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Abstract

Many dynamic systems involve a number of enti-
ties that are largely independent of each other but
interact with each other via a subset of state vari-
ables. We present global/local dynamic models
(GLDMs) to capture these kinds of systems. In a
GLDM, the state of an entity is decomposed into a
globally influenced state that depends on other en-
tities, and a locally influenced state that depends
only on the entity itself. We present an inference
algorithm for GLDMs called global/local particle
filtering, that introduces the principle of reasoning
globally about global dynamics and locally about
local dynamics. We have applied GLDMs to an
asymmetric urban warfare environment, in which
enemy units form teams to attack important targets,
and the task is to detect such teams as they form.
Experimental results for this application show that
global/local particle filtering outperforms ordinary
particle filtering and factored particle filtering.

1 Introduction

Many systems involve a number of entities that interact with
each other. These entities may be largely independent of each
other, and only interact with other entities via a subset of state
variables. An example is a collection of companies, that in-
teract via market conditions. Each company may have inter-
nal state that is conditionally independent of other companies
given the market conditions. Another example is the spread
of an infectious disease through a population. Each person
may have an individual state, which corresponds to his or her
symptoms, and people will interact via their infectious states.

We present a type of model called global/local dynamic
models (GLDM:s) that allows the representation of these kinds
of systems. In a GLDM, the state of an entity is divided into
two subsets: a locally influenced state that only depends on
the state of the entity itself, and a globally influenced state
that depends globally on the states of all entities. In this way,
interactions between the entities are allowed, but much of the
dynamic model is isolated within individual entities. Obser-
vations are restricted to depend only on the state of individual
entities.
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One would hope that in such a system, it will be possi-
ble to exploit the largely independent nature of the entities
for efficient inference. We are concerned with the inference
task of monitoring, i.e. the computation of the probability
distribution over the state of the system at each point in time
given the history of observations up to that time point. One
popular approach to monitoring is particle filtering (PF) [Is-
ard and Blake, 1998], in which the state is estimated by a set
of particles. However in PF all the inference is performed
globally, and the largely local structure is not exploited. In
particular, when there are many entities the global state is
high-dimensional, and PF will not perform well. Factored
particle filtering [Ng et al., 2002] is an approach that attempts
to address this issue by decomposing particles into factors.
However, all the dynamics propagation and conditioning on
observations is still performed globally. As a result, factored
PF still has a hard time inferring the correct local state from
observations.

In global/local particle filtering, we introduce a simple in-
ference principle: reason globally about global dynamics, and
locally about local dynamics. Like in factored PF, particles
are decomposed into factors. Unlike factored PF, however,
only the dynamics propagation for globally influenced state is
performed globally. Dynamics propagation for locally influ-
enced state and conditioning on observations are performed
locally. This allows global/local PF to more accurately take
into account the observations when inferring the posterior dis-
tribution over the local state of each entity.

We present an application of our ideas to the task of mon-
itoring goal formation of enemy units in an asymmetric ur-
ban warfare environment. In this task, there are a number of
small, mobile enemy units moving around an urban environ-
ment. Sometimes the enemy units adopt the goal of attacking
one of a number of possible targets. The units communicate
with each other to form teams to attack a target. Our task is to
detect when such teams have been formed, given the move-
ments of the units and their communication.

We present experimental results for our application. Our
results show that global/local PF considerably outperforms
ordinary PF and factored PF at the task, and also outperforms
a method that performs all its inference locally. Our method
scales reasonably well both to situations with twenty units
and to those with twenty target locations.
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2 Global/local dynamic models

We are concerned with a dynamic system that evolves over
time. We begin by describing a hidden Markov model
(HMM)[Rabiner and Juang, 1986]. The state of the system at
time ¢ is represented by a variable X*. At each time ¢ there is
an observation represented by the variable O%. The dynamic
system is defined by a transition model P!(X¢|X*~1); an ob-
servation model P*(O?| X*); and a distribution over the initial
state P*(X!). We do not assume that the system is homoge-
neous, i.e. the transition and observation models may vary
from one time point to the next. The joint probability dis-
tribution over a sequence of states and observations is given
by

T T
P(z', 0!, ..., a7, 0") = P! (z!) H P(zt2th) H P(o'|x").
t=2 t=1

In a global/llocal dynamic model (GLDM), we let
FEq, ..., E, be a set of entities. We assume that the state of
the system can be decomposed into a product of states of the
individual entities. Each entity E; has a locally influenced
state U} and a globally influenced state V;'. We denote the
pair (Uf, V') by X! and call it the local state of entity i at
time ¢. Also the tuple (U?, ..., U!) will be denoted by U* and
(Vi ..., V') by V% and the variable representing the entire
state by X?. Note that even the globally influenced state is
called local state, because it pertains to a single entity. To
summarize, the state space decomposes as

Xt = (X}, .., X5 = (U}, VE . UL VE = (U VY.

n? n

In the transition model, the locally influenced state is con-
strained to depend only on the previous state of the individual
entity, and the current globally influenced state of the entity.
No restriction is made on the globally influenced state, and
no decomposition of the distribution of that part of the state
is assumed. Thus the transition model decomposes into

PHXIX!Y) = PUVIXIY T PHUH X V).
=1

Note that P} (Uf| X}, Vi!) may be different for different en-
tities F;.

The observation decomposes into a local observation O}
of each entity F; that depends only on the local state of that
entity. Thus the observation model decomposes into

PH(0'X") = [T P (051x))
i=1

Just as the state of a HMM can be factored into the prod-
uct of variables to produce a dynamic Bayesian network
(DBN) [Dean and Kanazawa, 1989], so all the parts of a
GLDM can be factored into variables. Thus the locally in-
fluenced state Uf is factored into variables U; 1, ..., U; ,, and
similarly for the globally influenced state, and the local obser-
vation. The factoring may be different for different entities.
The probabilistic models are factored into the product of con-
ditional probabilities of variables given their parents in the

usual way. The restrictions on the model are extended nat-
urally from the non-factored case. The parents of a locally
influenced variable may only be local variables of the same
entity at the previous or current time step. The parents of a
globally influenced variable may be any variable at the pre-
vious time step, and any globally influenced variable at the
current time step. The parents of a local observation variable
may be any locally or globally influenced variable of the same
entity at the current time step.

Figure 1: DBN representation of two-entity GLDM.

A GLDM can itself be viewed as a DBN, which is factored
into variables representing the local states of individual enti-
ties, and the observations. This is the case even if the local
states and observations are not themselves factored, as dis-
cussed in the previous paragraph. Such a DBN, for two enti-
ties, is shown in Figure 1. Note that there is an edge from V!
to Vf. No assumption is made that the V; are conditionally
independent.

For an example of a GLDM, consider a stock tracking and
prediction application, where each entity may be a particu-
lar company. The locally influenced state may be the inter-
nal state of the company, while the globally influenced state
may be the market conditions faced by the company. At each
time point, the internal state of the company depends only
on its previous internal state and on the market conditions it
faces, whereas the market conditions are all dependent on all
the previous market conditions. The observations may be the
stock prices of individual companies.

For another example, consider an application of tracking
the spread of an infectious disease through a population. Here
the entities may be people, the locally influenced state may
be the symptoms of the person, while the globally influenced
state may be the stage of infection, if any, of the person. The
transition model for the globally influenced state may specify
that the infection stage of a person at time ¢ depends on the
infection stages at time ¢ — 1 of the people with whom the
first person comes into contact at time .

For a third example, which will be expanded on in Sec-
tion 4, consider the task of monitoring enemy units moving
around an urban environment. From time to time the units
communicate and adopt goals of attacking possible targets.
Here the locally influenced state of an entity may consist of
its current position, while the globally influenced state is its
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goal. When a unit communicates with another unit, its goal
becomes dependent on the goal and position of the other unit
as well as itself. A unit’s position, however, depends only on
its previous position and its current goal.

Let us consider the expressive power of GLDMs. Trivially
they can capture any HMM or DBN, since we can have a sys-
tem with only one entity. It is more interesting to ask what can
naturally be captured using the structure of the model. One
question arises regarding the representation of a global state
that applies to all entities, since each state in our represen-
tation is a local state of a particular entity. Global state can
be captured in a GLDM by introducing an additional entity
representing the global state, and making its state globally in-
fluenced. In the stocks example, there may be an entity repre-
senting general economic conditions, that influences the mar-
ket conditions faced by each company. However, this is only
legal if the global state does not influence locally influenced
states (e.g. the internal states of the companies). Another
question involves the representation of observations. There
are no observations that depend on the state of more than one
entity. We will see a way to get around this restriction in our
application in Section 4. The reason for this restriction is that
it will allow us, when performing inference as described in
Section 3.1, to condition on observations locally.

GLDMs bear a superficial resemblance to factorial
HMMs [Ghahramani and Jordan, 1997]. In a factorial HMM,
there are a number of hidden state sequences, each of which
evolves independently. The observation depends jointly on
all the hidden states. In fact GLDMs and factorial HMMs are
quite different. Factorial HMMs cannot easily be modeled as
GLDMs, because the observation depends on the joint state
of all entities and not on the hidden state of a single entity. On
the other hand, in factorial HMMs all sequences evolve inde-
pendently, so there is no globally influenced state; the state of
each entity is completely locally influenced.

3 Inference

There are several inference tasks on dynamic systems, includ-
ing diagnosing the past, predicting the future, and keeping
track of the current state. In this paper, we will focus on the
latter task, known variously as monitoring, filtering and state
estimation. The filtering task is to compute, at each time point
t, P(Xt|o!,...,0"), where o', ..., o' is the sequence of obser-
vations obtained up to time t. The quantity P(X*|o!, ..., 0")
is known as the belief state at time ¢. In principle, this can be
computed simply using Bayesian updating:

P(X*o?, ...,0") o<
Yoo P(@t ol L o T P X et ) P (0! XY).

In practice this is very difficult because the state space may
be very large. Even if the transition and observation models
are represented in factored form as in a DBN, the belief state
cannot be decomposed and must be represented as an explicit
joint distribution over the state variables, which is exponen-
tial in the number of variables. The same holds for GLDMs.
After a certain amount of time, the local states of all the en-
tities become dependent on each other, and performing the
filtering exactly requires a belief state which is a joint proba-

bility distribution over the local states of all entities. This is
exponential in the number of entities.

Therefore approximate filtering algorithms are used. One
standard algorithm for DBNs is the Boyen-Koller algorithm
(BK) [Boyen and Koller, 1998]. In this algorithm, the vari-
ables of the DBN are partitioned into clusters. In a GLDM,
each cluster will be the locally and globally influenced state
of one entity. An approximate belief state P is maintained as

a product of distributions 15Z over the clusters, i.e.
n
P(X!|o',...,0") = HPi(Xﬂol, y0b).
i=1

In principle, the method works by beginning with the
factored distributions P;(X!'|o',...,0'"1), multiplying
them to obtain P(X'~!|o!,...,0""1), propagating through
the dynamics and conditioning on the observation to ob-
tain P(X'|o’,...,0!), and then marginalizng onto the fac-
tors to obtain P;(Xf|o',...,0!). The joint distributions
P(X! 10!, ...,0t1) and P(X'|o',...,0!) are not rep-
resented explicitly.  Instead, the factored distributions
Pi(X!lo!, ..., 0') are computed more efficiently. One way to
do that is to create a junction tree representing two time slices
of the DBN, in which each factor is contained in a clique at
both the previous and current time points. In practice, even
though this method often results in more efficient inference
than the exact method, sometimes the cliques of the junc-
tion tree are too large and the method is still too expensive to
be practical. This may particularly be a problem with some
GLDMs, because no restrictions are placed on the way glob-
ally influenced variables evolve.

An alternative approach to approximate inference is to use
particle filtering (PF) [Isard and Blake, 1998]. In PF, the joint
distribution over the state variables is approximated by a set
of samples, or particles as they are called. Each particle con-
tains an assignment of values to the state variables. The prob-
ability of any property of the state is the fraction of particles
that have that property. The basic steps of PF for a GLDM
are as follows.

Begin with M particles x!~ 11, . x!=1M,

Form =1 to M:
Propagate:
Sample v/ from P!(V![x!=1m).
For each entity E;:
Sample @™ from P{(U!|z! ™5™ 5™,

e

Condition:
~t,
wim — [y P (of];™).
Resample:
For¢ =1to M:

Choose x** from x>, ..., %M with probability
that %™ is chosen being proportional to w,,.

The difficulty with PF for this problem is that the variance
of the method is high and the number of particles required
for a good approximation generally grows exponentially with
the dimensionality of the problem. Therefore this approach
does not scale well with the number of entities. An obser-
vation is that the different entities are somewhat independent
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of each other. The different entities interact with each other
only through the globally influenced state. If these interac-
tions are relatively weak, we might be able to take advantage
of that fact. We might expect that instead of maintaining par-
ticles that assign values to all variables for all units, we can
maintain local particles that only assign values to variables
belonging to a single unit. This is the idea behind factored
particle filtering [Ng et al., 2002]. In factored particle filter-
ing, the state variables are divided into factors. The joint dis-
tribution over all state variables is approximated by the prod-
uct of marginal distributions over the factors, as in BK. Fur-
thermore, the marginal factor distributions are approximated
by a set of factored particles. Factored PF introduces two
new steps into the PF process described above. The first joins
factored particles together to produce global particles. The
second projects global particles back down onto the factors.
In between these two steps, all the usual steps of PF are per-
formed. In particular, propagating through the dynamics and
conditioning on the observations are done with global parti-
cles.

For this reason, ordinary factored PF is also not ideal for
our situation. The problem is that in any global particle, it is
highly likely that there will be some entities whose local state
is far from the truth. Therefore, it will often be the case that
for all global particles in the set of particles, the probability
of the observation will be extremely low. Even if one entity’s
local state in the particle is good, other entities’ states may be
bad and so the observation will not confirm the first entity’s
state. As a result, inference about entities’ true local states
based on the observations will be poor.

3.1 Global/Local Particle Filtering

In order to allow observations about an entity to more effec-
tively condition its local state, we introduce global/local par-
ticle filtering. Global/local PF is based on the principle of
reasoning globally about global dynamics and locally about
local dynamics. The method involves a simple change to
factored PF, but one that makes a big difference. Instead of
performing all the dynamics propagation globally, and con-
ditioning on observations globally, and only then projecting
down onto the individual factors, we project immediately af-
ter propagating the dynamics for the globally influenced vari-
ables. Propagation of dynamics for locally influenced vari-
ables and conditioning on observations are performed locally.

The global/local PF process is as follows:
=11 i-1M

Begin with M factored particles x
for each entity E;.

Join the factored particles for different entities together
to produce M global particles. (For details on the join
process see [Ng ef al., 2002]).

Form =1to M:

Propagate globally:
Sample v from P*(Vt|x!=1m),
Project:

Project (x'~ 1™ ¥™) down to
(z!75™ 5™ for each entity F;.
For each entity E;:

Form =1to M:
Propagate locally:

Sample @™ from P!(U!|z! ™5™ 5™,
Condition:
w = [Ty PHOHE™).
Resample:
For/{=1to M:
Choose xﬁ’e from &/ #M | with probability

i sy

that fﬁ’m is chosen being proportional to w,, .

Why does this method work? The key point is that in
order for local propagation and conditioning to be success-
ful, we don’t need to have exactly the right joint distribution
over all the globally influenced states. It is enough that the
marginal distributions over individual entities’ globally influ-
enced states is approximately correct. If this happens, when
we condition the local state of each entity on the local ob-
servation, we will produce an approximately correct poste-
rior distribution over the local state. This is much easier to
acheive than producing an approximately correct joint poste-
rior distribution.

It is important to note that something is lost by propagat-
ing and conditioning locally. We lose the ability to reason
from observations of one entity to another entity. For exam-
ple, in the domain of detecting goals of enemy units, we are
unable to reason about the fact that since unit 1 is moving
towards target 4, and we have some reason to believe that
unit 1 and unit 3 are on a team, then it is likely that unit 3
has a goal of attacking target 4. We do on the other hand
successfully reason about the interaction between the units
when reasoning globally, so we may infer that since unit 1
and unit 3 appear to have formed a team, they are both a pri-
ori likely to be attacking target 4. We are just unable to use
the observation about unit 1 to confirm our beliefs about unit
3. The hope is that the inability to perform this type of rea-
soning is outweighed by the fact that inferences about indi-
vidual units from their own observations are more accurate.
The success of the global/local reasoning method will depend
on this tradeoff, and how important this type of reasoning is
in a particular application.

4 Application: Monitoring dynamic goals of
enemy units

We have applied GLDMs to monitoring the dynamic goals
of enemy units in an asymmetric urban warfare environment.
In this scenario, units move about on a streetmap, and adopt
goals of attacking one of a number of target locations. The
motion of units depends on their goals; a unit with a goal of
attacking a target will generally move in the direction of the
target.

The goals of units can change dynamically. A unit may
adopt a new goal in one of three ways: two units communi-
cate and jointly agree to adopt a new goal; two units com-
municate and one invites the other to adopt its goal; or one
unit spontaneously decides to adopt a goal. In all cases, the
goal adoption decision is influenced by the proximity of the
units to the goal; a unit will prefer to choose to attack a closer
target.

Our task is to detect threats such as ambushes to targets,
as soon as possible after they are formed. Two sources of
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evidence can be used. The first is a noisy sensor of the cur-
rent position of each unit. The second is a noisy indication
of whether or not a unit communicates. Communication pro-
vides some indication that two units are forming a team. This
is a weak inference, however. Even when a unit communi-
cates, usually the communication will not be related to goal
adoption.

We model this scenario with a GLDM in which each entity
corresponds to a unit. Since a unit’s movement depends only
on its own goal, the position of an entity is a locally influ-
enced state. Units interact with other units in adopting goals,
therefore the goal of a unit is a globally influenced state. In
the dynamic model, the new goal of a unit depends on its pre-
vious goal and position, and the previous goal and position of
a unit with which it communicates. Since this could be any
unit, it depends on all the units’ goals and positions.

The positional observation of each unit is a local obser-
vation. Whether or not two units communicate, however, de-
pends on the goals and positions of both units, so the commu-
nication observations cannot be adequately captured in our
framework as local observations. To get around this issue,
we use the technique of evidence reversal [Kanazawa et al.,
1995]. Instead of having the observation depend on the state,
we condition the transition model on the observation. That
is, for each possible configuration of the communication sen-
sors, we have a different transition model. This is allowed
since we have not assumed that the dynamic model is ho-
mogeneous. In the inference process, we can sample from
this conditioned dynamic model as follows: We first sample
a configuration of actual communications given the noisy ob-
servations. We then sample which pairs of units communicate
from the list of communicating units. For each pair of com-
municating units, we determine whether they jointly adopt a
new goal or one joins the other’s team, based on their previ-
ous goals and their proximity to the targets. Then, for each
unit whose goal has not been determined by communication,
we determine whether it spontaneously adopts a new goal.

S Experiments

We tested the global/local particle filtering algorithm on sim-
ulated data generated from the model, and compared its per-
formance to ordinary PF and factored PF. We also constructed
an algorithm in which all interactions between units are ig-
nored and all inference is performed locally, and compared
our algorithm to that.

Each experiment consisted of one run of the system, with
units moving about and choosing targets. Each run of the sys-
tem lasted 100 time steps. A threat, which was defined to be
four units sharing a common goal, was considered to be suc-
cessfully detected if it was discovered within 12 time steps
of its development. This was enough time for each unit to
reach two intersections on average, and was considered to be
the minimum amount of time in which our system could rea-
sonably be expected to detect goal-directed behavior. If the
threat was not detected within that time, the result was a false
negative. If a threat was reported when none was present,
the result was a false positive. For each experiment, we ran
500 runs and counted the number of true positives (TP), false
positives (FP), and false negatives (FN). Our metrics are pre-

cision, which is TPLFP> 1€ the fraction of threats reported

by the algorithm that were really threats, and recall, which
is m%, i.e. the fraction of real threats caught by the al-
gorithm. One parameter of the algorithm is the threshold of
probability at which a threat is reported. We varied this prob-
ability in each experiment, thereby trading off precision for
recall. In all experiments, we adjusted the number of particles
allocated to each algorithm so that they all had approximately
the same running time.

Figure 2(a) shows the precision-recall curves for each
method for experiments with ten units and six target loca-
tions. The graph shows the recall that could be achieved
for different levels of precision. Also shown for reference is
the performance of random guessing. While all methods do
better than random guessing, our method does best, getting
much higher precision while still achieving high recall. At
one point it achieves 56% precision with 87% recall. This is
quite good performance considering the difficulty of the task.
When there are a number of units moving about the map, it
is quite likely that at some point in time several units will
appear to be moving towards a target, even though in actual
fact they have no intent of attacking it. Thus if we wish to
achieve a high recall, we cannot avoid having a relatively low
precision. Interestingly, factored PF performs very poorly,
indicating that it is not simply the factoring that leads to the
good performance of our method, but reasoning locally about
unit positions.  Also, note the relatively poor performance
of the method that does all the reasoning locally. This shows
that the global part of global/local PF is important.

Figure 2(b) shows how the algorithms scale up to a situa-
tion with 20 units. The task is more difficult, because there is
more opportunity for units to appear to be heading towards a
goal in the course of their business. Again our method does
best, at one point achieving 57% precision with 76% recall.
Figure 2(c) shows the performance when the number of tar-
gets is increased to 20. This is a much harder task, because
some targets are close to each other and it is difficult to iden-
tify a unit’s goals. Nevertheless, our method is able to achieve
relatively good performance, getting 55% precision with 51%
recall.

Figure 3: Comparison of performance without different evi-
dence.

Figure 3 assesses the relative importance of each of the two
sources of evidence, observations about the position of units,
and about communications. We see that evidence from posi-
tional observations is more important, but taking communica-
tions into account is also useful. Surprisingly, the method that
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Figure 2: Comparison of methods: (a) 10 units, 6 targets; (b) 20 units, 6 targets; (c) 10 units, 20 targets.

does not take into account communication evidence performs
better than the method that performs all the inference locally.
The reason may be that although it does not take into account
evidence pertaining to unit interactions, it still reasons about
them and accounts for their possibility.

6 Conclusion

Many situations involve a number of entities that are largely
independent of each other and only interact via a portion of
their state. We have presented global/local dynamic mod-
els to represent these kinds of situation. We have presented
global/local particle filtering, a monitoring algorithm based
on the principle of reasoning globally about global dynamics
and locally about local dynamics. We have applied our ideas
to monitoring the goals of units in an urban warfare environ-
ment. We have shown experimentally that GLPF performs
better than ordinary PF and other competitors on this applica-
tion.

In future, it is important to explore whether global/local PF
has benefits in other applications. We wish to explore ways
in which GLDMs can be exploited for other types of infer-
ence algorithms. We would also like to extend our applica-
tion to allow the number of units to change, and units to split
or merge over time.
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