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Abstract 
Real-time monitoring calls for decision making 
capabilities in reaction to observed events. As­
sociative models provide efficiency by match­
ing the observed situation to a recorded pattern 
equipped with an accurate decision. We rely on 
a decision tree accounting for the context and 
temporal chronicles expressing dynamic pat­
terns. In highly reactive domains, i.e. when ac­
tions get as frequent as observations, the deci­
sion must anticipate the complete recognition 
of a pattern, comparing possible evolutions. 
This paper focuses on the on-line decision pro­
cess, a game against Nature in the general case: 
a timed game automaton gathers the possible 
next steps with associated goodness values, and 
uses an opportunistic algorithm to compute a 
temporally expressive decision, maximizing its 
utility, i.e. the chances of "winning". 

1 Introduction 
Monitoring and supervision deal with dynamic systems 
(or artefacts), that evolve across time. A (human or au­
tomated) agent is in charge of observing (through sen­
sors) what happens, recognizing the typical behaviour, 
and acting towards the artefact (through activators), for 
instance to put it back into a normal state, or to process 
some safety procedure. This on-line process needs real-
time efficiency, and is reactive in the sense that actions 
are taken according to observations. 

A model-based approach [Dvorak and Kuipcrs, 1989] 
has been introduced to deal with this problem, first com­
puting off-line faulty models of the artefact that are 
used on-line as associative models matched with incom­
ing observations. Next steps are predicted from the hy­
pothetical current situation, and incoming observations 
are checked to confirm the hypothesis. But time is only 
implicit, through successive states in a dynamic decision 
tree, which is not expressive enough in realistic domains. 
Some approaches [Nejdl and Gamper, 1994] manage to 
attach a temporal qualification to behavioral modes, us­
ing a rich set of temporal relations. More appealing are 
temporal chronicle recognition systems [Dousson et a/., 
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1993], where temporal constraint networks are used as 
associative models. 

But all these approaches deal with systems in which 
an action is the consequence of a complete and fully rec­
ognized sequence of observed events. This paper deals 
with an explicit temporal framework in highly reactive 
domains, in which actions and observations continuously 
respond to each other. We extend the temporal chronicle 
formalism to mix events representing observations from 
the artefact and the agent actions, and equip them with 
goodness values expressing preferences among them. We 
also use a decision tree such as the one designed in 
[Coradeschi et a/., 1996], but here only as a preprocessing 
step before decision making, to merely branch the cur­
rent static context onto a subset of relevant chronicles, 
therefore restricting the number of candidate patterns. 

The agent has now a larger choice of decisions to take 
at any time. The goal is not to recognize a bad situation 
and put the system back into a good one, but to con­
tinuously take decisions that anticipate bad situations 
and push the system into better ones, which is basically 
a game playing process. For that we rely on the timed 
game automaton model [Asarin et a/., 1995] that is best 
suited for continuously changing systems. Next transi­
tions are computed from the set of candidate patterns, 
inheriting corresponding goodness values. Then our new 
algorithm PLAY-AUTOMAT chooses a transition to select 
and a correct time to do so, using a least-commitment 
and opportunistic strategy, and following a formal deci­
sion policy based on a definition of the utility of each 
possible decision: we prove that our process is optimal 
in that it always takes the decision with highest utility. 

Section 2 recalls the basic models and global archi­
tecture described in [Coradeschi and Vidal, 1998]. Our 
approach is illustrated through a specific example in the 
area of one-to-one aircraft combat in Section 3. Then 
Section 4 focuses on the very contribution of this paper, 
namely the new algorithm for on-line decision making. 

2 Basic models and global process 
2.1 The basic decision-tree approach 
In [Coradeschi et o/., 1996], the agent is equipped with a 
context (i.e. a set of propositions describing the current 
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state of the world), arid a decision tree. To each leaf of 
the tree is attached a decision (atomic action or sequence 
of actions). At each step of the simulation process the 
context is updated with new events received and inter­
preted. Then the decision tree is visited down, proposi­
tions in the context being matched with the conditions 
appearing at each node, until a leaf is reached. Each 
action has a priority value that changes dynamically, so 
that in the cases where multiple leaves are applicable and 
actions are mutually exclusive, the best one is selected. 
It is then sent to the simulator, which will update the 
context, and so forth. 

This mechanism is highly reactive and efficient, and 
agent behaviours are easy to specify and test. It is how­
ever difficult to code in it reactions to sequences of tem­
porally related events. 

2.2 Possible evolutions as chronicles 
In the temporal system IxTeT [Dousson et a/., 1993] 
used for dynamic situation assessment, temporal evo­
lutions are taken into account in the shape of chroni­
cles, that are Temporal Constraint Networks [Schwalb 
and Dechter, 1997] on which classical constraint propa­
gation techniques can be run: time-points represent in­
stantaneous changes or begin/end points of intervals of 
time over which a fluent is true, and constraints between 
them are precedences labelled by arithmetic intervals of 
possible values, allowing to express dates of events and 
durations of fluents. Then chronicles are matched with 
incoming events, dynamically maintaining the set of can­
didates. As soon as a chronicle is fully recognized, an 
action written in the chronicle description is triggered. 

This model is well-suited for dynamic applications 
with temporally expressive behaviours like nuclear plant 
or gas turbine monitoring [Milne et a/., 1994], where su­
pervision is the key word. As an associative model, it 
provides high on-line efficiency; anyway, two shortcom­
ings compelled us to improve it somehow. 

• Reactivity can be considered as being weak in Ix­
TeT, since an action only follows an ordered set of 
observations. Therefore we chose to extend the ini­
tial formalism to mix events representing both ob­
servations from the artefact and the agent actions, 
which in turn enforces a corresponding distinction 
between two types of constraints between events, as 
in [Vidal and Fargier, 1997]. A numerical constraint 
between e1 and e2 (with e1 before e2) will be said 
to be controllable iff e-2 is an action, and contingent 
iff e-2 is an observation. 

• The second restriction is in the classical strict dis­
tinction between normal and abnormal behaviours: 
the agent here has a large choice of actions at any 
time that can push the system into various "more or 
less good" situations. Therefore we chose to extend 
the IxTeT approach by adding to each chronicle a 
goodness value in the range [-1,1], -1 meaning the 
worst possible case (e.g. breakdown) at the chroni­
cle completion, 1 a behaviour that fully entails the 

system specifications, 0 a situation that keeps bal­
anced between eventual failure or success. 

2.3 Timed game automata 
The model we present here is inspired by recent advances 
[Asarin et a/., 1995] on timed automata models [Alur and 
Dill, 1994], used for describing the dynamic behaviour 
of a system. It consists in equipping a finite-state au­
tomaton with time, allowing to consider cases in which 
a system can remain in a state during some time t be­
fore taking the next transition. This is made by adding 
continuous variables called clocks that are reset when 
some transitions are taken, then grow uniformly until 
they are checked on a later transition through some con­
dition (guard) that must be true for enabling it. 

Such tools are well-suited for continuous real-time 
games: for each player, transitions are either activated 
or received, and some states are designated as wimiing 
ones. That extends the discrete game approach [Pearl, 
1984], with the following pros: (1) there are no "turns" 
and the adversary need not wait for the player's next 
move, and (2) each player not only chooses a transition, 
but also the delay to wait before taking it. 

This is especially relevant for controlling reactive sys­
tems in which one has to "play against Nature", the 
goal being to synthesize a "safe" controller, i.e. add con­
ditions to compel the automaton to reach winning states 
for the agent. For our purpose we only need a restricted 
model: we do not need to build a complete automaton 
but we just compute the next states, transferring the 
goodness values from corresponding chronicles so as to 
compare them and choose the "best" one. That leads to 
the following restricted game automata definition. 
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2.4 Global architecture 
We have already presented [Coradeschi and Vidal, 1998] 
our associative model mixing a decision tree and chron­
icles, simply replacing actions in leaves by sets of chron­
icles, as a simple way to add context handling to the 
chronicle model. Then our global process will be to (1) 
determine the set of active candidate chronicles visit­
ing down the decision tree, (2) build the corresponding 
automaton, extracting from the chronicles the possible 



next states and transitions to them, and (3) select the 
best decision to make NOW by "playing" the automaton. 
This is illustrated through figure 1. 

Figure 1: The new proposed architecture 

The global algorithm and its two first steps will not 
be reported here (see [Coradeschi and Vidal, 1998]), but 
the following example should give the reader an insight 
into it. Then we will focus on the decision-making step 
(3), namely the algorithm PL AY-AUTOMAT. 

3 An example in the air-combat domain 
The air-combat domain is a highly reactive domain 
where decisions are made under real-time constraints. 
An automated pilot should be able to predict his oppo­
nent's next moves and select the action that minimizes 
possible threats and maximizes chances of success. Pre­
dicting other agents behaviours is a hard task but some 
typical patterns have been developed by the military to 
help in identifying manoeuvres of the opponents. 

We have built a simplified example of a one-to-one 
beyond visual range combat situation (the aircrafts can 
see each other just with board instrumentation). Fig­
ure 2 shows the chronicles corresponding to most plau­
sible typical patterns, where events labelled with a are 
the automated pilot own actions and the ones with b 
are the opponent observed actions. We start with a and 
b flying towards each other, and a sees b moving right. 
Two possible guesses for a arc that b will continue es­
caping or turn back for an intercept. Then a can move 
left (evolution Q1), making b moving left as well. The 
resulting situation gives no special advantage for any of 
the pilots. Otherwise a may accelerate, then both pi­
lots turn left for an intercept (Q2), which would put a 
into a better situation as he can more easily attack on 
the side, or he may observe b escaping by moving right 
(Q3), which is even better. Q4 is also a good situation 
as a does not do anything and b escapes. But not do­
ing anything might as well be bad, if b moves left to 

intercept (Q6). Precise delays (here in seconds) are also 
added to the constraints. 

Figure 2: The temporal chronicles of the example 

Then figure 3 shows the result of step (2), the algo­
rithm Build-automat. One should notice the correspon­
dence between durations of controllable/contingent con­
straints in chronicles and guards on activated/received 
transitions in the automaton. Receiving the event bm r 
puts the pilot into a state in which there are four posible 
next events given by the five chronicle candidates of 
figure 2. For each one a new state is added together with 
the transition to this state, labeled with comput­
ing the guard from the corresponding chronicle. Good­
ness values are transferred as well, with here the case 
where an event belongs to two different chroni­
cles, so one keeps the min of the goodness values. 

Figure 3: The game automaton of the example 

4 On-line decision making 
4.1 Decision policy: basic definitions 
Before presenting the algorithm that computes an accu­
rate decision from the built automaton, wes first define 
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our decision policy, in the spirit of studies carried on 
in qualitative decision theory (see e.g. [Boutilier, 1994]). 
Goodness values provide preferences over consequences 
of the decisions, but a decision might raise distinct con­
sequences. In this uncertain framework the utility of a 
decision must be defined as a function over the utilities 
(the goodness values) of all the possible consequences. 
For that we rely on a choice criterion similar to the clas­
sical pessimistic/cautious Wald criterion, that suits well 
our illustrative application area. Of course in other do­
mains less strict criteria balancing between the risk and 
the expected outcome may be preferred. 
Definit ion 4.1 The utility of a decision is the 
lowest utility of all its possible consequences, i.e. the low­
est goodness value of all the possible states in which the 
system might get after the decision is taken. 

The decision strategy amounts to choose the decision 
with highest utility, which is consistent with min-max 
game strategies [Pearl, 1984]. We will now give our al­
gorithm and prove that it obeys the given criterion, but 
before that we need some additional definitions. 
Definit ion 4.2 A selected transition r is said to be en­
sured iff the system cannot take another one. 
On the contrary, r is said to be threatened by r' (the 
threat,) if the system might take r' instead of r (obvi­
ously T ' can only be a received transition). 
We use the same terms for the corresponding decision s 
of selecting the transition t. 

4.2 The game-based decision procedure 
Our procedure has been inspired by classical controller 
synthesis algorithms [Asarin et a/., 1995], but highly sim­
plified in our case of "one step ahead" automata with 
goodness values. One needs first sorting the next transi­
tions starting from the one with highest goodness value, 
and then consider them one by one. 

1) If the current best transition r is a received one, 
the decision is to wait for its labelling event to occur. 
We watch out if there is a worse received transition 
r' possibly threatening r by occurring meanwhile (test 

. Ensuring r amounts 
to deciding to wait only while T' cannot occur: r can 
hence be ensured iff lower _ . I f 
not, this selection is forgotten and one tries next item in 
RANKED (Goto 0). Otherwise the waiting delay is set to 

, and a new transition is added, labelled 
by the special event wait, that will be taken for sure 
just before the delay has elapsed (the guard therefore 
exactly equals delay", which means the atomic dura­
tion immediately lower than delay). Then there are 
two possibilities; in the worst case, nothing happens, the 
transition wait is taken after delay" has elapsed, and 
a new automaton accounting for this elapsed time is re­
computed in the next stage of the global algorithm; or in 
the lucky case where the event labelling r occurs before 
the delay has elapsed, then r is taken. 

The algorithm has been slightly simplified for the sake 
of clarity: it should take into account cases with several 

threats: the delay to wait is actually the min of the 
corresponding delays. 

Last, when there is no threat r' the decision is just 
to wait for r to be taken, but actually no more than 
MaxDelay, which corresponds to the time after which a 
better activated transition that had been put aside may 
become releasable, which is explained herebelow. 

2) In the case where r is an activated transition, 
things get simpler, but r still needs to be ensured. If the 
action can be released now (lower(g(r)) = 0), then it 
is released is the action label of r). If not, the test 
about a possible threat is now on the value lower (g( r ) ) 
instead of upper (r being an activated transition 
it can be released as soon as lower(g(r)) has elapsed). 
Here again, if r cannot be ensured, then this selection 
is put aside and the next one tried. But in the case 
where the decision ends up being wait, as soon as the 
action a(r) becomes releasable, it will not be threat­
ened anymore (lower (g(r ) ) equalling 0), and it should 
be reconsidered as a possible decision. For that we use 
MaxDelay that keeps track of the min of the times after 
which an action becomes releasable, so as to restart the 
algorithm at that time. 

This algorithm is illustrated through the example of 
figure 3. In the first iteration, q4 is the best transition 
(maximal goodness value 0.7), but it is threatened by 
the transition to . Ensuring the selected transition 
amounts to wait no longer than 1. The new wait tran­
sition added to the automaton appears in figure 4. We 
show there a possible improvement of the algorithm (not 
developped here for the sake of clarity) where one not 
only adds this transition, but at the same stage computes 
the next states from which should be the same as 
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in q0 recomputed guards according to the delay. 
The two activated transitions from qo are in dashed lines 
because they will not be taken at this stage, trying to 
opportunistically let occur first. Next, falling into 
qwait} the choice would be forgotten since it can 
no longer be ensured, and the next best transition aacc 
would be selected since it can be released at once. This 
improvement, which amounts to consider two successive 
decision steps in one stage, would end up with an ex­
pressive decision sounding like wait no longer than one 
second, then accelerate, which of course could be can­
celled by the early fortunate occurrence of 

Figure 4: The wait policy 

4.3 Decision making algorithm properties 
Our algorithm is a least commitment strategy: one al­
ways prefers waiting if this may lead to a better situation 
and is not threatened by a. worse one. It is as well an 
opportunistic process: actions that were put aside be­
cause they could not be ensured are considered again 
when they become releasable, and waiting instead of re­
leasing a "rather good" action may allow to receive a 
better event, such as in our example. Last, our algo­
rithm is definite in the sense that a decision will always 
be taken (provided the automaton is not empty): even a 
wait decision ensures the system evolution either when 
a received event occurs, or when MaxDelay has elapsed 
and an action can then be released. 

About algorithmic complexity, it gets low first thanks 
to our associative models (see [Coradeschi et ft/., 1996] 
and [Dousson et al., 1993]), but also in the algorithm 
PLAY-AUTOMAT: the automaton is bounded in depth 
(one never computes a complete automaton but only 
needs to consider the next step thanks to the goodness 
values), and also in breadth (the number of alternative 
transitions to consider is lower than the maximum num­
ber of chronicles in a given context, i.e. in a leaf of the 
decision tree). In fact the global complexity only de­
pends upon the size of the decision tree and the maxi­
mum number of chronicles in each leaf, i.e. the size of the 
expertise knowledge base, which is constant and known. 

The key point is to prove the optimality, i.e. that one 
always gets the best decision according to the given pol­
icy (of course the decision taken will only be the best 
according to the given goodness values, hence it highly 
depends on how accurate and realistic the associative 
model built off-line is). For that purpose, we check that 
in each case the decision with highest utility is taken. 

1. If the transition r with highest goodness value is 
an activated one (the decision S will be an action): 
(a) if S is not threatened: the action will necessarily 

be released and has the highest utility. 
(b) if S is threatened by leading to a state with 

goodness value : then 
i. if there exists ( not threatened leading to a 

state with goodness value 
the algorithm will take the decision with 

ii. if there exists s threatened: the reasoning 
process can be recursively applied as in l.(b). 

iii. if no other satisfactory decision is found: 
the algorithm only waits until some action 
becomes releasable (thanks to MaxDelay), 
hence all the other possibly better decisions 
remain available at the next stage. 

2. If the transition r with highest goodness value is 
a received one (the decision S will be to wait): 
(a) if is not threatened: it is ensured hence the 

corresponding state will be reached, and has 
the highest utility. 

(b) if is threatened by an event that may occur 
after a certain delay: the system will wait for 
this delay, in an opportunistic way, which might 
hopefully lead the system into the state reached 
by r (which means highest utility), or put it 
into the following situation (c). 

(c) if is threatened by an event that may oc­
cur immediately: S has the same utility as the 
threat, and hence is not better and might be 
forgotten, as the algorithm does. 

5 Discussion and conclusion 
A main strength of our approach is to use different mod­
els that are best suited for each of the requirements of 
highly reactive monitoring: a decision-tree for the con-
text, chronicles for the temporal evolutions, and a game 
automaton for the predictive decision making process. 
It is straightforward to integrate those models and make 
them work together in a smooth way. 

Our approach can be compared to [Tambe and Rosen-
bloom, 1996], where opponent actions are considered 
while making dynamic decisions. There a single interpre­
tation of actions and observations is used. Our approach 
is more general since actions and observations may be of 
any kind, making it fit the more general area of oper­
ator/artefact reactive loop. In the TIGER gas turbine 
monitoring project [Milne et a/., 1994], three models are 
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mixed in a similar way as ours: decision trees are re­
placed by compiled rule bases, and a classical chroni­
cle recognition mechanism feeds a model-based diagnosis 
system. But we do more than mere supervision, getting a 
highly reactive decision making system processing hypo­
thetical reasoning on the future instead of comparative 
reasoning on the past. This compelled us to improve the 
chronicle structure to incorporate actions in it. In a, re­
lated game-based military application [Katz and Butler, 
1994], decision is also dynamically made, but thanks to 
a discrete game model. Besides, classical heuristic tech­
niques are used, exploring down the tree in a lookahead 
simulation, which we avoid by directly inheriting good­
ness values from our associative model. 

One shortcoming of our approach is the classical ex­
pertise acquisition problem: uncompleteness of such an 
expertise is always to be feared. Anyway, our architec­
ture can be made robust to unexpected events as well, 
thanks to some additional features that have not been 
presented here (see [Coradeschi and Vidal, 1998]). 

As a matter of conclusion, our approach is relevant in 
highly reactive real-time monitoring applications with 
complex temporal constraints. It brings out expressive 
and accurate dynamic decision making. We strongly be­
lieve that mixing symbolic models from the artificial in­
telligence community and control models built by theo­
retical computer scientists, as we did, might help making 
substantial advances in that field. 
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