
12th International Society for Music Information Retrieval Conference (ISMIR 2011)

A REAL-TIME SIGNAL PROCESSING FRAMEWORK OF
MUSICAL EXPRESSIVE FEATURE EXTRACTION USING

MATLAB

Ren Gang1, Gregory Bocko1, Justin Lundberg2, Stephen Roessner1, Dave Headlam1,2, Mark F. Bocko1,2
1Dept. of Electrical and Computer Engineering, Edmund A. Hajim School of Engineering and Applied Sciences,

University of Rochester; 2Dept. of Music Theory, Eastman School of Music, University of Rochester
g.ren@rochester.edu,gregory.bocko@rochester.edu,justin.lundberg@rochester.edu,

stephen.roessner@rochester.edu,dheadlam@esm.rochester.edu, mark.bocko@rochester.edu

ABSTRACT

In this paper we propose a real-time signal processing
framework for musical audio that 1) aligns the audio with
an existing music score or creates a musical score by auto-
mated music transcription algorithms; and 2) obtains the
expressive feature descriptors of music performance by
comparing the score with the audio. Real-time audio seg-
mentation algorithms are implemented to identify the onset
points of music notes in the incoming audio stream. The
score related features and musical expressive features are
extracted based on these segmentation results. In a real-
time setting, these audio segmentation and feature extrac-
tion operations have to be accomplished at (or shortly after)
the note onset points, when an incomplete length of audio
signal is captured. To satisfy real-time processing require-
ments while maintaining feature accuracy, our proposed
framework combines the processing stages of prediction,
estimation, and updating in both audio segmentation and
feature extraction algorithms in an integrated refinement
process. The proposed framework is implemented in a
MATLAB real-time signal processing framework.

1. INTRODUCTION

Music performance adds interpretative information to the
shorthand representation in a music score [1]. These per-
formance dimensions can be extracted from performance
audio as musical expressive features using signal
processing algorithms as in [2]. These features quantitative-
ly model the performance dimensions that reflect both the
interpretation of performance musicians and the artistic in-
tention of composers [1] and are important for various mu-
sic signal processing [2] and semantic musical data analysis
[3,4] applications.

 Existing automatic music transcription [5] and musical
expressive feature extraction algorithms [2] are designed in
post-processing frameworks. These existing algorithms are
essentially multimedia file process systems, which assume
that the entire duration of the audio performance is already
recorded. However, various real-time signal processing ap-
plications, such as visualization, automatic music mixing,
stage lighting control, interactive music media, and elec-
tronic games, require that musical expressive features be
extracted and synchronized with the ongoing audio. In such
a real-time signal processing framework, the musical ex-
pressive features have to be obtained from the audio signal
that is still in progression to facilitate simultaneous interac-
tions with external applications. Thus, the complete music
event is not observed at the “decision point” since the mu-
sic transcription and expressive features have to be obtained
at (or shortly after) the onset of each music event. In this
paper we extend the feature extraction and recognition
functionalities of conventional music transcription and
musical expressive feature extraction algorithms and estab-
lish a real-time processing framework which includes the
processing stages of prediction, estimation and updating.
First, signal features (signal features here include segmenta-
tion features, score-level features and musical expressive
features) are predicted using generative probabilistic graph-
ical models [6,7] based on a “history” of these features (or
other available information, e.g., features extracted from a
synchronized rehearsal track). Then we estimate these sig-
nal features when a short audio segment in the beginning
part of a music event is available. When additional audio
frames are captured, we refine the estimations and make
necessary updating.

 “True” real-time methods can only be achieved in a fea-
ture prediction framework: the signal features are obtained
before the actual music event. For example, in an automatic
music mixing system, we are expected to adjust the fader
settings according to the “past” signal features before a
loud section begins. That is, the expressive loudness fea-
ture and its related fader instruction must be generated at a

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that cop-

ies bear this notice and the full citation on the first page.

© 2011 International Society for Music Information Retrieval

115

Poster Session 1

time point when the music event of the “future” loud sec-
tion is not observed at all! In our proposed processing
framework, a generative probabilistic graphical model [6] is
employed to enable such predictions. A probabilistic graph-
ical model depicts the causality (or statistical) relations be-
tween signal features [7]. A prediction of “future” signal
features is inferred from these statistical relations and a fi-
nite length of an observed “history”. Such predictions
might fail, as any prediction that peeks into an unknown
“future”. To improve the reliability of our proposed system,
several levels of relaxation are applied. These pseudo-real-
time processing frameworks are essentially buffer and post-
processing frameworks that allow us to take glimpses at the
music event and be more “confident”. If the signal
processing delays they introduce are kept within the percep-
tual limit (about 25ms [8]), the live performance, audio and
the feature processing results would appear to be percep-
tually well synchronized for the audience.

 A pseudo-real-time processing framework allows a
short audio frame to be captured near the predicted music
note onset. The signal features extracted from this short au-
dio frame confirms or rejects the predicted onset location
and other signal feature dimensions. If the pseudo-real-time
constrains, including the perceptual delay limit and/or the
audio reinforcement delay limit, are satisfied, a short signal
capturing and processing delay would be effectively con-
cealed from the audience. The perceptual delay limit is the
limit of human perceptual capabilities of discerning the
time sequence of two perceptual events [8,9]. For applica-
tion scenarios such as visualization, a short delay such as
10ms in the visualization interface is not perceptible since
human visual perception is a relatively slow responding
process [9]. However, a processing delay that exceeds 20ms
results in a sloppy “thunder first, lightning second” effect.
An audio reinforcement delay can be utilized in application
scenarios where sound reinforcement systems are employed
to further enhance synchronizations. The reinforced sound
is briefly delayed to compensate for the signal processing
delays so the reinforced sound is still synchronized with the
feature extraction and processing results1. Because the sig-
nal features extracted usually trigger the most dramatic vis-

1 In a staged music setting, for instance, the music expressive features and
the aural-visual events controlled by these features are delayed behind the
onset of stage scenes because a short audio frame have to be captured and
processed. Taking the stage light control application as an example, the
light controlled by loudness feature turns on 10ms after an actor begin to
sing a music phrase. In this “precious” 10ms, a short audio frame is cap-
tured and analyzed so the “light on” stage lighting instruction could be
inferred. The reinforced audio is also delayed 10ms to compensate for the
delay of the lighting effect. For the audience the reinforced audio onset is
perfectly synchronized with the lighting effect since they are both delayed
10ms behind the actor, while the 10ms delay between stage scene and au-
dio/lighting is still imperceptible.

ual and aural events and the reinforced audio carries the
most prominent aural event, this audio reinforcement delay
effectuates the most critical synchronizations and is thus
strongly recommended whenever applicable. The sound
reinforcement delay must be kept low (less than 20ms, with
a typical value of 10ms) to maintain the perceptual syn-
chronizations of other aural and visual events. On the aural
aspect, the audio reinforcement delay limit ensures that the
direct sound from actors can blend seamlessly with the
reinforced sound for front-row audiences. On the visual
side, the reinforced audio lags behind the stage scenes so
this limit insures that the time lag is perceptually tolerable.

 The proposed system architecture as detailed in Sec. 2
utilizes both real-time music event prediction and pseudo-
real-time processing, with an emphasis on pseudo-real-time
processing. Key processing components are introduced in
Sec. 3. Sec. 4 discusses the MATLAB implementation is-
sues and Sec. 5 provides a brief summary.

2. SYSTEM ARCHITECTURE

The system architecture of our proposed system is illu-
strated in Figure 1. Figure 1(a) is the system architecture
for application scenarios when a music score database is
available and a matching music score is retrieved. In the
initialization phase, a short audio segment (5-20 seconds) is
first captured as the audio query for finding the matching
music score using score-audio matching algorithms [10].
The feature estimation blocks include audio segmentation
and features extraction algorithm. The real-time score-
audio alignment algorithm segments the audio by identify-
ing the onset points based on the music score and the seg-
mentation features extracted from the audio. If a music on-
set is detected, the following short audio frame is captured
and passed on to the musical expressive feature extraction
algorithm to obtain an initial estimation of musical expres-
sive features. These musical expressive features are then
formatted as a control data stream for external applications.
Figure 1(b) presents alternative system architecture for the
application scenarios when a music score is not available.
In this system we implement a real-time music transcription
framework parallel with the real-time musical expressive
feature extraction process. For both systems music event
prediction and feature updating algorithms are implemented
to further improve performance. The music event prediction
algorithm predicts the “future” feature values based on a
“history” and use the prediction values as priors for the
“current” music event segmentation and feature estimation
process. The alignment/feature updating algorithm refines
signal features when additional audio frames are captured
and submits essential corrections. The refined features also
improve subsequent probabilistic predictions.

116

12th International Society for Music Information Retrieval Conference (ISMIR 2011)

(a)

(b)

Figure 1. System Architecture. (a) is the system architec-
ture when a music score database is available. (b) is the
system architecture when the music score is not available.

3. REAL-TIME PROCESSING ALGORITHMS

Real-time processing algorithms for key functional blocks
are introduced in this section. Algorithms both for applica-
tion scenarios with and without a music score are intro-
duced.

3.1 Audio Segmentation

If a music score is available, the note boundaries are identi-
fied using score-audio alignment or score following algo-
rithms based on real-time dynamic time warping as detailed
in [10]. These algorithms optimally align a music score to
the dynamic performance timeline of an audio file by
searching-and-finding an optimal alignment path corres-
ponding to the alignment features extracted from the score
and the audio.

 If music score is not available, the conventional onset
detection and music event segmentation algorithms [11]

are extended to fit in our proposed real-time processing
framework. These onset detection algorithms compare the
audio features (for example, energy value or spectrograph-
ic content) and track their variations. The magnitude of the
variations is encoded as an onset detection function ܦሺݐሻ
and the time points correspond to significant variation are
selected as onsets or segmentation points. In our proposed
real-time framework only the ‘past’ part of the detection
function ܦሺݐሻ, ݐ ൑ ௖ݐ is available, where ݐ௖ is the current
time. To ensure real-time processing performance, we can-
not delay the segmentation decision until a downward
slope of ܦሺݐሻ is observed. Instead of peak-picking [11], the
segmentation decisions have to be generated using a thre-
shold detection method, which do not guarantee that a
 .ሻ peak is reachedݐሺܦ

 Our proposed real-time processing framework is im-
plemented by providing two types of threshold for onset
detection. An initial detection threshold is set as ݄ݐଵ . If
௖ሻݐሺܦ ൐ -ଵ and no segmentation decisions have be gener݄ݐ
ated in a time interval of ݐ௖, an initial segmentation point
is identified. A ‘regretting’ threshold is set as ݄ݐଶ . If
௖ሻݐሺܦ ൐ -௥ to the previous segݐ ଶ and the time distance݄ݐ
mentation decision satisfies ݐ௥ଵ ൑ ௥ݐ ൑ -௥ଶ, a forward upݐ
dating of the segmentation point is performed to erase an
existing segmentation point and substitute the current time
point. Here ݐ௥ଵ is the segmentation error tolerance. If the
previous segmentation point is within this range, a correc-
tion is not necessary. ݐ௥ଶ is the maximum correction range.
If the time interval to the previous segmentation point is
greater than ݐ௥ଶ, another segmentation point is generated
using threshold ݄ݐଵ. These thresholds are time varying with
the current beat tracking result obtained using the algo-
rithms in [12]. The rhythmically significant locations are
assigned a lower detection threshold as in Fig. 2 to push
detected onsets towards these interpolated locations, as a
combined process of prediction and real-time detection.

Figure 2. A typical profile of segmentation detection
thresholds. The lower detection threshold at predicted
rhythmic locations pushes the segmentation point towards
a predicted rhythmic grid.

117

Poster Session 1

3.2 Feature Extraction

The musical expressive features we implemented include
feature dimensions of the relatively small but continually
changing adjustments in pitch, timing, auditory loudness,
timbre, articulation and vibrato that performers use to
create expression [1,2]. Definitions of these feature dimen-
sions are briefly summarized in Table 1 and more details
can be found in [2]. In this section the real-time extraction
process of symbolic pitch and expressive feature dimen-
sion of pitch deviation is detailed in an application scenario
when a music score is not available. Pitch deviation meas-
ures the difference between performance pitch and the
score specified pitch [2]. The expressive pitch processing
is more sophisticated compared to other feature dimensions
since the quantized score pitch, the expressive pitch devia-
tions, and the calibration of a temperament grid1 have to be
updated simultaneously. The other feature dimensions are
briefly summarized in Table 1 and their feature extraction
algorithms are similar extensions based on [2].

 For estimation of pitch deviation an accurate mapping
between symbolic pitch and fundamental frequency (F0)
has to be established since the expressive pitch deviation is
just a small fraction of the fundamental frequency. The
fundamental frequency is first obtained from the audio
frames captured at the segmentation point using a pitch de-
tection algorithm as in [13]. Suppose that the fundamental
frequency is detected from the first short audio frame of
music note ݉ and denoted as ሺ݂ଵሻ and the initial tempera-

ment grid we implemented as ൣ ሙ݂
௠, መ݂

௠; ݂ҧ
௠, ,௠൧݌ ݉ ൌ

1, … , Here ሙ݂ .ܯ
௠ and መ݂

௠ is the decision boundary of the
pitch quantization grid. ݂ҧ

௠ is the quantized frequency value
that would be selected if ሙ݂

௠ ൑ ௠݂ ൑ መ݂
௠ and ݌௠ is its sym-

bolic value. For equal temperament scale, the quantized
value ݂ҧ

௠s form a temperament grid which is derived from a
reference frequency point ݂ҧ

ோ with symbolic pitch value ݌ோ
as:

 ݂ҧ
௠ ൌ tpaୣሺ݂ҧ

ோ, ;ோ݌ ௠ሻ݌ ൌ 2
೛೘ష೛ೃ

భమ · ݂ҧ
ோ (1)

where ݌௠ is the symbolic pitch value of quantization inter-
val ሾ ሙ݂

௠, መ݂
௠ሻ, here ݌௠ and ݌ோ is specified in MIDI value.

Since human frequency discernment is most acute at mid-
frequency region, the frequency reference point ሾ݌ோ: ݂ҧ

ோሿ
could be selected at this frequency region. In our imple-
mentation the reference point [69:440Hz] is selected. Us-
ing this initial temperament grid, we obtain the initial sym-
bolic pitch value as ݌ሺଵሻ. When additional audio frames are
captured from the audio stream, we might revise our esti-

1 For expressive feature extraction this calibration is crucial because the
calibration level is within the same range of pitch deviation value.

mation of the ሺ݂ଵሻ and ݌ሺଵሻ values within a music note
based on the pitch detected in the extended musical note
duration. To ensure a smooth updating process we only
update the F0 estimation after a time interval. We also only
update the estimated value of fundamental frequency and
pitch deviation if the difference of two adjacent estimated
F0 values will exceed the detection grid of one semitone.

 When an adequate number of music notes are captured,
the temperament grid is updated by fitting a temperament
grid to the detected F0 values in a calibration process.
Suppose the F0 sequence we obtained is represented as

ଵ݂ … ெ݂, these frequency points find their quantized values
݂ҧ

ଵ … ݂ҧ
ெ as the nearest neighbors in an initial quantization

grid with frequency reference point ሾ݌ோ: ݂ҧ
ோሿ. The residual

values of this quantization process are denoted as ݀ଵ … ݀ெ.
Then we shift the frequency reference point within 1/6 of a
semitone interval and find the best reference frequency
point ݂ҧ

ோ ൅ ∆݂ҧ
ோ where the sum of the residual values

∑ |݀௠|ெ
௠ୀଵ is minimized. After this calibration process the

residual frequency value ݀ଵ … ݀ெ is calculated as pitch
deviation values. The pitch deviation in the units of cents is
calculated as 1200 · ଶ൫݀݃݋݈ ݂ҧ⁄ ൯. An example of pitch fea-
ture extraction and feature updating process is illustrated in
Figure 3.

 (a)

 (b)

 (c)

Figure 3. Estimation and Updating Process of Musical
Pitch Related Features. (a) audio waveform; (b) quantized
musical pitch; (c) expressive pitch deviation.

118

12th International Society for Music Information Retrieval Conference (ISMIR 2011)

3.3 Music Event Prediction

Certain aspects of music event prediction have been intro-
duced in the real-time audio segmentation algorithm as in
Sec. 3.1, where we perform a beat detection algorithm and
interpolate the beat detection results as predictors of “future”
rhythmic structure. The statistical relations within a time
series of audio features are codified using probabilistic
graphical models [7] as a prediction framework to infer the
“future” feature values based on available observations.
Complete learning and inference algorithms of a music
event prediction framework are detailed in [6]. Most real-
time applications require an early “decision point”, where
the available audio segment is still insufficient for unambi-
guously estimating most feature dimensions. Thus in our
proposed frameworks these probabilistic predictions are
integrated into the audio segmentation and feature extrac-
tion process. The signal features are predicted before the
onset of an actual music event as prior information for fea-
ture estimations. Additional reference feature tracks includ-
ing a music score or a matching expressive music transcrip-
tion obtained from a rehearsal track can be further incorpo-
rated in this prediction framework, as an extension to the
alignment process that assigns reference features as the
prediction values to real-time music events. The integration
of prediction and estimation also allows the prediction point
to be closer to the “decision point”, as the shortened predic-
tion distance enhances the prediction accuracy [6].

3.4 Feature Updating

The real-time segmentation decision process here is essen-
tially a hit-or-miss process: once a segmentation decision is
made based on the audio signal features of the “current”
audio frame (we may also utilize the “past” audio frames
deposited in the captured signal stream and some predic-
tion) any audio frames captured later will not count even if
the ‘hit’ (the attack point) is at the wrong place. If we
“miss” a segmentation point due to a stringent detection
threshold, we may find that the subsequently captured au-
dio frames are inappropriate for allocating a segmentation
point. The design of real-time feature extraction algorithms
also have to balance these requirements of real-time per-
formance and feature accuracy. To reconcile these conflict-
ing real-time performance criteria we implement an updat-
ing mechanism which enables the system to “regret” pre-
vious prediction/estimation when subsequent events in the
audio stream are captured and processed. These refine-
ments are buffered for improving future predictions and
essential updates are submitted to the external applications.
Although for some application scenarios a real-time deci-
sion is irreversible, certain minor corrections can still be
effectively disguised using perceptual models [9]. Because
frequent revisions give the system user an unstable impres-
sion, the number of segmentation point modifications must
be restricted. An example of a feature updating process is
illustrated in Figure 3.

Feature Definition Real-Time Musical Expressive Feature Extraction Algorithms Typical
Value

Pitch
Deviation

The difference be-
tween performance
pitch and score pitch

(1) The fundamental frequency of an audio segment is detected using a pitch analysis algo-
rithm as described in [13].
(2) A temperament grid is initialized and fit to the fundamental frequency sequence as the
music note number increase. The deviation of the optimum temperament grid is utilized as
the pitch calibration value.
(3) The pitch deviation is calculated by comparing the audio pitch ݂ and with score pitch ݌.

-15 cents
to
15 cents

Auditory
Loudness

The perceptual intensi-
ty of sound

Calculate the strength of auditory response [2] of an short audio segment of 20ms based on
its energy distribution in the frequency domain, using a computational auditory model

30 dB dy-
namic range

Timing The time difference of
music events between
the score and the au-
dio.

ሺ݊ሻ்ܨ ൌ
ሺ݊ݐ ൅ 1ሻ െ ሺ݊ሻݐ

ሺ݊ݐ̂ ൅ 1ሻ െ ሺ݊ሻݐ̂

The time deviation of onset ݊ is calculated the normalized onset time deviation as:

where ݐሺ݊ሻ is the audio onset timing and ̂ݐሺ݊ሻ is the interpolated score timing. ݐሺ݊ ൅ 1ሻ
denotes the next onset location. ்ܨሺ݊ሻ can be viewed as an indicator of timing extension
ሺ݊ሻ்ܨ) ൐ 1) or compression (்ܨሺ݊ሻ ൏ 1).

From 0.6
(compres-
sion) to
1.5 (exten-
sion)

Timbre The energy distribu-
tion pattern of the fre-
quency domain

(1) The short time Fourier analysis result is ܵெሺ݅, ݇ሻ is calaulated, where ݇ is the frequency
bin index. ݅ is the time frame index.
(2) The timbre centroid is calculated as the “weight center” of the frequency spectrum of a
analysis segment as:
 ܿሺ݅ሻ ൌ ∑ ݇ܵெ

ଶ ሺ݅, ݇ሻ௄
௞ୀଵ ݇ி ∑ ܵெ

ଶ ሺ݅, ݇ሻ௄
௞ୀଵ⁄

where ݇ி is the frequency bin index of fundamental sonic partial.
(3) Timbre width is defined as the frequency width ܾሺ݅ሻ required to include a pre-defined
portion ߟ (with a typical value of 90%) of the total energy.

Timbre cen-
troid from
1.2 to 4.
Timbre
width from
1.5 to 3.

Attack The transient characte-
ristics of music onset

The attack feature [2] is calculated as the ratio of the energy content of the first 1/3 of the
note duration.

from 0.5 to
3.

Vibrato The amplitude and
frequency modulation
inside a musical note

(1) A band-pass filter is implemented to extract a single sonic partial from the complex
harmonic sound for analysis.
(2) A musical vibrato recognition algorithm is implemented as in [14]. The modulation
components of a vibrato note is extracted using analytic signal methods [2].

Amplitude
modulation
depth from
0.1 to 0.4.

Table 1. The definitions and real-time feature extraction algorithms of musical expressive features

119

Poster Session 1

4. MATLAB IMPLEMENTATION

In a MATLAB real-time signal processing framework a ti-
mer object [15] is implemented to handle the looping op-
eration and schedule the subsequent processing operations.
In a timer object loop a block of main code is executed ite-
ratively in a prescribed short time slot until an error or user
interruption is detected. In our implementation the audio
capturing and processing functionalities are programmed
within the main timer loop so for every timer slot an audio
frame is captured, analyzed and the feature data is submit-
ted to the external application. If the timer slot is short
enough (i.e., 10ms), the buffering and processing delay is
negligible. If the capturing and processing time exceeds the
allocated timer object slot, the error handling function of
the timer object is implemented. The error handling code
contains the same processing steps as in a regular
processing timer slot and the code to resumes regular timer
cycles after error processing. This mechanism allows extra
processing time when necessary. The audio capturing func-
tionality is implemented by programming two audiorecord-
er objects in each processing cycle to make sure that there
is no missing audio segment due to the processing delays.
For the odd-numbered processing loops (including timer
loops and error handling loops), we capture the recorded
audio segment from audiorecorder1, read the time location,
clear and restart the recorder, and then append the audio
segment to the corresponding time location of the main au-
dio stream for subsequent processing. For the even-
numbered loops, we perform the same instructions on audi-
orecorder2. In MATLAB, multiple audiorecorder objects
are run-time independent so their functionalities are per-
formed simultaneously without interference.

5. SUMMARY

Our proposed real-time signal processing framework of
musical expressive feature extraction obtains musical fea-
tures from an incoming audio stream and provides impor-
tant music data for various multimedia applications such as
visualization, electronic games, interactive media and au-
tomatic music production. By implementing a processing
framework that combines prediction, estimation and updat-
ing, musical features are obtained at the music note onset.
This capability effectively synchronizes the musical expres-
sive features with interactive content and avoids the delay
effect of conventional post-processing frameworks. The
proposed updating processing enables important feature
modifications to be updated to the user interface when addi-
tional lengths of audio signal are captured. In a perfor-
mance evaluation the performance of our proposed real-
time processing framework and an automatic post-
processing framework [2] is compared with a benchmark

dataset of manually annotated musical feature analysis. If
any feature dimension of automatic processing is different
from the benchmark dataset, the music note is considered
an error. The error rate is then calculated as the proportion
of notes with errors. The test dataset is composed of oboe
performance recordings that contain 162 music notes. The
error rate of real-time processing without music score, real-
time processing with music score, post-processing without
music score, and post-processing with music score is
19.75% (14.81% after update), 3.70% (1.23% after up-
dates), 13.58%, and 1.23% respectively. These perfor-
mances prove to be adequate for our proposed applications.

6. REFERENCES

[1] H. Schenker and H. Esser (Ed.), and I. S. Scott (Trans.): The Art of
Performance, Oxford University Press, New York, NY, 2000, pp. 3-
6.

[2] G. Ren, J. Lundberg, G. Bocko, D. Headlam, and M. F. Bocko:
“What Makes Music Musical? A Framework for Extracting
Performance Expression and Emotion in Musical Sound,”
Proceedings of the IEEE Digital Signal Processing Workshop, pp.
301–306, 2011.

[3] M. Balaban, K. Ebcioglu, and O. Laske (Ed.): Understanding music
with AI : perspectives on music cognition, AAAI Press, Menlo Park,
CA, 1992.

[4] C. Raphael: “Representation and Synthesis of Melodic Expression,”
Proceedings of IJCAI09, pp. 1474-1480, 2009.

[5] A. Klapuri: “Introduction to Music Transcription”. In A. Klapuri
and M. Davy (Ed.): Signal Processing Methods for Music
Transcription, Springer, New York, NY, 2006, pp. 3-20.

[6] G. Ren, J. Lundberg, G. Bocko, D. Headlam, and M. F. Bocko:
“Generative modeling of temporal signal features using hierarchical
probabilistic graphical models,” Proceedings of the IEEE Digital
Signal Processing Workshop, pp. 307–312, 2011.

[7] D. Koller and N. Friedman: Probabilistic Graphical Models:
Principles and Techniques, The MIT Press, Boston, MA, 2009,
pp.1-14.

[8] B. Moore: An Introduction of the Psychology of Hearing, 5th ed.,
Academic Press, London, UK, 2000, pp. 160-165.

[9] E. B. Goldstein: Sensation and Perception, 8th ed., Wadsworth
Publishing, Belmont, CA, 2009.

[10] M. Müller: Information Retrieval for Music and Motion, Springer,
New York, NY, 2007, pp. 85-139.

[11] J. P. Bello, L. Daudet, S. Abdallah, C. Duxbury, M. Davis, and M.
B. Sandler: “A Tutorial on Onset Detection in Music Signals”, IEEE
Trans. Speech Audio Process., Vol. 13, No. 5, pp.1035 – 1046,
2005.

[12] M. Goto: “An Audio-based Real-time Beat Tracking System for
Music With or Without Drum-sound”, Journal of New Music
Research, Vol. 30, No. 2, pp.159-171, 2001.

[13] A. Klapuri: “Auditory Model-Based Methods for Multiple
Fundamental Frequency Estimation”. In A. Klapuri and M. Davy
(Ed.): Signal Processing Methods for Music Transcription, Springer,
New York, NY, 2006, pp. 229-265.

[14] H. Pang, D. Yoon: “Automatic Detection of Vibrato in Monophonic
Music”, Pattern Recognition, Vol. 38, pp.1135 – 1138, 2005.

[15] S. T. Smith: MATLAB Advanced GUI Development, Dog Ear
Publishing, Indianapolis, IN, 2006, pp. 241-278.

120

