for si ≥ 3 with
UDUUsi−3.

- If UDkLL is followed by DL then we replace UDkLLDL with
UDkUUDL and either we replace the rightmost Usi for si ≥ 5 with
UDUDUUsi−5, or we replace Usi0 with UDUUsi0−3 and Usi1 with
UDUUsi1−3 where i0 and i1 are defined above.

- If UDkLL is followed by DD then we replace UDkLLDD with
UDkUUDD and either we replace the rightmost Usi for si ≥ 5 with
UDUDUUsi−5, or we replace Usi0 with UDUUsi0−3 and Usi1 with
UDUUsi1−3 where i0 and i1 are defined above.

All previous transformations either delete an occurrence UDkL at height
at least one, or decreases by at least one the maximal ordinate of one
occurrence UDkL, or decrease by one m in a subcase of m = 2. See
Figure 12.

Figure 12: Removing UDkLm if m = 2.
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(4) Remove UDU at height greater than 1. As the maximal ordinate p
reached by the occurrence UDU satisfies p ≥ 3, and as Pi avoids UUDU ,
there exists an occurrence U3 at height p − 3 at the left (we take the
rightmost possible). The path Pi+1 is obtained by exchanging the two
occurrences U3 and UDU , which decreases by at least one the height of
the occurrence UDU .

After applying the previous process, we obtain a path P ′ ∈ E . Since all transfor-
mations do not change the positions of occurrences DD, P and P ′ belong to the
same equivalence class. An example of this process is shown in Figure 13.

Figure 13: An example of the process described in the proof of Lemma 3.2

Theorem 5. There is a bijection between E and the set of DD-equivalence classes
of SD.

Proof. Considering Lemma 3.2, it suffices to prove that if P and P ′ have the same
length in E and lie in the same equivalence class, then P = P ′. We decompose
P = α0∏n

i=1D
ki−1αi (resp. P ′ = α′0∏n

i=1D
ki−1α′i) where αi (resp. α′i) do not contain

the pattern DD and ki ≥ 2 (resp. k′i ≥ 2) are taken to be maximal.
First, if P and P ′ do not have the pattern DD, then P = α0 and P ′ = α′0.

Moreover P = α0 avoids UUDU and UUDL, which implies that α0 = (UD)m with
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m = ∣P ∣/2. By a similar argument, we obtain P = P ′.
Secondly, let us assume that P and P ′ have at least one occurrence of DD. Since

P and P ′ belong to the same equivalence class, we have ∣αi∣ = ∣α′i∣ for 0 ≤ i ≤ n.
Notice that we necessarily have n ≥ 1. Now, we determine the form of αi and α′i.

• αi and α′i for 0 ≤ i ≤ n − 1.
Since α0 (resp. α′0) avoids DD, UUDU , and UUDL, we can write α0 =
(UD)s1Us2 with s2 ≥ 2 and s1 ≥ 0 (resp. α′0 = (UD)s′1Us′2 with s′2 ≥ 2 and
s′1 ≥ 0). If n > 1, α1 cannot starts with L (otherwise P contains UDkL), thus
it starts with U , and with the same argument as above it has the same form
as α0, i.e. α1 = (UD)t1U t2 with t2 ≥ 2 and t1 ≥ 0. Repeating this argument,
αi and α′i are all of the same form for 1 ≤ i ≤ n − 1.

• αn and α′n.

We have three cases depending on the final ordinate of

Q = α0 (
n−1
∏
i=1

Dki−1αi)Dkn−1 .

Case 1. The path Q ends at height 0. Since P avoids UUDU and UUDL, αn

does not contain an occurrence UU . Therefore αn is either the empty path λ
or of the form (UD)s.
Case 2. The pathQ ends at height 1. The only one possibility is αn = (UD)sL.
Case 3. The path Q ends at height greater than 1. This case is not possible
because αn does not start with D, avoids DD and avoids UDkL at height
greater than 0.

Now let us prove that that αi = α′i for every i. With the reasoning done above,
αn ∈ {λ, (UD)sL, (UD)s} and α′n ∈ {λ, (UD)tL, (UD)t}. Since ∣αn∣ = ∣α′n∣, we have
αn = α′n.

For a contradiction we suppose that there exists i < n, such that αi ≠ α′i (we
take the greatest j satisfying this condition). With the reasoning above, we have
αi = (UD)s1Us2 and α′i = (UD)s′1Us′2 with 2s1 + s2 = 2s′1 + s′2 since ∣αi∣ = ∣α′i∣.
Without loss of generality we can assume s1 < s′1 because αi and α′i are different.
This implies that s2 ≥ 2 + s′2. Since αi and α′i end at the same height in P and
P ′, this means that P ′ contains an occurrence UDU at height at least 2 which is a
contradiction.

In summary, αi = α′i for every i and consequently, P = P ′.

Before proving Theorem 1, we need the preliminary results shown in Lemmas 2
and 3. Let F be the set of all Dyck paths where all occurrences of UDU are at
height 0 and not starting with UDU ; let G be the set of Dyck paths that do not
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contain UDU and, let H be the set of Dyck paths where all occurrences of UDU
are at height 0. It is well known (see [14]) that the generating function of G, G(x),
is given by the expression G(x) = 1+xM(x), whereM(x) is the generating function
for the number of Motzkin paths, i.e., G(x) = (1 + x −

√
1 − 2x − 3x2)/2x.

Lemma 2. The generating function of the set H is given by the expression

H(x) = 1

1 − xG(x) .

Proof. A Dyck path in H is either empty or of the form UαDβ, with α ∈ G and
β ∈ H. So, H(x) satisfies the relation H(x) = xG(x)H(x) + 1 that induces the
required result.

Lemma 3. The generating function of the set F is given by

F (x) = x
2 + x − 2 − x

√
−3x2 − 2x + 1

x − 1 −
√
−3x2 − 2x + 1

.

Proof. A Dyck path in F is either empty, or UD, or UαDβ where α ∈ G/{λ} and
β ∈ H. We conclude that F (x) satisfies the relation F (x) = 1+x+x(G(x)−1)H(x)
which gives the required result.

Theorem 6. The generating function of the set E is given by

E(x) = 2(1 + x)
x + x2 + (2 + x)

√
1 − 2x − 3x2

.

The series expansion of E(x) is

1 + x + 2x2 + 5x3 + 12x4 + 31x5 + 81x6 + 216x7 + 583x8 + 1590x9 +O (x10) .

Proof. A skew Dyck path in E is empty, is UαDβ, or is UγL, where α ∈ F , β ∈ E and
γ ∈ F/{λ,UD}. So, E(x) satisfies the relation E(x) = 1 + xF (x)E(x) + x(F (x) −
1 − x), which is equivalent to

E(x) = 1 + x(F (x) − 1 − x)
1 − xF (x) .

Let en be the number of DD-equivalence classes for skew Dyck paths. That is,
en = [xn]E(x) for all n ≥ 0. In Theorem 7 we give an asymptotic approximation for
the sequence en. To accomplish this goal we use the singularity analysis method for
finding an asymptotic expression of the coefficients of a generating function (see for
example [8] for the details).
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Theorem 7. The sequence en has the asymptotic approximation

en ∼ 21

√
3

4πn3
⋅ 3n.

Proof. The dominant singularity of the generating function E(x) is 1/3, that is, the
smallest positive root of 1 − 2x − 3x2. Around the point 1/3 the expansion of E(x)
is given by

E(x) = 6 − 21
√
3(1 − 3x) +O(1 − 3x).

The singularity analysis allows the transfer of the above equality to the asymptotic
approximation of the coefficients.
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