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Abs t rac t 
Most research in computer chess has focussed on 
creating an excellent chess player, with relatively little 
concern given to modelling how humans play chess. 
The research reported in this paper is aimed at 
investigating knowledge-based chess in the context of 
building a prototype chess tutor, UMRAO, which 
helps students learn how to play bishop-pawn 
endgames. In tutoring it is essential to take a 
knowledge-based approach, since students must learn 
how to manipulate strategic concepts, not how to carry 
out minimax search. UMRAO uses an extension of 
Michic's advice language to represent expert and novice 
chess plans. For any given endgame the system is able 
to compile the plans into a strategy graph, which 
elaborates strategies (both well-formed and ill-formed) 
that students might use as they solve the endgame 
problem. Strategy graphs can be compiled "off-line" so 
that they can be used in real time tutoring. We show 
that the normally r igid "model tracing" tutoring 
paradigm can be used in a flexible way in this domain. 

1 In t roduct ion 
Chess playing has been the subject of intense investigation 
by human practitioners, cognitive psychologists, and by 
those in the field of artificial intelligence (AI). Chess has 
the potential to be a "Drosophilia" (or fruitfly) for AI and 
cognitive science [Simon and Chase, 1973], because of its 
nature as an intellectual activity. In trying to create a 
superior computer chess program most AI researchers have 
concentrated on improving search techniques. There have 
been some knowledge-based chess projects which have 
explored more human ways of choosing moves, but they arc 
unable to compete against the search-based approaches. 
Current knowledge-based programs use the concepts of 
chunking [Berliner and Campbell, 19841, advice [Michic, 
1977], and plans [Pitrat, 1977; Wilkins, 1980] to represent 
chess knowledge. Although search-based programs are 
successful from a performance viewpoint, they make little 
contribution to the most interesting objectives set in 
choosing chess as an AI problem; that is, modelling 
intelligent behaviour within a well defined domain. The 
problem lies with the objective of creating a chess player: 
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the goal has been achieved without resolving the 
fundamental questions. 

This paper attempts to define the problem of developing 
an intelligent tutoring system for a sub-domain of chess. 
This change of goals requires a shift of emphasis which 
illustrates and illuminates many problems that arise in A I . 
Chess tutoring requires the resolution of cognitive and 
epistemological issues inherent in knowledge-based chess. 
As a first step towards building a chess tutor, a prototype 
system, U M R A O , has been developed for the limited 
domain of bishop-pawn chess endgames. A set of 22 
problems involving two white pawns, a black bishop, and 
two kings have been used [Averbach, 1980] for system 
development. Figure 1 illustrates one such endgame. 

Figure 1 White to Play and Win [Averbach, 1980] 

Although, chess endgames are simpler than other parts of 
the game, they are still complex enough for interesting 
tutoring. Endgames are amenable to a knowledge-based 
approach [Michie, 1977]. Chess is also a suitable domain 
for intelligent tutoring system (ITS) research, being 
reasonably complex, yet at the same time having well-
formed solutions consisting of various interacting strategics. 
Chess is not as simple as ITS gaming domains like WEST 
[Burton and Brown, 1982], nor as complex as ITS 
programming domains such as SCENT [McCalla et al., 
1988]. An intelligent chess tutoring system has not been 
developed before and may prove to be a better learning tool 
than chess playing programs and standard chess books. 

2 System Design and Methodology 
The system has been developed in two phases. In the first 
phase, efforts were made to understand novice chess skills. 
Novice chess players (players sufficiently versed in chess to 
begin making strategic decisions) were informally "tutored" 
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in order to collect think aloud problem solving protocols. 
Each was asked to solve problems from a set of twenty-two 
bishop pawn endgames and meanwhile their problem 
solving behaviour and human expert tutoring behaviour were 
recorded. The outcome of these protocols was the 
identification of the important design requirements for 
UMRAO. In the second phase, the system was designed and 
implemented according to the model of chess problem 
solving behaviour we discovered. The following design 
requirements for UMRAO were identified: 

• The system must be able to model correct and incorrect 
solution strategies. 

• Instructions should be given in context 
• Feedback should be conceptual, using higher level 

concepts such as plans and goals instead of simple 
feedback specifying move correctness or giving the next 
correct move. 

• Students should be given an opportunity to explore 
incorrect strategies. 

3 The Architecture 
UMRAO consists of two parts: the EXPERT and the 
TUTOR. The EXPERT is run only once for each new 
bishop-pawn endgame problem. For each such problem the 
EXPERT compiles a strategy graph representing plausible 
student strategies and sub-strategies as well as expert-level 
counter strategies. In order to compile its strategy graph, 
the EXPERT uses a knowledge base called the plan library, 
which contains expert and student level plans in order to 
model correct and flawed lines of play. The plan 
representation is based on Michie's advice definit ion 
fMichie, 1977] modified to represent misconceptions and 
faulty reasoning processes. 

The TUTOR runs each time a student wants to work on a 
particular problem. It uses the strategy graph associated 
with the problem to track and predict individual students* 
moves in the context of their strategies. Because the 
TUTOR tracks the student's strategy (or strategies), it can, at 
any point, comment on strategic shortcomings. It is also 
able to generate explanations contrasting expert and student 
strategies. Note that the process of generating an 
explanation is efficient, since the strategy graph has been 
generated off-line, before the tutoring session. The TUTOR 
tracks through the graph; it does not build it. The basic 
approach is model tracing as in Anderson et al. [1990], but 
we have been experimenting with two instructional styles: 
the usual immediate feedback, as well as delayed feedback 
where there is scope for user initiative. 

3 . 1 The EXPERT Module 
The EXPERT can be explained in terms of its plan 
representation, its strategy graph and its planning system. 
The representation of plans is the back bone of UMRAO 
because of its importance in defining expert, student, and i l l -
formed strategies in one framework; in providing the basis 
for generating feedback using higher level concepts such as 
goals, constraints, and patterns; and in guiding interaction 
by suggesting situations appropriate for tutor intervention. 
In UMRAO, a plan is an object with slots representing 
various aspects of the plan: side to play (black or white), 

type of plan (expert or student), applicability predicate, 
feasibility predicate, better-goals, holding-goals, move-
constraints for both sides, and decidability of the plan. 

The slots for applicability, feasibility, and decidability are 
additional features not present in Michie's advice language. 
An applicability predicate consists of board features, such as 
the pawn formation (blocked or passed pawns), which favour 
selection of the plan. Feasibility predicates indicate the 
potential success of a plan. The criterion of success or the 
purpose of the plan is described by its better-goals. The 
criterion of failure of the plan is defined by its holding-
goals. For example, if a side has a passed pawn 
(applicability) and is not controlled by the bishop 
(feasibility) then the plan can be to 'queen the pawn' (better-
goal), and at the same time the pawn should be safe 
(holding-goal), and the success of the plan decides the game 
(decidability). The move-constraints are represented as Mcx 
and Mcy, where Mcx defines the constraints on the moves 
for the side to play and Mcy defines the constraints for the 
opponent's moves in order to satisfy the goals (better-goals 
and holding-goals) of the plan. 

Figure 2 shows examples of a student level and an expert 
level plan applicable in the board position shown in Figure 

In commonsense terms the student plan says: " I f you have 
double pawns and the first pawn is prevented by the bishop 
from queening: Exchange the first pawn with the bishop and 
queen the second pawn." The expert level plan says: " I f you 
have double pawns and the first pawn is prevented by the 
bishop from queening and the opponent's king can reach the 
second pawn: Exchange the first pawn with the bishop and 

Figure 2 Example of Expert and Student Level Plans 
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queen the other pawn, but in the mean time keep the black 
king away." 

The plan representation can be better explained by 
considering the expert plan W6 in Figure 2. The first 
applicability feature (black-king-threatens P2] is a geometric 
relationship between the second pawn and the black king. 
The second feature is (double-pawn PI P2) which matches 
when there are two pawns in the same column. The third 
feature is (not (feasible W l ) ) which matches when a 
particular plan Wl is not feasible. This feature specifies a 
kind of plan ordering. What it means is that if plan W1 is 
not feasible only then should plan W6 be considered. In this 
way procedural knowledge has been coded in a declarative 
fashion. This ability to represent a variety of procedural 
knowledge in a declarative form adds to the generative 
capability of the system. 

The feasibi l i ty slot of plan W6 contains two features. 
The first feature (can-support WK (bishop-square PI) ) 
contains the primitive feature (bishop-square P I ) , which 
represents the square common to PI and the Bishop. This 
ability to make composite features also adds to the 
generative capability of the representation. The second 
feature used in the given feasibility slot Is (can-prevent WK 
BK P2) which matches if WK (the white king) is able to 
prevent BK (the black king) from reaching near P2 (the 
second pawn). 

The move-constraints Mcx and Mcy generally specify the 
constraints on the movement of a various pieces of plan's 
side and the opponent's side, respectively, in order to 
execute a particular plan. The movement of the piece is 
specified in terms of a square (or a group of squares) having 
a particular feature. For example, the three move-constraints 
in Mcx direct the movement of: pawn PI towards its 
queening square, the white king towards one of the squares 
near the square on the pawn's path controlled by the bishop, 
and pawn P2 towards its promotion-square. The single 
move-constraint in Mcy specifies to limit the ability of the 
opponent's king to move towards pawn P2. 

The differences between the expert and student level plan 
in Figure 2 begin with the applicabil ity conditions of the 
plans. The student has not considered/perceived the (black-
king-threatens P2) relation and as a result does not check for 
the feasibility of the black king capturing the second pawn, 
which produces a less adequate set of move-constraints (Mcx 
and Mcy). This in turn is responsible for the deviation from 
the correct solution strategy. 

A variety of student level plans can be generated easily by 
perturbing expert level plans. For example, novices 
frequently do not check for the feasibil ity of an otherwise 
correct plan. This can be modelled by creating a new plan, 
Wx' , by weakening the feasib i l i ty slot of plan Wx. Of 
course, not all such syntactic deviations are meaningful and 
they must be supported by empirical observation. 

3 . 1 . 1 The Strategy Graph 
The strategy graph is a knowledge source for the TUTOR 
module made of nodes and links. The nodes of a strategy 
graph are called cnodes, strategies, and move-plan objects. 
The analysis contained in a strategy graph is made accessible 
to the TUTOR by placing the strategy graph's root cnode in 

the applicable problem object. The root cnode represents the 
initial state of the problem (initial board position), all the 
plausible strategies for that position, and the corresponding 
moves. At the root cnode it is always the student's turn to 
make a move. 

Figure 3 shows a portion of the strategy graph for the 
chess endgame problem given in Figure 1. Each cnode, 
labelled Ci and shown by a rectangular box in Figure 3, is 
connected to its descendant cnodes by a move justified by a 
set of plans. The strategy graph cnodes are classified as 
either student or expert cnodes depending upon who has to 
make a move at that cnode. Each student cnode is linked to 
a set of expert cnodes, or it is a terminal cnode. Similarly, 
each expert cnode has a single student cnode descendent, or it 
is a terminal cnode. Each cnode contains links to applicable 
strategics. For example, in Figure 3, CO is connected to C2 
by a move ml justified by a set of plans Wl W5 W6. 
Although all the cnodes shown in Figure 3 have only a 
single parent, in complete strategy graphs for problems in 
U M R A O , many cnodes have multiple parents. It is 
important to notice that at all the expert cnodes (levels 
where it is the system's turn to make a move) there is only 
one descendant, the best move. This set of cnode objects, 
connected with Descendant and Parent links, forms the 
skeleton of the strategy graph. 

Figure 3 The Strategy Graph 
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A cnode represents all the information available to the 
TUTOR during the process of monitoring the student's 
solution and conducting a tutoring session. A cnode 
contains the board configuration, information as to which 
side has the move, the parents and descendants of the cnode 
(lists of (move, cnode) pairs), pointers to all applicable 
strategies and the possible moves that correspond to these 
strategies, the descendant cnode corresponding to the best 
response, and the best result obtained by the cnode. Figure 
4 shows the instantiated cnode CO. 

Figure 4 The Cnode CO 

Each cnode object has associated with it a set of strategy 
objects Si, shown by circles in Figure 3. These strategy 
objects are instantiations of applicable plans. For example, 
cnode CO has a set of strategies S1, S2, S3, and S4 which 
are instantiations of plans W1, W5, W6, and W4 
respectively (strategy S2 is detailed in Figure 5). Each 
strategy object contains information about the various 
aspects of an applicable plan object, for example, whether or 
not the plan is feasible (designated with values t or nil), 
whether or not the better-goal and the holding-goal of the 
plan are satisfied, whether or not there are moves that satisfy 
the requirements of a plan, and how different moves arc rated 
with respect to a plan. Most slots of a strategy object are 
instantiations of the slots of its corresponding plan. Besides 
these, a strategy object also contains a slot that points to a 
list of move-plan objects. 

A move-plan object, labelled Mpi and shown by rounded 
rectangular boxes in Figure 3, provides the justification of a 
given move with respect to a given strategy. For example, 
strategy S2 (which is an instantiation of plan W5) contains 
three move-plan objects Mp2, Mp3 and Mp4, containing the 
justification of moves m l , m2, and m3 respectively with 

respect to strategy S2. Each move-plan object contains the 
analysis of a plan after a given move has been made. For 
example, after making a move (let's say m l ) , this analysis 
wi l l determine if the plan (W6) is feasible for the resulting 
position; in addition, it reveals the evaluation of the move 
m l , with respect to the move-constraints of the plan W6. 
Each move-plan has an associated move. The slots of a 
move-plan object are detailed in Figure 6. Values associated 
with each move constraint reflects the progress the move 
makes towards meeting that constraint. An overall 
evaluation of the move is derived from the values of the 
move constraints. The next subsection explains how these 
different objects that build a strategy graph are generated. 

3 .1 .2 The Planning System 
The planning system used for generating the student and 
expert problem solving behaviour is based on depth-first 
search. Alhough the methodology has an element of search, 
it is quite different from the methods used in the usual 
search-based chess programs. Search in those programs is 
over the space of possible moves while in UMRAO search 
is over the space of plausible strategies, i.e., UMRAO is 
based on planning rather than look-ahead. 

The way planning is implemented in UMRAO is quite 
different from the planning in usual knowledge-based chess 
programs. Typical knowledge-based chess programs have to 
analyze only the best or most promising plans at any time. 
They do not have to look for other plans until the current 
plan is abandoned for some reason. In contrast, UMRAO 
has to analyze all plausible plans at every student cnode. 
This is because the planning behaviour of students differs 
from that of an expert. In other words, all the applicable 
plans have to be analyzed for their consequences. Even for 
the expert cnodes, static analysis is carried out at every 
cnode. Because of this additional requirement of analyzing 
less than optimum plans, a different design for the planning 
svstem had to be devised. One important characteristic is 
the ability to simultaneously analyze different plans, which 
makes it suitable for parallel implementation. 

Figure 6 The Move Plan Object Mp4 

The methodology consists of two algorithmic modules: 
ExSearch and StSearch. The ExSearch module is applied 
when the EXPERT has to generate and analyze the system's 
response in a given board position, while StSearch is 
applied when the EXPERT devises possible student 
responses. ExSearch is very similar to standard knowledge-
based chess programs. Once ExSearch finds a suitable 
response, it does not have to look at the remaining possible 
responses, since it only has to generate the best counter 

Figure 5 The Strategy S2 
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response for a given student's response. StSearch must 
analyze all the plausible student responses exhaustively, as 
the tutor should be prepared for a range of student responses 
to a board position. Further, ExSearch only considers plans 
that are of Expert level while StSearch has to analyze all 
kinds of plans. ExSearch does not consider plans that are 
not feasible while StSearch considers all applicable plans 
irrespective of their feasibility. ExSearch analyzes all the 
moves that correspond to at least one feasible plan until it 
finds one that results in a favorable position for the system 
and then stores the analysis of the best move, while 
StSearch analyzes all plausible moves and stores the 
analysis of all of them. Detailed algorithms for both 
StSearch and ExSearch can be found in [Gadwal, 1990]. 

3 .2 The T U T O R Module 
While the EXPERT generates all the chess expertise required 
to help a student with a particular chess endgame problem, 
the TUTOR actually carries out the tutoring. The student 
can choose to play any of the endgame problems from the 
problem library. The goal of the TUTOR module is to 
challenge students to solve new problems while monitoring 
and commenting upon their actions. The system can 
recognize optimal, less than optimal, or clearly irrelevant 
moves. The student continues problem solving while the 
TUTOR offers help, hints, explanations, and tutoring advice 
when needed or requested. The main pedagogical goal 
underlying the design of the TUTOR module is to be a 
partner and co-solver of problems with the student, who is 
encouraged to experiment with various strategies. 

A variety of tutoring styles can be implemented 
with the tools provided in UMRAO. Four tutoring styles 
have been implemented and tested. In immediate feedback 
with strict tutor control, UMRAO immediately explains the 
student's strategy and describes a more suitable strategy as 
soon as the student makes a suboptimal move. This is 
similar to the "model tracing" used in many of Anderson's 
tutors [Anderson et al., 1990] In immediate feedback with 
student initiative, U M R A O alerts the student when a 
suboptimal move is made, but offers options for the student 
to explore a faulty line of play, request a hint, or an 
explanation of the current suboptimal strategy or the best 
strategy. Optional feedback with strict tutor control does 
not allow the student to deviate from the path of optimal 
play, but satisfies students who want the tutor to provide 
explanations only when requested. Optional feedback with 
student initiative provides the student with a ful l set of 
options including hint, best move, explain strategy, tell, try 
another (take back) and play on. These options are selected 
by the student whenever feedback is desired. Once play 
reaches a terminal position, that is, an obvious win or loss 
for one of the players, an obvious blunder by the student, or 
a move that deviates from any known strategy, the system 
always takes initiative to force a choice. 

To give a flavour of the tutoring interaction that has been 
implemented, consider a sample tutoring session for the 
bishop-pawn endgame originally presented in Figure 1. 
Figure 7 shows some of the screens taken from an actual 
tutoring session with UMRAO using immediate feedback 
with student initiative as the tutoring option. The TUTOR 

presents a selected endgame problem to the student and asks 
for a white move. The student makes a move by dragging a 
piece on the board from one square to another. The system 
updates the board and tells the student that the chosen move 
is not the best move and provides a set of menu options 
(shown in Figure 7a). Figures 7b and 7c show some of the 
types of feedback provided by the system in response to a 
request for a hint and for a ful l explanation of the winning 
strategy. 

Suppose that the student ignores the system's advice and 
decides to pursue a line of suboptimal play. The system 
reacts to the student's move, and after some time, a position 
is reached where it becomes obvious why the first move was 
not correct (shown in Figure 7d). Play then returns to an 
earlier board position where there is a way for the student to 
correctly solve the problem. In the complete session, as the 
student tries out various moves, the TUTOR tries to 
recognize the plan behind these moves and offers a variety of 
feedback. This allows the student to explore both correct 
and incorrect strategies. 

4 Conclusion 
There arc a number of specific technical contributions of 
UMRAO. U M R A O extends traditional notions of 
knowledge-based chess It necessitates the incorporation of 
poor strategies as well as good ones into the knowledge 
base. UMRAO also has an interesting hybrid planning 
technique that is like traditional knowledge-based approaches 
in its search for optimal plans when it is the expert's turn to 
move, but is original in its need to consider all plausible 
plans when it is the student's turn to move. Moreover, 
UMRAO delineates an elegant separation between plans and 
strategies. Plans are problem-independent; strategies are 
problem-specific. This separation is used by UMRAO so 
that it can compile from the corpus of possible plans a 
particular strategy graph that is tailored to each endgame 
problem The inefficient compilation of strategy graphs can 
be done "off-line" so that they can later be efficiently used in 
real time student-tutor interaction. 

UMRAO also makes specific contributions to intelligent 
tutoring. UMRAO shows how the model tracing tutoring 
methodology can be made flexible and responsive to the 
student, instead of rigid and dictatorial as it is often perceived 
to be. UMRAO also provides a laboratory for experiments 
in various kinds of tutoring strategies: the system's deep 
understanding of chess strategies allows tutor-controlled or 
student-controlled pedagogy; and allows a choice between 
immediate and delayed feedback to the student. 

Finally, there are general contributions of this research 
that transcend particular subdisciplines of art i f icial 
intelligence. The tutoring domain re-establishes chess as a 
natural exploratory environment for ideas other than search, 
and provides the area of intelligent tutoring systems with a 
perfect domain for exploring deep ideas in diagnosis and 
pedagogy without the complexities of other domains. With 
further development UMRAO may also prove to be a 
practical contribution to the teaching of chess, more 
responsive and adaptable than a book, an expert that not 
only can present chess problems to students, but also solve 
them and comment strategically on them. 
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Figure 7 Sample Screens from UMRAO 

UMRAO is not yet a complete chess tutor, but it 
represents a good starting point for future research in ITS, 
cognitive science, and knowledge-based chess. Such a chess 
tutor can act as a testbed for various theories about expert 
and novice chess skills, for testing techniques in student 
modeling and tutoring strategics, and for exploring the 
representation and reasoning schemes of knowledge-based 
chess. The strengths of the implementation are its 
modularity and simplicity, qualifying it to be a good 
experimental system for exploring various ITS issues. 
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