
Highly reactive decision

Silvia Coradeschi
IDA

Linkopings Universitet
S-581 83 Linkoping, SWEDEN

Abstract
Real-time monitoring calls for decision making
capabilities in reaction to observed events. As­
sociative models provide efficiency by match­
ing the observed situation to a recorded pattern
equipped with an accurate decision. We rely on
a decision tree accounting for the context and
temporal chronicles expressing dynamic pat­
terns. In highly reactive domains, i.e. when ac­
tions get as frequent as observations, the deci­
sion must anticipate the complete recognition
of a pattern, comparing possible evolutions.
This paper focuses on the on-line decision pro­
cess, a game against Nature in the general case:
a timed game automaton gathers the possible
next steps with associated goodness values, and
uses an opportunistic algorithm to compute a
temporally expressive decision, maximizing its
utility, i.e. the chances of "winning".

1 Introduction
Monitoring and supervision deal with dynamic systems
(or artefacts), that evolve across time. A (human or au­
tomated) agent is in charge of observing (through sen­
sors) what happens, recognizing the typical behaviour,
and acting towards the artefact (through activators), for
instance to put it back into a normal state, or to process
some safety procedure. This on-line process needs real-
time efficiency, and is reactive in the sense that actions
are taken according to observations.

A model-based approach [Dvorak and Kuipcrs, 1989]
has been introduced to deal with this problem, first com­
puting off-line faulty models of the artefact that are
used on-line as associative models matched with incom­
ing observations. Next steps are predicted from the hy­
pothetical current situation, and incoming observations
are checked to confirm the hypothesis. But time is only
implicit, through successive states in a dynamic decision
tree, which is not expressive enough in realistic domains.
Some approaches [Nejdl and Gamper, 1994] manage to
attach a temporal qualification to behavioral modes, us­
ing a rich set of temporal relations. More appealing are
temporal chronicle recognition systems [Dousson et a/.,

making: a game with Time

Thierry Vidal
LGP, ENIT

47 avenue d'Azereix
F-65016 Tarbes cedex, FRANCE

1993], where temporal constraint networks are used as
associative models.

But all these approaches deal with systems in which
an action is the consequence of a complete and fully rec­
ognized sequence of observed events. This paper deals
with an explicit temporal framework in highly reactive
domains, in which actions and observations continuously
respond to each other. We extend the temporal chronicle
formalism to mix events representing observations from
the artefact and the agent actions, and equip them with
goodness values expressing preferences among them. We
also use a decision tree such as the one designed in
[Coradeschi et a/., 1996], but here only as a preprocessing
step before decision making, to merely branch the cur­
rent static context onto a subset of relevant chronicles,
therefore restricting the number of candidate patterns.

The agent has now a larger choice of decisions to take
at any time. The goal is not to recognize a bad situation
and put the system back into a good one, but to con­
tinuously take decisions that anticipate bad situations
and push the system into better ones, which is basically
a game playing process. For that we rely on the timed
game automaton model [Asarin et a/., 1995] that is best
suited for continuously changing systems. Next transi­
tions are computed from the set of candidate patterns,
inheriting corresponding goodness values. Then our new
algorithm PLAY-AUTOMAT chooses a transition to select
and a correct time to do so, using a least-commitment
and opportunistic strategy, and following a formal deci­
sion policy based on a definition of the utility of each
possible decision: we prove that our process is optimal
in that it always takes the decision with highest utility.

Section 2 recalls the basic models and global archi­
tecture described in [Coradeschi and Vidal, 1998]. Our
approach is illustrated through a specific example in the
area of one-to-one aircraft combat in Section 3. Then
Section 4 focuses on the very contribution of this paper,
namely the new algorithm for on-line decision making.

2 Basic models and global process
2.1 The basic decision-tree approach
In [Coradeschi et o/., 1996], the agent is equipped with a
context (i.e. a set of propositions describing the current

1002 PLANNING AND SCHEDULING

state of the world), arid a decision tree. To each leaf of
the tree is attached a decision (atomic action or sequence
of actions). At each step of the simulation process the
context is updated with new events received and inter­
preted. Then the decision tree is visited down, proposi­
tions in the context being matched with the conditions
appearing at each node, until a leaf is reached. Each
action has a priority value that changes dynamically, so
that in the cases where multiple leaves are applicable and
actions are mutually exclusive, the best one is selected.
It is then sent to the simulator, which will update the
context, and so forth.

This mechanism is highly reactive and efficient, and
agent behaviours are easy to specify and test. It is how­
ever difficult to code in it reactions to sequences of tem­
porally related events.

2.2 Possible evolutions as chronicles
In the temporal system IxTeT [Dousson et a/., 1993]
used for dynamic situation assessment, temporal evo­
lutions are taken into account in the shape of chroni­
cles, that are Temporal Constraint Networks [Schwalb
and Dechter, 1997] on which classical constraint propa­
gation techniques can be run: time-points represent in­
stantaneous changes or begin/end points of intervals of
time over which a fluent is true, and constraints between
them are precedences labelled by arithmetic intervals of
possible values, allowing to express dates of events and
durations of fluents. Then chronicles are matched with
incoming events, dynamically maintaining the set of can­
didates. As soon as a chronicle is fully recognized, an
action written in the chronicle description is triggered.

This model is well-suited for dynamic applications
with temporally expressive behaviours like nuclear plant
or gas turbine monitoring [Milne et a/., 1994], where su­
pervision is the key word. As an associative model, it
provides high on-line efficiency; anyway, two shortcom­
ings compelled us to improve it somehow.

• Reactivity can be considered as being weak in Ix­
TeT, since an action only follows an ordered set of
observations. Therefore we chose to extend the ini­
tial formalism to mix events representing both ob­
servations from the artefact and the agent actions,
which in turn enforces a corresponding distinction
between two types of constraints between events, as
in [Vidal and Fargier, 1997]. A numerical constraint
between e1 and e2 (with e1 before e2) will be said
to be controllable iff e-2 is an action, and contingent
iff e-2 is an observation.

• The second restriction is in the classical strict dis­
tinction between normal and abnormal behaviours:
the agent here has a large choice of actions at any
time that can push the system into various "more or
less good" situations. Therefore we chose to extend
the IxTeT approach by adding to each chronicle a
goodness value in the range [-1,1], -1 meaning the
worst possible case (e.g. breakdown) at the chroni­
cle completion, 1 a behaviour that fully entails the

system specifications, 0 a situation that keeps bal­
anced between eventual failure or success.

2.3 Timed game automata
The model we present here is inspired by recent advances
[Asarin et a/., 1995] on timed automata models [Alur and
Dill, 1994], used for describing the dynamic behaviour
of a system. It consists in equipping a finite-state au­
tomaton with time, allowing to consider cases in which
a system can remain in a state during some time t be­
fore taking the next transition. This is made by adding
continuous variables called clocks that are reset when
some transitions are taken, then grow uniformly until
they are checked on a later transition through some con­
dition (guard) that must be true for enabling it.

Such tools are well-suited for continuous real-time
games: for each player, transitions are either activated
or received, and some states are designated as wimiing
ones. That extends the discrete game approach [Pearl,
1984], with the following pros: (1) there are no "turns"
and the adversary need not wait for the player's next
move, and (2) each player not only chooses a transition,
but also the delay to wait before taking it.

This is especially relevant for controlling reactive sys­
tems in which one has to "play against Nature", the
goal being to synthesize a "safe" controller, i.e. add con­
ditions to compel the automaton to reach winning states
for the agent. For our purpose we only need a restricted
model: we do not need to build a complete automaton
but we just compute the next states, transferring the
goodness values from corresponding chronicles so as to
compare them and choose the "best" one. That leads to
the following restricted game automata definition.

CORADESCHI AND VIDAL 1003

2.4 Global architecture
We have already presented [Coradeschi and Vidal, 1998]
our associative model mixing a decision tree and chron­
icles, simply replacing actions in leaves by sets of chron­
icles, as a simple way to add context handling to the
chronicle model. Then our global process will be to (1)
determine the set of active candidate chronicles visit­
ing down the decision tree, (2) build the corresponding
automaton, extracting from the chronicles the possible

next states and transitions to them, and (3) select the
best decision to make NOW by "playing" the automaton.
This is illustrated through figure 1.

Figure 1: The new proposed architecture

The global algorithm and its two first steps will not
be reported here (see [Coradeschi and Vidal, 1998]), but
the following example should give the reader an insight
into it. Then we will focus on the decision-making step
(3), namely the algorithm PL AY-AUTOMAT.

3 An example in the air-combat domain
The air-combat domain is a highly reactive domain
where decisions are made under real-time constraints.
An automated pilot should be able to predict his oppo­
nent's next moves and select the action that minimizes
possible threats and maximizes chances of success. Pre­
dicting other agents behaviours is a hard task but some
typical patterns have been developed by the military to
help in identifying manoeuvres of the opponents.

We have built a simplified example of a one-to-one
beyond visual range combat situation (the aircrafts can
see each other just with board instrumentation). Fig­
ure 2 shows the chronicles corresponding to most plau­
sible typical patterns, where events labelled with a are
the automated pilot own actions and the ones with b
are the opponent observed actions. We start with a and
b flying towards each other, and a sees b moving right.
Two possible guesses for a arc that b will continue es­
caping or turn back for an intercept. Then a can move
left (evolution Q1), making b moving left as well. The
resulting situation gives no special advantage for any of
the pilots. Otherwise a may accelerate, then both pi­
lots turn left for an intercept (Q2), which would put a
into a better situation as he can more easily attack on
the side, or he may observe b escaping by moving right
(Q3), which is even better. Q4 is also a good situation
as a does not do anything and b escapes. But not do­
ing anything might as well be bad, if b moves left to

intercept (Q6). Precise delays (here in seconds) are also
added to the constraints.

Figure 2: The temporal chronicles of the example

Then figure 3 shows the result of step (2), the algo­
rithm Build-automat. One should notice the correspon­
dence between durations of controllable/contingent con­
straints in chronicles and guards on activated/received
transitions in the automaton. Receiving the event bm r
puts the pilot into a state in which there are four posible
next events given by the five chronicle candidates of
figure 2. For each one a new state is added together with
the transition to this state, labeled with comput­
ing the guard from the corresponding chronicle. Good­
ness values are transferred as well, with here the case
where an event belongs to two different chroni­
cles, so one keeps the min of the goodness values.

Figure 3: The game automaton of the example

4 On-line decision making
4.1 Decision policy: basic definitions
Before presenting the algorithm that computes an accu­
rate decision from the built automaton, wes first define

1004 PLANNING AND SCHEDULING

our decision policy, in the spirit of studies carried on
in qualitative decision theory (see e.g. [Boutilier, 1994]).
Goodness values provide preferences over consequences
of the decisions, but a decision might raise distinct con­
sequences. In this uncertain framework the utility of a
decision must be defined as a function over the utilities
(the goodness values) of all the possible consequences.
For that we rely on a choice criterion similar to the clas­
sical pessimistic/cautious Wald criterion, that suits well
our illustrative application area. Of course in other do­
mains less strict criteria balancing between the risk and
the expected outcome may be preferred.
Definit ion 4.1 The utility of a decision is the
lowest utility of all its possible consequences, i.e. the low­
est goodness value of all the possible states in which the
system might get after the decision is taken.

The decision strategy amounts to choose the decision
with highest utility, which is consistent with min-max
game strategies [Pearl, 1984]. We will now give our al­
gorithm and prove that it obeys the given criterion, but
before that we need some additional definitions.
Definit ion 4.2 A selected transition r is said to be en­
sured iff the system cannot take another one.
On the contrary, r is said to be threatened by r' (the
threat,) if the system might take r' instead of r (obvi­
ously T ' can only be a received transition).
We use the same terms for the corresponding decision s
of selecting the transition t.

4.2 The game-based decision procedure
Our procedure has been inspired by classical controller
synthesis algorithms [Asarin et a/., 1995], but highly sim­
plified in our case of "one step ahead" automata with
goodness values. One needs first sorting the next transi­
tions starting from the one with highest goodness value,
and then consider them one by one.

1) If the current best transition r is a received one,
the decision is to wait for its labelling event to occur.
We watch out if there is a worse received transition
r' possibly threatening r by occurring meanwhile (test

. Ensuring r amounts
to deciding to wait only while T' cannot occur: r can
hence be ensured iff lower _ . I f
not, this selection is forgotten and one tries next item in
RANKED (Goto 0). Otherwise the waiting delay is set to

, and a new transition is added, labelled
by the special event wait, that will be taken for sure
just before the delay has elapsed (the guard therefore
exactly equals delay", which means the atomic dura­
tion immediately lower than delay). Then there are
two possibilities; in the worst case, nothing happens, the
transition wait is taken after delay" has elapsed, and
a new automaton accounting for this elapsed time is re­
computed in the next stage of the global algorithm; or in
the lucky case where the event labelling r occurs before
the delay has elapsed, then r is taken.

The algorithm has been slightly simplified for the sake
of clarity: it should take into account cases with several

threats: the delay to wait is actually the min of the
corresponding delays.

Last, when there is no threat r' the decision is just
to wait for r to be taken, but actually no more than
MaxDelay, which corresponds to the time after which a
better activated transition that had been put aside may
become releasable, which is explained herebelow.

2) In the case where r is an activated transition,
things get simpler, but r still needs to be ensured. If the
action can be released now (lower(g(r)) = 0), then it
is released is the action label of r). If not, the test
about a possible threat is now on the value lower (g(r))
instead of upper (r being an activated transition
it can be released as soon as lower(g(r)) has elapsed).
Here again, if r cannot be ensured, then this selection
is put aside and the next one tried. But in the case
where the decision ends up being wait, as soon as the
action a(r) becomes releasable, it will not be threat­
ened anymore (lower (g(r)) equalling 0), and it should
be reconsidered as a possible decision. For that we use
MaxDelay that keeps track of the min of the times after
which an action becomes releasable, so as to restart the
algorithm at that time.

This algorithm is illustrated through the example of
figure 3. In the first iteration, q4 is the best transition
(maximal goodness value 0.7), but it is threatened by
the transition to . Ensuring the selected transition
amounts to wait no longer than 1. The new wait tran­
sition added to the automaton appears in figure 4. We
show there a possible improvement of the algorithm (not
developped here for the sake of clarity) where one not
only adds this transition, but at the same stage computes
the next states from which should be the same as

CORADESCHI AND VIDAL 1005

in q0 recomputed guards according to the delay.
The two activated transitions from qo are in dashed lines
because they will not be taken at this stage, trying to
opportunistically let occur first. Next, falling into
qwait} the choice would be forgotten since it can
no longer be ensured, and the next best transition aacc
would be selected since it can be released at once. This
improvement, which amounts to consider two successive
decision steps in one stage, would end up with an ex­
pressive decision sounding like wait no longer than one
second, then accelerate, which of course could be can­
celled by the early fortunate occurrence of

Figure 4: The wait policy

4.3 Decision making algorithm properties
Our algorithm is a least commitment strategy: one al­
ways prefers waiting if this may lead to a better situation
and is not threatened by a. worse one. It is as well an
opportunistic process: actions that were put aside be­
cause they could not be ensured are considered again
when they become releasable, and waiting instead of re­
leasing a "rather good" action may allow to receive a
better event, such as in our example. Last, our algo­
rithm is definite in the sense that a decision will always
be taken (provided the automaton is not empty): even a
wait decision ensures the system evolution either when
a received event occurs, or when MaxDelay has elapsed
and an action can then be released.

About algorithmic complexity, it gets low first thanks
to our associative models (see [Coradeschi et ft/., 1996]
and [Dousson et al., 1993]), but also in the algorithm
PLAY-AUTOMAT: the automaton is bounded in depth
(one never computes a complete automaton but only
needs to consider the next step thanks to the goodness
values), and also in breadth (the number of alternative
transitions to consider is lower than the maximum num­
ber of chronicles in a given context, i.e. in a leaf of the
decision tree). In fact the global complexity only de­
pends upon the size of the decision tree and the maxi­
mum number of chronicles in each leaf, i.e. the size of the
expertise knowledge base, which is constant and known.

The key point is to prove the optimality, i.e. that one
always gets the best decision according to the given pol­
icy (of course the decision taken will only be the best
according to the given goodness values, hence it highly
depends on how accurate and realistic the associative
model built off-line is). For that purpose, we check that
in each case the decision with highest utility is taken.

1. If the transition r with highest goodness value is
an activated one (the decision S will be an action):
(a) if S is not threatened: the action will necessarily

be released and has the highest utility.
(b) if S is threatened by leading to a state with

goodness value : then
i. if there exists (not threatened leading to a

state with goodness value
the algorithm will take the decision with

ii. if there exists s threatened: the reasoning
process can be recursively applied as in l.(b).

iii. if no other satisfactory decision is found:
the algorithm only waits until some action
becomes releasable (thanks to MaxDelay),
hence all the other possibly better decisions
remain available at the next stage.

2. If the transition r with highest goodness value is
a received one (the decision S will be to wait):
(a) if is not threatened: it is ensured hence the

corresponding state will be reached, and has
the highest utility.

(b) if is threatened by an event that may occur
after a certain delay: the system will wait for
this delay, in an opportunistic way, which might
hopefully lead the system into the state reached
by r (which means highest utility), or put it
into the following situation (c).

(c) if is threatened by an event that may oc­
cur immediately: S has the same utility as the
threat, and hence is not better and might be
forgotten, as the algorithm does.

5 Discussion and conclusion
A main strength of our approach is to use different mod­
els that are best suited for each of the requirements of
highly reactive monitoring: a decision-tree for the con-
text, chronicles for the temporal evolutions, and a game
automaton for the predictive decision making process.
It is straightforward to integrate those models and make
them work together in a smooth way.

Our approach can be compared to [Tambe and Rosen-
bloom, 1996], where opponent actions are considered
while making dynamic decisions. There a single interpre­
tation of actions and observations is used. Our approach
is more general since actions and observations may be of
any kind, making it fit the more general area of oper­
ator/artefact reactive loop. In the TIGER gas turbine
monitoring project [Milne et a/., 1994], three models are

1006 PLANNING AND SCHEDULING

mixed in a similar way as ours: decision trees are re­
placed by compiled rule bases, and a classical chroni­
cle recognition mechanism feeds a model-based diagnosis
system. But we do more than mere supervision, getting a
highly reactive decision making system processing hypo­
thetical reasoning on the future instead of comparative
reasoning on the past. This compelled us to improve the
chronicle structure to incorporate actions in it. In a, re­
lated game-based military application [Katz and Butler,
1994], decision is also dynamically made, but thanks to
a discrete game model. Besides, classical heuristic tech­
niques are used, exploring down the tree in a lookahead
simulation, which we avoid by directly inheriting good­
ness values from our associative model.

One shortcoming of our approach is the classical ex­
pertise acquisition problem: uncompleteness of such an
expertise is always to be feared. Anyway, our architec­
ture can be made robust to unexpected events as well,
thanks to some additional features that have not been
presented here (see [Coradeschi and Vidal, 1998]).

As a matter of conclusion, our approach is relevant in
highly reactive real-time monitoring applications with
complex temporal constraints. It brings out expressive
and accurate dynamic decision making. We strongly be­
lieve that mixing symbolic models from the artificial in­
telligence community and control models built by theo­
retical computer scientists, as we did, might help making
substantial advances in that field.

Acknowledgments
Thierry Vidal has been supported by the Excellence Cen­
ter for Computer Science and Systems Engineering (EC-
SEL) in Linkoping. Silvia Coradeschi has been sup­
ported by the Wallenberg Foundation project, Informa­
tion Technology for Autonomous Aircraft,. The authors
are also grateful to Dan Stromberg (Swedish National
Defense research center, Linkoping) and Goran Petter-
son (SAAB Military Aircraft, Linkoping) for useful com­
ments and discussions that inpired the simplified appli­
cation example used in the paper.

References
[Alur and Dill, 1994] R. Alur and D. Dill. A theory

of timed automata. Theoretical Computer Science,
126:183 235, 1994.

[Asarin et al, 1995] E. Asarin, O. Maler, and A. Pnueli.
Symbolic controller synthesis for discrete and timed
systems. In P. Antsaklis, W. Kohn, A. Nerode, and
S. Sastry, editors, Hybrid Systems II, LNCS 999.
Springer Verlag, 1995.

[Boutilier, 1994] C. Boutilier. Toward a logic for quali­
tative decision theory. In J. Doyle, E. Sandewall, and
P. Torasso, editors, Proceedings of the 14th Interna­
tional Conference on Principles of Knowledge Repre­
sentation and Reasoning (KR-94), Bonn (Germany),
pages 75-86. Morgan Kaufmann, 1994.

[Coradeschi and Vidal, 1998] S. Coradeschi and T. Vi­
dal. Accounting for temporal evolutions in highly reac­
tive decision-making. In Proceedings of the 5th Inter­
national Workshop on Temporal Representation and
Reasoning (TIME-98), Sannibel Island (FL), 1998.

[Coradeschi et al., 1996] S. Coradeschi, L. Karlsson, and
A, Torne. Intelligent agents for aircraft combat simu­
lation. In Proceedings of the 6th Conference on Com-
puter Generated Forces and Behavioral Representa­
tion, pages 23 26, Orlando (FL, USA), 1996.

[Dousson et al, 1993] C. Dousson, P. Gaborit, and
M. Ghallab. Situation recognition: representation and
algorithms. In Proceedings of the 13th International
Joint Conference on A.I. (IJCAI-93), Chambery
(France), 1993.

[Dvorak and Kuipers, 1989] D. Dvorak and B. Kuipers.
Model-based monitoring of dynamic systems. In Pro­
ceedings of the 11th International Joint Conference
on A I. (IJCAI-89), pages 1238-1243, Detroit (MI,
USA), 1989.

[Katz and Butler, 1994] A. Katz and B. Butler. uGarne
Commander"- Applying an architecture of game the­
ory and tree lookahead to the command and control
process. In C. Backstrom and E. Sandewall, editors,
Proceedings of the 5th Annual Conference on AIt Sim­
ulation, and Planning in High Autonomy Systems,
Gainesville (FL, USA), 1994.

[Milne et al, 1994] A. Milne, C. Nicol, M. Ghal­
lab, L. Trave-Massuyes, K. Bousson, C. Dousson,
J. Quevedo, J. Aguilar, and A. Guasch. TIGER: real-
time situation assessment of dynamic systems. Intel­
ligent Systems Engineering, pages 103 124, 1994.

[Nejdl and Gamper, 1994] W. Nejdl and J. Gamper.
Harnessing the power of temporal abstractions in
model-based diagnosis of dynamic systems. In Pro­
ceedings of the 11th European Conference on Artifi­
cial Intelligence (ECAI-94), pages 667 671, Amster­
dam (Netherlands), 1994.

[Pearl, 1984] J. Pearl. Heuristics: intelligent search
strategies for computer problem solving. Addison-
Wesley, Reading (Mass, USA), 1984.

[Schwalb and Dechter, 1997] E. Schwalb and R Dechter.
Processing disjunctions in temporal constraint net­
works. Artificial Intelligence, 93:29-61, 1997.

[Tambe and Rosenbloom, 1996] M. Tambe and P.S.
Rosenbloom. Architectures for agents that track
other agents in multi-agent worlds. In C. Backstrom
and E. Sandewall, editors, Agents, Theories, Archi­
tectures, and Languages (ATAL-95). Springer Verlag
Lecture Notes in Artificial Intelligence 1037, 1996.

[Vidal and Fargier, 1997] T. Vidal and H. Fargier. Con­
tingent durations in temporal CSPs: from consistency
to controllabilities. In Proceedings of the 4th Inter­
national Workshop on Temporal Representation and
Reasoning (T1ME-97), pages 78-85, Daytona Beach
(FL, USA), 1997.

CORADESCHI AND VIDAL 1007

