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Abstract

This paper is concerned with the reachability computation problem
for polynomial discrete-time dynamical systems. Such computations con-
stitute a crucial component in algorithmic verification tools for hybrid
systems and embedded software with polynomial dynamics, which have
found applications in many engineering domains. We describe two meth-
ods for over-approximating the reachable sets of such systems; these meth-
ods are based on a combination of the Bernstein expansion of polynomial
functions and a representation of reachable sets by template polyhedra.
Using a prototype implementation, the performance of the methods was
demonstrated on a number of examples of control systems and biological
systems.
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1 Introduction

Hybrid systems have become a common mathematical model for engineering
systems exhibiting both continuous and discrete dynamics. Recently they have
proved appropriate for modeling phenomena in molecular biology. Generally, a
hybrid system can be thought of as a combination of a discrete and a continuous
process. It consists of a collection of continuous modes; each continuous mode is
associated with a vector field governing the evolution of n continuous variables
within a subset of the state space X ⊆ Rn, and this set is called the staying set
of the mode. The discrete dynamics is described by a set of transitions between
the continuous modes, which can be triggered when the continuous variables
satisfy their associated guards. Between two transitions, the system evolves
according to the continuous vector field of the active mode. Various hybrid
systems models have been proposed, and modelling remains an active research
area [2, 5, 22].

The problem of safety verification of hybrid systems can be roughly stated
as proving that a hybrid system never enters a dangerous (i.e. unsafe) state. It
is thus important to note the following major types of non-determinism in the
behavior of a hybrid system. First, the continuous dynamics can be subject to
uncertain input modelling external disturbances or under-specified control. Sec-
ondly, non-determinism in discrete dynamics manifests when multiple discrete
transitions are simultaneously activated, or when the system simultaneously
satisfies the staying condition of the current mode (that is, it can continue with
the current continuous dynamics) and the guard condition of a transition (that
is, it can take the transition to switch to a different continuous mode). In ad-
dition, the initial conditions may not be exactly known and are often described
by a set of initial states, called the initial set. Even starting at a single initial
state, the system may generate a possibly infinite set of trajectories. Therefore,
to prove that the system satisfies a property, one often needs to consider a set
of solutions instead of single solutions.

A major component of a safety verification algorithm for a hybrid system
is an efficient method to compute its reachable set, which is the set of all the
states visited by all the possible trajectories. The computation of reachable sets
by discrete dynamics mainly requires Boolean operations over sets in Rn (such
as intersection of the reachable set with the guard sets of the transitions to
determine the trajectories that can switch to a different mode). Nevertheless,
computing the set of states reachable by continuous dynamics requires han-
dling sets of solutions of differential or difference equations, and this problem is
difficult. For general non-linear equations, their closed form solutions are not
known; and even for linear systems the solutions of which can be written in a
closed form, their manipulation is difficult because they can contain exponen-
tial functions. Therefore, the reachability problem for continuous systems has
been a major obstacle towards applying hybrid systems formal verification to
real-life problems. This has motivated much research in hybrid systems veri-
fication to focus on this particular problem. Using well-established results on
linear dynamical systems, numerous methods and tools for such systems have



130 Dang and Testylier, Reachability Analysis for Polynomial Systems

been developed 1. Nevertheless, non-linear systems still remain a challenge.
In this work, we address the following reachability computation problem:

given a set of initial states in Rn, compute the reachable set of a discrete-time
dynamical system described by the following difference equation

x[k + 1] = π(x[k]) (1)

where π : Rn → Rn is a multivariate polynomial. Such equations can arise
in embedded control systems, such as when a physical system is controlled
by a computer program which is the implementation of some continuous (or
possibly hybrid) controller using appropriate discretization. In addition, our
interest in discrete-time polynomial systems is motivated by their applicability
in the analysis of a variety of phenomena in biochemical networks. In this area,
discrete-time models are useful since experimental data are often measured by
sampling continuous biochemical reaction outputs, and computer based analysis
and simulation depend on discrete-time data.

The results presented in this paper can be extended to continuous-time dy-
namical systems described by differential equations, provided these equations
can be approximated by an appropriate time discretization scheme. As in solv-
ing initial value problems for continuous-time ordinary differential equations,
it is crucial to obtain a time discretization method that can guarantee con-
servativeness of the resulting reachable set approximations, and the enclosure
methods (such as [27, 23]) can be applied.

Roughly speaking, the goal of reachability analysis is to study sets of all
possible trajectories. Many existing reachability computation methods can be
seen as an extension of numerical integration. That is, one has to solve the
equation (1) with sets, that is x[k] and x[k + 1] in this equation are subsets
of Rn (while they are points if we only need a single solution, as in numerical
integration).

This problem was previously considered in the work [34, 10], which was in-
spired by modeling techniques from Computer Aided Geometric Design (CADG)
and tried to exploit special geometric properties of polynomials. The drawback
of the Bézier simplex based method proposed in this work is that it requires
expensive mesh computation, which restricts its application to systems of di-
mensions not higher than 3, 4. In this paper, we pursue the direction initiated
in [34] and make use of a special class of polyhedra. These polyhedra can be
thought of as local meshes of fixed form. This enables a significant reduction
of complexity. The manipulation of such polyhedra is handled by optimiza-
tion techniques. In addition, by exploiting a technique from CADG, namely
the Bernstein expansion, we only need to solve linear programming (LP) prob-
lems instead of polynomial optimization problems. In this paper, we describe
our results achieved along this direction, in particular, a significant accuracy
improvement compared to [10], thanks to a more precise representation of the
Bernstein expansion over polyhedra.

1The reader is referred to the recent proceedings of the conference Hybrid Systems: Com-
putation and Control HSCC.



Reliable Computing 17(2), 2012 131

The paper is organized as follows. In Section 2 we introduce basic defi-
nitions of reachable sets, template polyhedra and the Bernstein expansion of
polynomials. We then formally state our reachability problem and describe an
optimization-based solution. In order to transform the polynomial optimization
problem to a linear programming (LP) problem, two methods for computing
affine bound functions for polynomials over polyhedral sets are presented. Sec-
tion 6.2 describes an algorithm summarizing the main steps of our reachability
analysis approach. Some experimental results, in particular the analysis of a
control system and two biological systems, are reported in Section 8.

2 Preliminaries

Let R denote the set of reals. Throughout the paper, vectors are often written
using bold letters. Exceptionally, scalar elements of multi-indices, introduced
later, are written using bold letters. Given a vector x, xi denotes its ith com-
ponent. Capital letters, such as A, B, X, Y , denote matrices or sets. If A is a
matrix, Ai denotes the ith row of A.

We use B to denote the unit box anchored at the origin, that is B = [0, 1]n.
We use π to denote a vector of n functions such that for all i ∈ {1, . . . , n}, πi
is an n-variate polynomial of the form πi : Rn → R. In the remainder of the
paper, we sometimes refer to π simply as “a polynomial”.

To discuss the Bernstein expansion of polynomials, we use multi-indices of
the form i = (i1, i2, . . . , in) where each ij is a non-negative integer. Given two
multi-indices i and d, we write i ≤ d if for all j ∈ {1, . . . , n}, ij ≤ dj . Also, we

write i
d for (i1/d1, i2/d2, . . . , in/dn) and

(
i

d

)
for

(
i1
d1

)(
i2
d2

)
. . .

(
in
dn

)
.

2.1 Reachable Sets

We consider a discrete-time dynamical system

x[k + 1] = π(x[k]) (2)

where the initial state x[0] is inside some set X0 ⊂ Rn, and X0 is called the
initial set.

Given a set X ⊂ Rn, the image of X by π, denoted by π(X), is defined as
follows:

π(X) = {(π1(x), . . . , πn(x)) | x ∈ X}.

The reachable set Xk of the system (2) at time step k ≥ 0 is defined by the
following recurrence

Xk+1 = π(Xk)

where X0 is the initial set.
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2.2 Template Polyhedra

When starting from X0, the dynamical system (2) generates a set of solutions.
To characterize this set of solutions we use special convex polyhedra with fixed
geometric form, called template polyhedra [32, 7]. In the following we give a
brief introduction to template polyhedra.

A convex polyhedron is a conjunction of a finite number of linear inequalities
described as Ax ≤ b, where A is a m × n matrix, b is a column vector of size
m. A bounded convex polyhedron can also be represented as the convex hull
of its vertices. Template polyhedra are commonly used in static analysis of
programs for computing invariants. Ranges [9] and the octagon domains [25]
are special template polyhedra. General template polyhedra are also used as
an abstract domain to represent sets of states in [32, 7]. A template is a set
of linear functions over x = (x1, . . . , xn). We denote a template by an m × n
matrix H, such that each row Hi corresponds to the linear function Hix. Given
such a template H and a real-valued vector c ∈ Rm, a template polyhedron is
defined by considering the conjunction of the linear inequalities of the form∧

i=1,...,m

Hix ≤ ci.

We denote this polyhedron by 〈H, c〉.
By varying the values of the elements of c, one can create a family of template

polyhedra corresponding to the template H. We call c a polyhedral coefficient
vector. Given c, c′ ∈ Rm, if ∀i ∈ {1, . . . ,m} : ci ≤ c′i, we write c � c′. Given
an m×n template H and two polyhedral coefficient vectors c, c′ ∈ Rm, if c � c′

then the inclusion relation 〈H, c〉 ⊆ 〈H, c′〉 holds, and we say that 〈H, c〉 is not
larger than 〈H, c′〉.

On polyhedra, the Boolean operations (union, intersection) and common
geometric operations can be done using the existing algorithms [4]. Hence, it
is important to note again that a polyhedron-based reachability algorithm for
continuous systems are readily extended to hybrid systems where guard and
reset conditions can be described by linear constraints. The advantage of tem-
plate polyhedra over general convex polyhedra is that the Boolean operations
(union, intersection) and common geometric operations can be performed more
efficiently [32]. Manipulating general convex polyhedra is expensive especially in
high dimensions. This poses a major problem in continuous and hybrid systems
verification approaches using polyhedral representations.

3 Reachable Set Approximation Using Template
Polyhedra

To compute the reachable set at each time step, we need to compute the image
of a polyhedron P by the polynomial π. The template matrix H, which is of
size m× n, is assumed to be given; the polyhedral coefficient vector c ∈ Rm is
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however unknown. The problem we now focus on is thus to find c such that

π(P ) ⊆ 〈H, c〉. (3)

For safety verification purposes, exact computation of reachable sets is often
not possible (due to undecidablity issues for example) and one thus needs to
resort to over-approximations, and when an over-approximation does not allow
proving a safety property, the approximation needs to be refined.

It is not hard to see that the following condition

∀x ∈ P : Hπ(x) ≤ c

is sufficient for (3) to hold.
Therefore, to determine c, one can formulate the following optimization

problems

∀i ∈ {1, . . . ,m}, ci = max(Σnk=1H
i
kπk(x)) subj. to x ∈ P. (4)

where Hi is the ith row of the matrix H and Hi
k is its kth element. Note that the

above functions to optimize are polynomials. This problem is computationally
difficult, despite recent progress in the development of methods and tools for
polynomial programming (see for example [12] and references therein). An
alternative solution is to find their affine bound functions, in order to replace
the polynomial optimization problem by a linear program, which can be solved
more efficiently (in polynomial time) using well-developed techniques, such as
Simplex and interior point techniques [31]. To this end, the Bernstein expansion
can be used to compute affine bound functions of polynomials, as shown in the
next section.

3.1 The Bernstein Expansion

An n-variate polynomial π : Rn → Rn can be represented using the power base
as follows:

π(x) =
∑
i∈Id

aix
i

where ai is a vector in Rn; i and d are two multi-indices of size n such that
i ≤ d; Id is the set of all multi-indices i ≤ d, that is Id = {i | i ≤ d}. The
multi-index d is called the degree of π.

The polynomial π can also be represented using the Bernstein expansion.
In order to explain this, we first introduce Bernstein polynomials. For x =
(x1, . . . , xn) ∈ Rn, the ith Bernstein polynomial of degree d is

Bd,i(x) = βd1,i1(x1) . . . βdn,in(xn)

where for a real number y, βdj ,ij (y) =
(
dj

ij

)
yij (1− ydj−ij ).

Then, for all x ∈ B = [0, 1]n, the polynomial π can be written using the
Bernstein expansion as follows:

π(x) =
∑
i∈Id

biBd,i(x) (5)
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where for each i ∈ Id the Bernstein coefficient bi is defined as

bi =
∑
j≤i

(
i
j

)(
d
j

)aj. (6)

The following lemma states some important properties of the Bernstein co-
efficients.

Lemma 1 1. (Convex-hull property)

Conv{(x, π(x)) : x ∈ B} ⊆ Conv{(i/d,bi) | i ∈ Id}.

The points bi are called the control points of π.

2. The above enclosure yields ∀x ∈ B : π(x)) ∈ 2({bi | i ∈ Id}) where 2

denotes the bounding box of a point set.

3. (Sharpness of some special coefficients)

∀i ∈ I0d : bi = π(i/d)

where I0d is the set of all the vertices of [0,d1]× [0,d2] . . . [0,dn].

With respect to our reachability problem that requires computing the image
of a set by a polynomial, the Bernstein expansion is of particular interest.

For example, using the second property, the coefficients of the Bernstein
expansion can be used to over-approximate the image of the unit box B by the
polynomial π. Furthermore, as we will show in Section 4, these coefficients can
be used to efficiently compute an affine approximation of the polynomial.

It is important to note that the expansion (5) is valid only if x is inside the
unit box. Even if our initial set X0 is inside the unit box B, after the first step,
the polyhedral approximation of the reachable set can be outside the unit box.
Therefore, we need to consider the problem of computing the image of a general
convex polyhedron P . To this end, we first consider the case where the set P is
the unit box and then show how the solution can be extended to general convex
polyhedra.

4 Computing Bound Functions Over the Unit
Box Domain

We first formally define bound functions.

Definition 1 (Upper and lower bound functions) Given f : Rn → R, the
function υ : Rn → R is called an upper bound function of f w.r.t. a set X ⊂ Rn
if ∀x ∈ X : f(x) ≤ υ(x). A lower bound function can be defined similarly.

The following property of upper and lower bound functions is easy to prove.
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Lemma 2 Given two sets X,Y ⊆ Rn such that Y ⊆ X, if υ is an upper (lower)
bound function of f w.r.t. X, then υ is also an upper (lower) bound function of
f w.r.t. Y .

Note that we can easily compute an upper bound function of π by comput-
ing a lower bound functions for −π using this method and then multiply each
resulting function by −1.

To compute bound functions, we use the method based on the Bernstein
expansion, published in [18]. Computing convex lower bound functions for pol-
ynomials is a problem of great interest, especially in global optimization. The
reader is referred to [18, 19, 14] for more detailed descriptions of these methods.

It is important to note that the methods described in this section only work
for the case where the variable domain is the unit box B. The reason is that it
employs the expression of the control points of the Bernstein expansion in (6)
which is only valid for this unit box. Their extensions to arbitrary polyhedral
domains are discussed in the next section. Therefore, in what follows, we assume
that our initial polyhedron P is included in the unit box.

4.1 Using a Convex Hull Lower Facet

A simple affine lower bound function is a constant function, which can be directly
deduced from the second property of the Bernstein expansion, that is,

l(x) = b0

where

b0 = min{bi | i ∈ Id}.

Better bound functions can be derived using the following two methods. The
first step of this method, proposed in [19], involves computing the affine lower
bound function whose corresponding hyperplane passes through this control
point b0. Then, additionally, (n − 1) hyperplanes passing through n other
control points are determined. This allows constructing a sequence of n affine
lower bound functions l0, l1, . . . ln. The method ends up with ln, a function
whose corresponding hyperplane passes through a lower facet of the convex hull
spanned by these control points. To summarize this algorithm, let us consider
a polynomial πk(x), which is the kth component of π(x) and for simplicity we
denote it simply by p(x). The Bernstein coefficient of p is denoted by the scalars
bi. We shall compute an affine lower bound function denoted by l(x).

• Iteration 1.

– Define the direction u1 = (1, 0, . . . , 0).

– Compute the slopes from each bi to b0 in the direction u1

∀i ∈ Id : i[1] 6= i0[1], g1i =
bi − b0

i[1]/d[1]− i0[1]/d[1]
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– Let i1 be the multi-index with the smallest absolute value of g1i .
Define the lower bound function

l1(x) = b0 + g1i1u
1(x− i0/d).

• Iteration j = 2, . . . , n.

– Compute the direction ūj = (β1, . . . , βj−1, 0, . . . , 0) such that

ūj i
k−i0
d = 0 for all k = 1, . . . , j− 1. This requires solving a system of

j− 1 linear equations with j− 1 unknown variables. Then normalize
uj = ūj/||ūj ||.

– Compute the slopes from each bi to b0 in the direction uj

∀i ∈ Id :
i[1]− i0[1]

d
uj 6= 0, gji =

bi − lj−1(i/d)

(i/d− i0/d)uj

– Let ij be the multi-index with the smallest absolute value of gji .
Define the lower bound function

lj(x) = lj−1(x) + gjiju
j(x− i0/d).

4.2 Using a Linear Least Squares Approximation

The essence of the second method, proposed in [14], for computing bound func-
tions is to find a hyperplane that is close to all the control points, using linear
least squares approximation. This can lead to tighter bound functions since the
general shape of the function graph can be better captured. More concretely,
we denote by {ij | 1 ≤ j ≤ nb} be the set of all the multi-indices, nb is thus their
number. The set of all control points are denoted similarly. Let A be a matrix
of size nb× (n+ 1) (n is the number of state variables of the dynamical systems
in question) such that its elements are defined as follows. For all 1 ≤ j ≤ nb
and 1 ≤ k ≤ n,

Ajk =
ijk
dk

and Ajn+1 = 1. Let ζ be the solution of the following linear least squares
approximation problem

ATAζ = ATb.

Then, the affine function

l̃(x) =

n∑
k=1

ζkxk + ζn+1

corresponds to the ”median” axis of the convex hull of all the control points. It
thus suffices to shift it downward by the amount

δ = max

{
l̃(

ij

d
)− bj | 0 ≤ j ≤ nb

}
.
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This results in the following lower bound function

l(x) = l̃(x)− δ, for all x ∈ B.

5 Computing Affine Bound Functions Over
Polyhedral Domains

As mentioned earlier, the methods to compute affine bound functions for pol-
ynomials in Section 4 can be applied only when the set P is inside the unit
box B anchored at the origin. To extend it to polyhedral domains, we trans-
form the polyhedra to the unit box by two methods: (1) via an (oriented) box
approximation, and (2) by rewriting the polynomials using a change of variables.

5.1 Using a Box Approximation

If we over-approximate P with a box B, it is then possible to derive a formula
expressing the Bernstein coefficients of π over B. However, this formula is
complex and its representation and evaluation can become expensive.

We alternatively consider the composition of the polynomial π with an affine
transformation τ that maps the unit box to B. The functions resulting from
this composition are still polynomials, for which we can compute their bound
functions over the unit box, using the formula (6) of the Bernstein expansion.
This is explained more formally in the following.

Let B be the bounding box of the polyhedron P , that is, the smallest box
that includes P . The affine function τ that maps the unit box B to B can be
easily defined as τ(x) = diag(λ)x + g where g ∈ Rn such that gi = li, and
diag(λ) is a n×n diagonal matrix with the elements on the diagonal defined as
follows: for each i ∈ {1, . . . , n}, λi = hi − li.

The composition γ = (π o τ) is γ(x) = π(τ(x)). The functions τ and γ can
be computed symbolically, which will be discussed later.

Lemma 3 Let γ = π o τ . Then, π(P ) ⊆ γ(B).

Proof. By the definition of the composition γ, γ(B) = {π(τ(x)) | x ∈ B}.
Additionally, τ(B) = B. Therefore, γ(B) = π(B). Since the polyhedron P is
included in its bounding box B, we thus obtain π(P ) ⊆ π(B) = γ(B).
The above proof is still valid for any affine function τ . This means that instead
of an axis-aligned bounding box, we can over-approximate P more precisely
with an oriented (i.e. non-axis-aligned) bounding box. The directions of an
oriented bounding box can be computed using Principal Component Analysis
(PCA) [20]. A detailed description of the method can be found in [10].

5.2 Using a Change of Variables

The polyhedron P can also be mapped to the unit box B by a change of
variables as follows. We assume that the polyhedron P is bounded and let



138 Dang and Testylier, Reachability Analysis for Polynomial Systems

V = {v1, . . . ,vl} be the set of its vertices. We first express the coordinates of
a point x inside the polyhedron P as a linear combination of the vertices of P ,
that is

x =

l∑
j=1

αjvj = ν(α1, . . . , αl)

such that

∀j ∈ {1, . . . , l} αj ≥ 0 (7)

l∑
j=1

αj = 1. (8)

We then substitute x in π with ν(α1, . . . , αl) to yield a new polynomial in
α1, . . . , αl.

We denote µ = π o ν, that is π(x) = µ(α1, . . . , αl). Furthermore, in order
to retain the relation between αj expressed in the constraint (8) we can use

αl = 1−
l−1∑
j=1

αj

to substitute αl in µ by the above sum, in order to obtain a polynomial with
(l − 1) variables, denoted by ξ(β) where α̃ = (α1, . . . , αl−1).

Note that the constraints (7-8) indicate that γ is inside the unit box Bα̃ in
Rl−1. This implies that a bound function computed for the polynomial ξ(α̃)
on this unit box is also a bound function for the original polynomial π on the
polyhedron P without additional error, unlike in the above-described case of
box approximations. It then suffices to compute the bound functions for π over
the polyhedron P using the Bernstein expansion of ξ over the Bα̃.

6 Reachable Set Computation

6.1 Image computation

We now show how the above affine bound functions can be used to solve the
optimization problems (4) in order to determine the coefficients of a template
polyhedron over-approximating the reachable set. The functions to optimize
in (4) can be seen as the compositions of polynomials πk. Since every coefficient
Hi
k is constant, each

si(x) = Σnk=1H
i
kπk(x)

is simply a polynomial and we can compute its bound functions. The tem-
plate polyhedral coefficients can hence be computed by solving the following
optimization problems

∀i ∈ {1, . . . ,m}, ci = max(si(x)) subj. to x ∈ P ; (9)
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However, such compositions often result in more monomial terms in the
polynomials si and thus more Bernstein coefficients to consider. In the following
we propose a way to avoid such compositions by bounding each element of the
above sum separately, which costs less computation time but induces greater
overall error. For each k ∈ {1, . . . ,m}, let uk(x) and lk(x) respectively be an
upper bound function and a lower bound function of πk(x) w.r.t. the initial
polyhedron P .

We consider the following optimization problem:

∀i ∈ {1, . . . ,m}, ci = Σnk=1H
i
kωk. (10)

where the term Hi
kωk is defined as follows:

• If the element Hi
k > 0, Hi

kωk = Hi
k maxuk(x) subj. to x ∈ P ;

• If the element Hi
k ≤ 0, Hi

kωk = Hi
k minlk(x) subj. to x ∈ P .

The following lemma is a direct result of (10).

Lemma 4 If a polyhedral coefficient vector c ∈ Rm satisfies (10). Then π(P ) ⊆
〈H, c〉.

Proof. It is not hard to see that the solution ci of the optimization prob-
lems (10) is greater than or equal to the solution of (4). Hence, if c satisfies (10),
then

∀i ∈ {1, . . . ,m} ∀x ∈ P : Σnk=1H
i
kπk(x) ≤ ci.

This implies that ∀x ∈ P : Hπ(x) ≤ c, that is the image π(P ) is included in
the template polyhedron 〈H, c〉.

We remark that if all the bound functions in (10) are affine and P is a convex
polyhedron, c can be computed by solving 2n linear programming problems.

6.2 Reachable Set Computation Algorithm

Algorithm 1 summarizes the main steps of our approach for over-approximating
the reachable set of the system (2) where the initial set X0 is a bounded poly-
hedron in Rn. The template is an input of the algorithm. In the current
implementation of the algorithm, either templates fixed a-priori by the user or
templates forming regular sets are used.

To unify two methods of mapping a polyhedron to the unit box in the same
abstract algorithm, we use β to denote both of the transformations using either
a box approximation or a change of variables.

The procedure UnitBoxMap is used to determine the function β. This
function is then composed with the polynomial π, the result of which is the
polynomial γ. The affine lower and upper bound functions l and u of γ are
then computed, using the Bernstein expansion of γ over the corresponding unit
box. The function PolyApp determines the polyhedral coefficient vector c by
solving the linear programs where the optimization domain is the unit box.
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Algorithm 1 Reachable set computation

/* Inputs: convex polyhedron X0, polynomial π, templates H */

k = 0
repeat
β = UnitBoxMap(Xk) /* Compute the function mapping the unit box B
to the polyhedron Xk */
γ = π o β
(u, l) = BoundFunctions(γ) /* Compute the affine bound functions */
c̄ = PolyApp(u, l,H) /* Compute the polyhedral coefficient vector */
Xk+1 = 〈H, c̄〉 /* Construct the template polyhedron and return it */
k + +

until k = kmax

The polyhedral coefficient vector c̄ is then used to define a template polyhedron
Xk+1.

Based on the analysis so far, we can state the correctness of Algorithm 1.

Theorem 1 Let 〈H, c̄〉 be the template polyhedron returned by Algorithm 1.
Then π(P ) ⊆ 〈H, c̄〉.

We remark that, when using a box approximation, u and l are upper and
lower bound functions of γ with respect to the unit box B. It is not hard to
see that τ−1(Xk) ⊆ B where τ−1 is the inverse of τ . Using the property of
bound functions, u and l are also bound functions of γ with respect to τ−1(Xk).
Hence, if we solve the optimization problems over the domain τ−1(Xk) (which
is often smaller than B), using Lemma 4, the resulting polyhedron is still an
over-approximation of π(Xk). This remark can be used to obtain more accurate
results.

7 Approximation Error and Computation Cost

In this section we briefly discuss precision and complexity of the proposed meth-
ods. The approximation errors are caused by the bound functions and the use
of template polyhedra. When a box approximation is used, this causes an ad-
ditional error. The following lemma [36, 6] states an important property of the
Bernstein expansion.

Lemma 5 Let Cπ,B be the piecewise linear function defined by the Bernstein
control points of π with respect to the box B. Then, for all x ∈ B,

|π(x)− Cπ,B(x)| ≤ Kρ2(B)

where | · | is the infinity norm on Rn, ρ(B) is the box size (i.e. its largest side
length), Kk = maxx∈B;i,j∈{1,...,n}|∂i∂jπk(x)|, K = maxk∈{1,...,n}Kk.
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From this result, it can be proven that in one-dimensional case, the error be-
tween the bound functions computed using the Bernstein expansion and the
original polynomial is quadratic in the length of box domains. This quadratic
convergence seems to hold for higher-dimensional cases in practice, as shown
in [18]. In our current work we are searching a subdivision of the box B which
allows a quadratic convergence of the error. This subdivision method is similar
to the one used for finding roots of a polynomial with quadratic convergence [26].

Hence, when more accurate reachable set approximations are required, we
can divide the unit box into non-overlapping sub-boxes. Then, for each sub-box,
we compute a bounding function, with which we then compute a coefficient for
each template. Finally, for each template, we take the largest coefficient to
define the template polyhedron. Since the sub-boxes are smaller, the bound
functions are more precise, we can thus improve the coefficients as much as
desired. This division idea can also be used similarly to reduce the error caused
by oriented box approximation. The error inherent to the approximation by
template polyhedra can be controlled by fine-tuning the number of template
constraints.

Concerning complexity, when a box approximation is used, the computa-
tion of bound functions and PCA only require manipulating matrices and linear
equations. Linear programming can be solved in polynomial time. When iter-
ating these methods to compute the reachable set of a polynomial dynamical
system, if the number of template constraints is constant, the complexity de-
pends linearly on the number of iterations.

Regarding accuracy the method using a change of variables is performant,
since the polyhedral constraints are exactly captured. This is also confirmed
by experimental results. However, the LP problems to solve are in higher di-
mension, which is (l− 1) where l is the number of vertices of the polyhedra. In
addition, this method requires computing the vertices of template polyhedra,
which is expensive and our experimentation shows that this costs a large part of
computation time. This can be improved by considering the coefficients of tem-
plate polyhedra as parameters, and since the template is fixed, we can deduce
a symbolic expression of the vertices of the parametric polyhedra, which can be
used to derive the (parametric) change of variables to map the polyhedra to the
unit box. This direction is part of our current work.

8 Experimental Results

We have implemented our methods in a prototype tool. The implementation
uses the library lpsolve2 for linear programming. The tool can be combined
with reachability analysis algorithms to verify hybrid systems with polynomial
continuous dynamics. In the following, we demonstrate the methods with three
examples: a control system (modeled as a hybrid system) and two biological
systems (modeled as continuous systems). The time efficiency of the tool was
also evaluated by considering a number of randomly generated polynomials.

2http://lpsolve.sourceforge.net/
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Our algorithms were realized in C++ programs which were compiled with GCC
4.4.0. The experimental results were obtained by executing the programs in
a mono-threaded mode, on a machine using the Linux-based operating system
Ubuntu with Intel CoreTM 2 Duo processor (2.4GHz, 2Go RAM).

8.1 Duffing Oscillator

The first example we present is the Duffing oscillator taken from [21, 12]. This
is a nonlinear oscillator of second order and its continuous-time dynamics is
described by

ÿ(t) + 2ζẏ(t) + y(t) + y(t)3 = u(t)

where y ∈ R is the state variable and u ∈ R is the control input. The damping
coefficient ζ = 0.3. In [12], using a forward difference approximation with
a sampling period h = 0.05 time units, this system is approximated by the
following discrete-time model

x1[k + 1] = x1[k] + hx2[k]

x2[k + 1] = −hx1[k] + (1− 2ζh)x2[k] + hu[k]− hx31[k]

In [12], an optimal predictive control law u[k] was computed by solving a para-
metric polynomial optimization problem.

We model this control law by the following switching law with 3 modes

u[k] = 0.5k if 0 ≤ k ≤ 10

u[k] = 5− 0.5(k − 10)/3 if 10 < k ≤ 40

u[k] = 0 if k > 40

The controlled system is thus modeled as a hybrid automaton [1] with 3 discrete
states. The initial set is a rectangle such that 2.49 ≤ x1 ≤ 2.51 and 1.49 ≤ x2 ≤
1.51.

The results obtained using the two methods are shown in Figure 1 which are
coherent with the phase portrait in [12]. We can see that the method using a
change of variables achieved better precision since the reachable set it computed
is include in the set computed by the other method. However, the method using
a change of variables is less time-efficient. For 80 steps, the computation time
of the method using a box approximation is 1.25s while that of the method
using a change of variables is 3.96s. We also used this example to compare the
two methods of computing bound functions and observed that they produced
equally accurate results.

8.2 Michaelis-Menten Enzyme Kinetics

The second example is the well-known Michaelis-Menten enzyme kinetics, taken
from [11]. The kinetic reaction of this signal transduction pathway is represented
in Figure 2, where E is the concentration of an enzyme that combines with a
substrate S to form an enzyme substrate complex ES. In the next step, the
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Figure 1: The Duffing oscillator: the reachable set computed using a change of
variables is more accurate than the one computed using a box approximation.
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complex can be dissociated into E and S or it can further proceed to form
a product P . This pathway kinetics can be described by the following ODEs

Figure 2: Michaelis-Menten enzyme kinetics

where x1, x2, x3 and x4 are the concentrations of S, E, ES and P

ẋ1 = −θ1x1x2 + θ2x3

ẋ2 = −θ1x1x2 + (θ2 + θ3)x3

ẋ3 = θ1x1x2 + (θ2 + θ3)x3

ẋ4 = θ3x3

Using a second order Runge Kutta discretization with step size 0.3, we obtain
the following 4-variate polynomial system

π1(x) = x1 − 0.053838x1x2 + 0.001458x21x2 + 0.001458x1x
2
2 +

−3.9366 · 10−5x21x
2
2 + 0.005775x3 − 0.002025x1x3 − 0.000162x2x3 +

5.9049 · 10−5x1x2x3 − 6.075 · 10−6x23

π2(x) = x2 − 0.051975x1x2 + 0.001458x21x2 + 0.001458x1x
2
2

−3.9366 · 10−5x21x
2
2 + 0.0721875x3 − 0.002025x1x3 − 0.000162x2x3 +

5.9049 · 10−5x1x2x3 − 6.075 · 10−6x23

π3(x) = 0.051975x1x2 − 0.001458.x21x2 − 0.001458x1x
2
2 +

3.9366 · 10−5x21x
2
2 + 0.927812x3 + 0.002025x1x3 + 0.000162x2x3

−5.9049 · 10−5x1x2x3 + 6.075 · 10−6x23

π4(x) = 0.001863x1x2 + 0.0664125x3 + x4.

Again for this example, the method using a change of variables produced slightly
more precise results but took more time. The computation time of this method
for 20 steps is 153.5s while the method using a box approximation took only
11.7s. The reason for this discrepancy is that the polynomials have many mono-
mial terms, which causes a large number of Bernstein coefficients to consider.

The reachable set computed by the method using a change of variables, for
all the initial states inside a ball centered at (12, 12, 0, 0) with radius 10−4, is
shown in Figure 3. In order to compare with the result in [11], the figures depict
the temporal evolution of the first variable for the first few steps. The horizontal
axis is time. In the vertical axis, the minimal and maximal values of the variable
are shown. This result is coherent with the simulation result in [11].
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Figure 3: Michaelis-Menten enzyme kinetics. The evolution of the reachable set
(projected on the first variable) after 7 steps computed by the method using a
change of variables.

8.3 FitzHugh-Nagumo Neuron Model

The FitzHugh-Nagumo neuron model describing the electrical activity of a neu-
ron [30] can be expressed by a polynomial dynamical system

ẋ = x− x3 − y + 7/8 (11)

ẏ = 0.08(x+ 0.7− 0.8y) (12)

We now study an Euler time discretization scheme of the above differential
equation with the step size 0.2. The initial set is an octagon included in the
bounding box [0.9, 1.1]× [2.4, 2.6]. Figure 4 shows two reachable sets computed
using the same template. The one computed by the method using a change
of variables is much more precise, which allowed observing a limit cycle. The
computation time of the method using a box approximation after 500 steps is
5.79s and that of the method using a change of variables is 12.73s.

Note that the use of template polyhedra provide only over-approximation of
the exact reachable set. To improve the accuracy, we can increase the number of
template directions. Figure 5 shows two analysis results with 8 and 20 template
directions. We can observe a significant gain of precision when using 20 template
directions, and the time computation is linearly increased (15.43s).
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Figure 4: FitzHugh-Nagumo neuron model. The evolution of the reachable
set computed using the two methods: using a box approximation and using
a change of variables. The result obtained by the method using a change of
variables is more accurate.

Figure 5: FitzHugh-Nagumo neuron model: The reachable set approximations
with 8 template directions (left) and with 20 template directions (right), both
results were computed using the box approximation method.
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dim degree nb monomials nb time (s) time (s)
d of degree d templates method BA method CV

2 2 4 4 0.004 0.001
2 3 6 4 0.002 0.008
2 4 8 4 0.005 0.01
3 2 6 6 0.009 0.011
3 3 9 6 0.023 0.043
3 4 12 6 0.068 0.158
4 2 8 8 0.041 0.065
4 3 12 8 0.184 0.62
4 4 16 8 0.87 6.11167
5 2 10 10 0.265 0.501
5 3 15 10 15.44 1.48444
6 2 12 12 1.031 4.508
7 2 14 14 5.889 51.334

Table 1: Computation time for randomly generated polynomial systems in var-
ious dimensions and degrees. The second column contains the degree d of the
polynomials, and third column contains their number of monomial of degree d.

8.4 Randomly Generated Systems

In order to evaluate the performance of our methods, we tested them on a
number of randomly generated polynomials in various dimensions and maximal
degrees (the maximal degree is the largest degree for all variables). For a fixed
dimension and degree, we generated different examples to estimate an average
computation time. The polynomial coefficients were randomly chosen between
[−1, 1]. In the current implementation, polynomial composition is done symbol-
ically, and we do not yet exploit the possibility of sparsity of polynomials (in
terms of the number of monomials). The computation times in seconds for the
method using a box approximation (abbreviated by BA) and for the method
using a change of variables (abbreviated by CV) are shown in Table 1.

As expected, the computation time grows linearly w.r.t. the number of steps.
This can be explained by the use of template polyhedra where the number of
constraints can be chosen according to required precisions and thus the complex-
ity of the polyhedral operations can be better controlled, compared to general
convex polyhedra. In fact, when using general polyhedra, the operations, such
as the convex hull, may increase their geometric complexity (roughly described
by the number of vertices and constraints).

On the other hand, we also compared the two methods for computing bound
functions: using a lower convex hull facet (abbreviated by CHF) and using the
least squares approximation (abbreviated by LSA). The average bound function
computation time for one step of the reachability algorithm is shown in Table 2.
In this experiment we used box templates and we generate random quadratic
polynomial systems with 5 monomials. We were not able to test systems of di-
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dim time (s) time (s)
method LSA method CHF

2 0.00005 0.0005
3 0.00016 0.00016
4 0.00275 0.00263
5 0.0117 0.0116
6 0.0463 0.0441
7 0.1497 0.1191
8 0.8012 0.4837
9 4.755 1.591

Table 2: The computation times of computing a bound function on randomly
generated polynomial systems using the LSA method (second column) and the
CHF method (third column). In this experiment, the polynomials are quadratic
with 5 second-order monomials).

mensions higher than 9 because polynomial composition becomes prohibitively
costly. This issue can be handled by computing the Bernstein coefficients by
interpolation instead of explicit polynomial composition, which is indeed a topic
of our current research. The method using a least squares approximation re-
quires solving n systems of linear equations in dimensions increasing from 1 to
n, and the one using a lower convex hull facet requires solving only one linear
system in dimension (n + 1). Using Gaussian elimination to solve a system of
n equations for n unknowns has complexity of O(n3). Thus, concerning linear
system solving, the complexity of the method using a lower convex hull facet is
roughly O((n−1)2n2/4) while the complexity of the other is O((n+ 1)2). How-
ever, the LSA method requires costly matrix mulplication when the number of
control points in large. This is the main reason why the LSA method is less
efficient than the CHF method in high dimensions.

9 Related Work

Our reachability analysis approach is similar to a number of existing ones
for continuous and hybrid systems in the use of linear approximation (such
as, [38, 3, 13, 24, 37]. Its novelty resides in the efficient way of computing linear
approximations. A common method to approximate a non-linear function by
a piecewise linear one, as in the hybridization approach [3] for hybrid systems,
requires non-linear optimization. Our approach exploits the Bernstein expan-
sion of polynomials to replace expensive polynomial programming by linear
programming.

A similar idea, which involves using the coefficients of the Bézier simplex
representation, was used in [34] to compute the image of a convex polyhedron.
If using the methods proposed in this paper with a sufficient number of tem-
plates to assure the same precision as the convex hull in our previous Bézier
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method [34], then the convergence of both methods is quadratic. However the
Bézier method requires expensive triangulation operations, and geometric com-
plexity of resulting sets may grow step after step. Combining template polyhe-
dra and bound functions allows a good accuracy-cost compromise.

Besides constrained global optimization, other important applications of the
Bernstein expansion include various control problems [17] (in particular, robust
control). The approximation of the range of a multivariate polynomial over a
box and a polyhedron is also used in program analysis and optimization (for
example [16, 8]). In the hybrid systems verification, polynomial optimization is
used to compute barrier certificates [29]. Algebraic properties of polynomials are
used to compute polynomial invariants [35] and to study the computability of
image computation in [28]. Finally, systems with uncertainties are also studied
from the point of view of control, optimization and simulation [15].

10 Conclusion

The reachability computation methods we proposed in this paper combine the
ideas from optimization and the Bernstein expansion. These results are readily
applicable to hybrid systems with polynomial continuous dynamics.

The performance of the methods was demonstrated using a number of ran-
domly generated examples. These encouraging results also show an important
advantage of the methods: thanks to the use of template polyhedra, the com-
plexity and precision of the method are more controllable than those using
polyhedra as symbolic set representations.

There are a number interesting directions to explore. Different tools from
geometric modeling could be exploited to improve the efficiency of the method.
For example, polynomial composition can be done for sparse polynomials more
efficiently using the blossoming technique [33]. In addition to more experi-
mentation on other hybrid systems case studies, we intend to explore a new
application domain, which is verification of embedded control software. In fact,
multivariate polynomials arise in many situations when analyzing programs that
are automatically generated from practical embedded controllers.
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