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Abstract

A fundamental problem for artificial intelligence
is identifying perceptual primitives from raw sen-
sory signals that are useful for higher-level rea-
soning. We equate these primitives with initially
unknown recurring patterns called motifs. Au-
tonomously learning the motifs is difficult because
their number, location, length, and shape are all un-
known. Furthermore, nonlinear temporal warping
may be required to ensure the similarity of motif
occurrences. In this paper, we extend a leading
motif discovery algorithm by allowing it to oper-
ate on multidimensional sensor data, incorporating
automatic parameter estimation, and providing for
motif-specific similarity adaptation. We evaluate
our algorithm on several data sets and show how
our approach leads to faster real world discovery
and more accurate motifs compared to other lead-
ing methods.

1 Introduction

This paper addresses the problem of unsupervised discovery
of perceptual primitives from time-varying sensor data. Such
data includes sensor readings collected by mobile robots, on-
body sensors, surveillance video, econometric data, and in-
dustrial diagnostic readings.

Perceptual primitives can be thought of as recurring pat-
terns or motifs of the data; that is, they are sets of subse-
quences with high similarity. The goal of this work is to dis-
cover the motifs and the corresponding occurrences in real-
valued, multivariate data. The problem is complicated be-
cause little is known about the motifs a priori. The number
of motifs, number of occurrences, their length, shape, scale,
and the location of each occurrence are all unknown. Further-
more, motifs may only appear similar after nonlinear warp-
ing, and the data may be corrupted by noise. Finally, any dis-
covery algorithm must be efficient, since even small data sets
may have anywhere from a few thousand to several hundred
thousand sensor readings. Thus, algorithms with quadratic
space or time complexity are unacceptable for real applica-
tions.

We are influenced by the philosophical position articulated
by Cohen et al. [2002]. In that work, the authors argue that

“most of the intellectual work in Al is done not by programs
but by their creators, and virtually all the work involved in
specifying the meanings of representations is done by people,
not programs.” They adopt Fred Dretske’s theory of mean-
ingful representation, positing that an internal state must both
indicate a condition and have the function of indicating that
condition. Applying this theory to robotics, Cohen et al. con-
clude that learning meaningful representations requires the
robot to analyze its sensor readings to learn abstractions that
inform action. Similarly, we seek to design an activity discov-
ery system that learns endogenously meaningful representa-
tions via unsupervised analysis of sensor data.

Our contributions are: (1) to extend the applicability of cur-
rent discovery algorithms, (2) to reduce the domain knowl-
edge required of users, and (3) to improve performance of
both discovery accuracy and real-world execution time. Ap-
plicability is extended by allowing discovery to work directly
with multidimensional data (see Section 4). Our approach
achieves two additional improvements by automatically esti-
mating the size of the neighborhood for each motif. First, the
user is no longer required to specify a parameter that is vi-
tal to locating correct motif occurrences but which is highly
dependent on the domain and the distance metric used to mea-
sure subsequence similarity. Second, automatic estimation al-
lows a different neighborhood size for each motif, something
that is extremely difficult to specify manually but which leads
to higher quality motifs in empirical tests (see Sections 4.1
and 6). We also present several evaluation methods for motif
discovery and discuss many of the semantic and application-
specific issues involved in comparing different approaches
(see Section 5).

2 Related Work

Activity recognition is a supervised learning problem related
to activity discovery. Approaches often use complex mod-
els, including hidden Markov models (HMMs), switching lin-
ear dynamic systems, and stochastic grammars [Starner et al.,
1998; Pavlovic et al., 2000; Minnen et al., 2003]. Bao and In-
tille [2004] provide a broad survey, comparing several meth-
ods for recognizing activities captured by on-body sensors.
In the bioinformatics community, researchers have devel-
oped many approaches for discovering recurring patterns that
correspond to binding sites in nucleotide sequences. MEME
uses expectation maximization (EM) to estimate the parame-
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ters of a probabilistic model for each motif [Bailey and Elkan,
1994]. GEMODA unifies several previous discovery meth-
ods, but the algorithm has an expected run time quadratic in
the size of the data [Jensen et al., 2006]. Finally, the greedy
EM method developed by Blekas et al. [2003] uses incremen-
tal mixture learning to discover motifs represented by proba-
bilistic models similar to MEME.

The data mining and artificial intelligence communities
have developed methods that work with real-valued se-
quences. PERUSE finds recurring patterns in multidimen-
sional data by estimating the parameters of an HMM-like
model [Oates, 2002]. Tanaka er al. [2005] apply princi-
pal component analysis (PCA) to multidimensional data, us-
ing a minimum description length criterion to select motifs
found in the principal component. Lin et al. [2002] use
hashing and lower-bounding to efficiently search for motifs.
Chiu et al. [2003] extend Lin ef al.’s approach by using ran-
dom projections to quickly find candidate motifs in noisier
data.

3 Motif Discovery via Random Projection

In this section, we focus on Chiu et al.’s probabilistic dis-
covery method [2003], discussing extensions to improve its
applicability, effectiveness, and real-world run time. The al-
gorithm operates in five steps (see Table 1 for a summary of
the user-specified parameters):

1. Extract all subsequences of a given length (n) from the
time series using a sliding window.

2. Convert each subsequence to a string using SAX with
length w and a unique symbols.

3. Build a collision matrix by comparing the strings via sev-
eral iterations of random projection.

4. Select motif seeds as the two subsequences correspond-
ing to the largest entry in the collision matrix.

5. Extract motifs by detecting other windows in the neigh-
borhood of each seed. The neighborhood is defined as
all sequences within a fixed distance (R) of either seed.

Subsequence Extraction: Subsequences are extracted using
a sliding window of user-specified length. Each window lo-
cation corresponds to one subsequence of the time series.

Subsequence Discretization: Each subsequence is dis-
cretized using the symbolic aggregate approximation (SAX)
method developed by Lin et al. [2003]. SAX is a local quan-
tization method that first computes a piecewise aggregate ap-
proximation (PAA) [Keogh er al., 2000] of the normalized
window data and then replaces each PAA segment with a
symbol. Normalization ensures that the subsequence has zero
mean and unit variance. PAA represents a sequence by divid-
ing it into equal length segments and then storing the mean
within each segment. The final SAX quantization is based
on precomputed breakpoints that divide the data range into
equiprobable regions assuming an underlying standard nor-
mal distribution. Each PAA segment is represented by the
symbol of the corresponding bin (see Figure 1).

As presented, SAX appears applicable only to univari-
ate data; however, one can use the algorithm with multi-
variate data by applying it to each dimension independently
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Figure 1: A real-valued, 1D signal is converted into a SAX string
(edacb) using five PAA segments (bounded by the vertical dotted
lines) and five SAX symbols.

and then concatenating the resulting strings. This leads to
a constant number of symbols and linear increase in string
length [Keogh, 2006].

Building the Collision Matrix: Once each subsequence has
been converted to a string, the similarity between each pair
is efficiently estimated using random projection. The key in-
sight is that while direct comparison is infeasible since there
are O(T?) pairs given T strings, similar sequences can be
identified in O(I-T') time using I iterations of random projec-
tion (see Figure 2). Each iteration involves selecting a random
subset of the string positions and building a hash table with
the corresponding characters. After all strings are hashed,
collisions (equivalent projections from different strings) are
taken as evidence of similarity and the corresponding posi-
tions in a collision matrix are incremented.

Using random projection to estimate similarity has several
important properties. First, it is effective in the presence of
shot noise. Even if some of the symbols are drastically differ-
ent, when random projection does not select these positions,
the string will still appear similar. Second, although the colli-
sion matrix could require O(7"?) time and space in the worst
case, realistic data sets produce a linear number of non-zero
entries leading to linear time and space requirements with a
sparse matrix implementation.. Furthermore, the complexity
can be controlled online by dynamically changing the num-
ber of string positions included in each iteration of random
projection [Keogh, 2006]. In a pathological data set, as when
the distance between all subsequences is effectively zero, the
matrix will still grow prohibitively large despite dynamic pro-
jection adaptation. When such a condition is detected, the al-
gorithm can switch to storing row sums rather than the full
matrix. Our experiments show that this simplification does
reduce accuracy, but the penalty may be tolerable to achieve
strict linear time and space complexity.

Selecting Seed Motif Occurrences: Once the collision ma-
trix is built, seed motif occurrences are extracted by locating
maximal entries. Each entry in the matrix corresponds to a
pair of subsequences that can be used to find the other oc-
currences of the motif. The distance between the seeds must
be less than R, they must not temporally overlap previously
identified occurrences, and they must not overlap each other
(called a trivial match). Search for additional motif seeds
terminates when the largest entry in the collision matrix is
smaller than the expected score, which can be estimated by
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Figure 2: (a) For each iteration of random projection, a subset of
string positions are selected (here, positions one and three). (b,c)
The remaining symbols are hashed, and (d) equivalent projections
are tallied in a collision matrix.

Equation 9 in [Chiu ef al., 2003].

Locating Additional Motif Occurrences: The final step
of the discovery algorithm is to locate all other occur-
rences of the motif identified by the seed locations. This
is achieved by scanning the original subsequences and se-
lecting those within the neighborhood of the seeds (i.e.,
min(d(w;, seedy), d(w;, seeds) < R, wherew; : i € {1..T'}
represents each of the original subsequences).

Discussion: In our experiments (see Section 6), Chiu’s ap-
proach works very well despite the erroneous assumption that
all motifs and all motif occurrences have the same length. It
is, however, quite sensitive to the various user-specified pa-
rameters summarized in Table 1. In particular, the neighbor-
hood radius, R, is vital for accurate motif discovery, yet it is
very difficult to specify since it depends on the domain, the
distance metric, the motif length, and the features selected for
processing.

4 Motif Discovery using Automatic
Neighborhood Estimation

Before discussing our approach for automatically estimating
a per-motif neighborhood radius, we address the issue of ap-
plying the discovery algorithm to multidimensional data.

As discussed previously, we can apply a univariate dis-
cretization algorithm to each dimension of a multidimen-
sional subsequence and concatenate the result. If this com-
bined string is used directly for random projection, however,
the space requirements will likely be quadratic in the length
of the input data. This increase is understandable because
projecting columns of the concatenated string is equivalent to
defining multidimensional similarity as a logical OR between
dimensions. Thus, two strings are deemed equivalent for a
particular iteration if they match in any dimension. Instead
we implement similarity using a logical AND by requiring

Table 1: User-Specified Parameters for Chiu’s Algorithm

Symbol | Description
n window length
w number of PAA segments (string length)
a SAX alphabet size
R radius of motif neighborhood

that all dimensions agree for a particular string position. This
drastically reduces the effective size of the collision matrix
and requires motifs to span all of the dimensions. To our
knowledge, no existing algorithm addresses the more general
problem of discovering motifs that exist in only a subset of
the dimensions.

4.1 Automatic Estimation of Motif-Specific
Neighborhoods

In order to address the theoretical and practical issues sur-
rounding a user-specified neighborhood radius, we have de-
veloped a method for automatically estimating an appropriate
value from data. Because the radius is not used during the
random projection phase, that part of the algorithm proceeds
as usual. Once a pair of motif seeds has been selected, the dis-
tance from each subsequence to the closer of the two seeds
is computed using the original, real-valued data. Next, the
smallest portion of the distances are selected for further anal-
ysis!. In the experiments presented below, the smallest 10%
are used based on the assumption that 10% is a very loose
upper bound on the number of motif occurrences. Our empir-
ical results show that this precise size of the portion only has
a minor impact on the final estimate (see Figure 6).

Finally, to determine the appropriate neighborhood radius,
we sort the distances and seek a “knee in the curve.” The
knee corresponds to the change from distances within the mo-
tif to those outside. This change is an inflection point of the
curve. Inflection points can only occur at a zero of the second
derivative, which corresponds to an optima of the first deriva-
tive. Thus, estimating the radius is equivalent to finding the
maxima of the derivative (see Figure 3), and because we can
directly compute the discrete first derivative, no assumptions
about the parametric form of the distance curve are necessary.

The inherent undersampling of the true distribution of mo-
tif occurrences causes the observed distances to be quite
noisy. Therefore, the mode is estimated as the weighted mean
of the derivative. This procedure is summarized below:

1. Calculate the minimum distance from each subse-
quence, w; : ¢ € {1..T}, to a motif seed:

d; = min(d(w;, seed1), d(w;, seeds))

Compute, vy, the k" order statistic for k = l—TO

Select the k£ smallest distances: d; : d; < vy

Sort the distances in ascending order

Calculate the discrete first derivative: d;, = d; 11 — d;
Treat the derivative as weighted votes for the best radius
and compute the expected value:

= di- (i+3)/(32, di)

'See [Cormen et al., 1997] for a linear time algorithm for finding
arbitrary order statistics.
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Figure 3: The radius of each motif neighborhood is estimated from
the distance between each potential member and the motif seeds
(left). Tt is equated with the inflection point, which is estimated by
the weighted mean of the derivative of the distances (center). The
result is automatic motif-specific neighborhood sizes (right).

5 Evaluation Methods

Before evaluating the performance of our approach, we must
discuss what it means for one set of discovered motifs to be
“better” than another set. As with activity recognition, the
efficacy of a discovery system depends on how the results
will be used. We have identified three broad approaches for
evaluating the quality of discovered motifs: comparison to
ground truth, primary utility, and interpretability.

5.1 Comparison to Ground Truth

When operating on well-understood data, domain experts
may be able to manually identify motifs. Thus, they can cre-
ate a set of ground truth labels that identify which motifs ex-
ist and where they occur in the data. A discovery system can
then be evaluated by comparing the discovered motifs to the
“correct” motifs identified by the experts in the same way that
supervised recognition systems are evaluated. This approach
is often used in the bioinformatic literature where algorithms
are tested against nucleotide data for which binding sites area
already known.

Although ground truth labels allow for a quantitative, ob-
jective measure of performance, evaluation is still compli-
cated by issues such as different kinds of errors, “bounded”
versus “fluent” activities, and different levels of error anal-
ysis (see [Minnen et al., 2006b] for a detailed discussion).
Furthermore, the number of discovered motifs may not be the
same as what was identified by a domain expert. Different er-
ror metrics may prefer methods that discover fewer but more
accurate motifs (high precision) or those that identify all of
the expected motifs but also find unlabeled motifs (high re-
call). Note that these additional motifs are neither correct nor
incorrect in general. They may be errors, or they may corre-
spond to real patterns in the data that were simply unexpected.

5.2 Primary Utility

The best measure of performance is the utility of the discov-
ered motifs in accomplishing a primary task. The assumption
here is that motifs are not discovered for their own sake but
rather in the service of a primary goal. For example, when
analyzing speech data, a discovery algorithm may identify
phonemes as motifs if a short temporal scale parameter is
specified. Speech recognition systems, however, are not typi-
cally evaluated based on their phoneme recognition rates. In-

stead, they are only scored according to their ability to accu-
rately detect higher-level structures such as words, phrases,
or sentences. The accuracy of phoneme-level motifs is not
important per se: they only matter insofar as the motifs rep-
resent useful features for improving word recognition rates.

5.3 Interpretability

Discovered motifs can also be qualitatively evaluated by pre-
senting them to a domain expert. The expert can score the
results by inspecting either the original data or some other
time-synchronized recording such as video or audio. Evalu-
ation may consist of manually checking that all occurrences
of a motif are semantically similar and that similar events are
not split across multiple motifs. The key difference between
this approach and a comparison to ground truth is that in-
terpretability is evaluated by inspecting the motifs that were
actually discovered, whereas ground truth labels encode an
expert’s a priori expectations.

5.4 Further Issues for Evaluation

The quality of the discovered motifs is not the only factor that
contributes to the value of a discovery algorithm. Other fac-
tors matter, such as run time characteristics (including asymp-
totic performance and expected real world run time), online
versus batch processing, and memory requirements. In addi-
tion, the overall usability of the system is a major component
of its value and is a fundamental source of motivation for our
approach. Although we will show that motif-specific neigh-
borhood size estimation improves results, even if the differ-
ence was negligible, automatic estimation would still be a
contribution. The benefit arises because automatic estimation
eases the demands on the user to understand the domain be-
fore using the discovery system and reduces the need to man-
ually explore the space. A similar idea is discussed in more
detail in [Keogh et al., 2004]; however, the compression-
based distance metric proposed in that work proved insuffi-
cient for detecting motifs in the test data.

6 Empirical Results

In this section, we evaluate our approach to motif discovery
and compare it to existing methods. We compare the discov-
ered motifs to known motifs (for the manually labeled exer-
cise data set), and we also visually present the motifs discov-
ered in public data sets that have been used for empirical eval-
uation by other researchers (the shuttle and fetal ECG data).

6.1 Exercise data

The exercise data set was captured from an exercise regime
composed of six different dumbbell exercises. An Xsens
MT?9 inertial motion sensor was attached to the subject’s wrist
by fitting it into a pouch sewn to the back of a thin glove. The
MT9 was sampled at 100Hz and three-axis accelerometer and
gyroscope readings were recorded. In total, approximately
27.5 minutes of data was captured over 32 sequences. For
the experiment, the data was resampled at 12.5Hz leading to
20,711 frames. The data contains six different exercises and
864 total repetitions (roughly 144 occurrences of each exer-
cise). Each frame is composed of the raw accelerometer and
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gyroscope readings leading to a six-dimensional feature vec-
tor.

Evaluation was performed by comparing the discovered
motifs to the hand labeled occurrences of each exercise. Both
discovery methods located extra motifs in addition to the six
exercises. We do not consider this to be an error, however,
as the extra motifs are legitimate clusters of similar subse-
quences. To quantify performance, we performed analysis
over events (individual occurrences) and frames (each of the
20,711 sensor readings). Accuracy, precision, and recall were
calculated in both cases considering only the six motifs that
most closely correspond to the exercises. For all experiments,
the dynamic time warping (DTW) distance was used with a
Sakoe-Chiba band of 10%, which follows standard practice
in the field [Ratanamahatana and Keogh, 2005].

Figure 4 shows the result of running Chiu’s algorithm over
a range of values for the neighborhood radius. The chart
shows performance for each of the six evaluation metrics
along the horizontal axis. For each metric, performance is
measured for 18 different radius values ranging from 8.0 to
14.0. Note that event-level accuracy, which we consider to be
the most important overall summary statistic, peaks at 61.1%
with a radius of 9.5, but it is very unstable as accuracy drops
to 39.1% with a radius of 9.75. This instability is due to the
use of a single neighborhood size across motifs when the mo-
tifs actually have different scales (see Figure 3).

The performance of our approach is shown in Figure 6. For
each of the six evaluation metrics, performance is presented
across a range of estimation portion sizes. Each portion size
corresponds to the percentage of the smallest distances used
to estimate the neighborhood size as explained in Section 4.1.
Although the portion size does impact overall performance,
the results are very stable between the relatively wide range
from 5.0% to 15.0%. For all of the experiments performed
in this section, the generic value of 10.0% was selected since
it is in the center of this stable range. Note that a value of
7.5% leads to superior results on this data set but will likely
fail to generalize as well since it is closer to the boundary of
the stable region.

Figure 5 shows a direct comparison of our proposed ap-
proach to Chiu’s algorithm on the exercise data. For Chiu’s
algorithm, a radius of 9.5 was used since it was found to
be the optimal choice after manually comparing a range of
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Figure 4: Performance of Chiu’s algorithm on the exercise data set
over a range of radii. Note the instability (for example, between the
radius values of 9.5 and 9.75 for event and frame-based accuracy).

Proposed Approach vs. Chiu's Algorithm

Figure 5: Comparison of the proposed approach to Chiu’s algo-
rithm for the exercise data showing superior performance of the pro-
posed approach across all six evaluation metrics.

values. The graph shows that the proposed approach outper-
forms the previous method according to all of the metrics. For
event accuracy, the proposed approach achieves 78.2% com-
pared to 61.1%, which is a 44% reduction in error. For com-
parison, another discovery method, which relies on global
discretization and a minimum description length criterion to
find motif seeds, achieves an event accuracy of 86.7% [Min-
nen et al., 2006al. This approach, however, requires consid-
erably more time to locate the motifs, and it includes a step
that is quadratic in the number of motif occurrences.

6.2 Shuttle and Fetal ECG Data

In order to demonstrate the generality of our approach, we
tested on two public data sets commonly used in the motif
discovery literature [Keogh and Folias, 2002]. In the case
of the shuttle telemetry data (see Figure 7), the algorithm dis-
covers a single motif with two occurrences. For the fetal ECG
data, the algorithm finds thirteen occurrences of the heartbeat
(see Figure 8). In both cases, the motif neighborhood size
was automatically estimated, and the results are qualitatively
equivalent to those presented in the literature (see, for exam-
ple, [Tanaka et al., 2005]).

7 Future Work

We are currently investigating several ways of extending our
approach. We are particularly interested in generalizing the
motif length parameter by incorporating automatic estima-
tion, allowing variable length occurrences within a motif, and

Performance vs. Proportion Size

Event Prec Event Recall Frama Acc

Frame Prec Frume Recall
Figure 6: Performance of the proposed approach on the exercise
data set showing stability over a relatively wide range of portion
sizes used to estimate the neighborhood (5%-15%).
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Figure 7: The motif discovered in the 6D shuttle data (the first three
dimensions shown). The vertical bars represent the location of the
two occurrences of the discovered motif.

m aw

detecting motifs at different temporal resolutions. In addi-
tion, we are extending our algorithm for discovering motifs
that only exist in a subset of the dimensions.

Our other major research focus is on learning higher-level
structure from the discovered motifs. Our long-term goal is to
learn “from signals to scripts”; that is, we wish the discovery
system to be able to take raw sensory data from an activity,
discover semantically meaningful primitives, and then learn
relationships between them that characterize the activity.

8 Conclusion

Discovering perceptual primitives from sensory data is a fun-
damental task for intelligent agents. Towards this goal, we
have presented an approach to real-valued, multivariate motif
discovery that incorporates automatic estimation of the size of
each motif neighborhood. Our approach improves on exist-
ing methods by removing a difficult-to-specify parameter and
improving overall accuracy. We demonstrated the efficacy of
our approach in multiple domains including activity discov-
ery from on-body accelerometer and gyroscope data where
the event-level error rate was reduced by 44% compared to a
leading method.
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