
Fast Recursive Formulations for Best-First Search 
That Allow Controlled Use of Memory 

Anup K. Sen and A. Bagchi 
Computer Aided Management Centre 

Indian Institute of Management Calcutta 
P. O. Box 16757, Calcutta - 700 027, INDIA 

Abstract 

MREC is a new recursive best-first search 
algorithm which combines the good features of 
A* and IDA* . It Is closer in operation to IDA*, 
and does not use an OPEN list. In order to 
execute, all MREC needs is sufficient memory 
for its implicit stack. But it can also be fed at 
runtime a parameter M which tells it how much 
additional memory is available for use. In this 
extra memory, MREC stores as much as 
possible of the explicit graph. When M = 0, 
MREC is identical to IDA*. But when M > 0, 
it can make far fewer node expansions than 
IDA* . This can be advantageous for problems 
where the time to expand a node is significant. 
Extensive runs on a variety of search problems, 
involving search graphs that may or may not be 
trees, indicate that MREC with M = 0 is as 
good as IDA* on problems such as the 15-
puzzle for which IDA* is suitable, while MREC 
with large M is as fast as A* on problems for 
which node expansion time is not negligible. 

1 Introduction 

Among best-first search algorithms, A* is the most 
widely used, because it is relatively simple to implement 
and executes quite fast on the average. But if runs short 
of memory when trying to solve random instances of the 
15-puzzle. IDA* [Korf, 1985], on the other hand, solves 
15-puzzle problem instances with ease. It is also 
straightforward to implement, and unlike A* , uses very 
little memory. But it is not able to take advantage of 
any additional memory that may be available. In this 
paper we present a new recursive best-first search 
algorithm MREC that combines the good features of A* 
and IDA* . It is closer in operation to IDA* and does 
not use an OPEN list. It runs on both trees and graphs, 
and takes care of loops in a simple and natural way. To 
solve a problem, all MREC needs is enough memory for 
its implicit stack. But MREC can also be fed at runtime 
a parameter M indicating how much extra memory it can 
use. When M = 0, MREC and IDA* are essentially 
identical in operation. When M is large, MREC keeps 
the entire explicit search graph in memory in an effort to 

restrict the total number of node expansions. In fact, no 
node is expanded more than once by MREC when 
sufficient memory is available. This is advantageous for 
problems where node expansion is time consuming. At 
intermediate values of M, MREC keeps as much of the 
explicit search graph in memory as possible. In such 
cases, MREC may expand a node more than once. In 
computer experiments undertaken by us on a wide 
variety of search problems, MREC compares most 
favourably in running time with both A* and IDA*. 
MREC has the additional advantage that it readily 
generalizes to AND/OR graphs, and is even able to 
accommodate directed cycles in such graphs (Sen, 1988]. 

2 How MREC Operates 

MREC can be viewed as a generalization of IDA*. The 
heart of the algorithm is a recursive procedure 
EXPLORE, which gets called upon at each iteration to 
explore the explicit search graph below the root node s. 
EXPLORE moves down a path in the explicit graph, 
making recursive calls to itself, until it encounters a tip 
node, i.e. a node which has no successors in the explicit 
graph. If sufficient memory is available, it expands the 
tip node n and adds the new nodes and edges to the 
explicit graph; otherwise, it peeps below n in the manner 
of IDA*, performing what may be called a virtual 
expansion of n. (In this case, the successors of n and the 
corresponding edges do not get added to the explicit 
graph). As in IDA*, a cutoff value is used for 
monitoring the downward movement. Thus MREC has a 
very simple structure. For convenience of explanation we 
have broken up EXPLORE into two smaller procedures 
EXPAND and UPDATE. Each explored node n in the 
graph has an associated value b(n) which gives the best 
estimate currently known of the minimum cost of a path 
from n to a goal node; b(n) initially equals the heuristic 
estimate h(n). The procedure EXPAND expands a tip 
node and adds the newly generated nodes and edges to 
the explicit graph. The procedure UPDATE explores the 
graph below a node and updates the b-values of nodes. 
When memory is in short supply, it makes a virtual 
expansion of the tip node. In the algorithm below, we 
store the output solution path in outpath. The explicit 
search graph and its associated parameters are assumed 
to be accessible to all the procedures. 

Sen and Bagchi 297 



Note that if for a successor n, of n, we have b(nI) < b(n) 
- c(nIn,), then NI gets explored. If, however, we have 
b(n) > b(n) - c(n,ni) for every successor n1 of n, then 
b(n) gets updated to min{b(n,) + c(n,n,)|. When memory 
is available, the explicit graph grows in size with more 
nodes and arcs getting added to it. When memory is not 
available, the explicit graph does not change and tip 

nodes remain tip nodes, but b-values of tip nodes 
increase as the exploration goes down deeper into the 
implicit search graph. When M is small, many nodes get 
expanded again and again, as in IDA* . With increase of 
M, the total time spent on node expansions goes down, 
but some time is consumed in updating the explicit 
graph. 

Example: For the network G shown in Fig. I the node 
expansion sequence when M = 0 is 

which is the same as that for IDA* . This assumes that 
successors are generated from left to right. With 
unlimited memory, the explicit graph at termination is 
shown in Fig.2. When the available memory can accom-

298 Search 



modate two expanded nodes with their successors, the 
explicit graph at termination is shown in Fig.3. Solid 
lines indicate edges present in the explicit graph, while 
dotted lines indicate edges which have been explored but 
not saved in memory. Nodes not saved in memory are 
marked by '*' 

We now enumerate some interesting properties of 
MREC: 

1. When M = 0, MREC expands nodes in the same 
sequence as IDA* . For M > 0, the node expansion 
sequences would not in general be identical. However, 

suppose we ignore reexpansions of a node, and only 
consider expansions of new nodes by the two algori­
thms. Then the node expansion sequences would again 
be identical. 

2. The node expansion sequence of MREC, even with 
unlimited memory, may not conform to that of A* . In 
general, MREC and A* output different solution paths. 

3. MREC never expands a node more than once if 
sufficient memory is available for storing the explicit 
graph. When available memory is limited, MREC may 
expand a node repeatedly; but the total number of node 
expansions never exceeds the number made by IDA*. 

4. When the heuristic estimate function is admissible, 
MREC finds a minimal cost solution path, just like A*. 
But the solution paths found by the two algorithms can 
be different. For inadmissible heuristics, even the costs 
of the output paths found by MREC and A* can be 
different. On the other hand, MREC and IDA* always 
output the same solution path. 

5. The worst-case running time of MREC, like that for 
A* and IDA*, can be exponential in the number of 
nodes in the search graph. 

3 Experimental Results 

To compare the running times of MREC, A* and IDA*, 
we ran the three algorithms on a variety of search 
problems. Programs were written in PASCAL, and the 

Sen and Bagchi 299 



machine used was the V A X 8550. A large number of 
runs were taken for each of the following problems, and 
also for some other problems not shown here [Sen, 
1988]. The tables in this paper give a selection of the 
results that were obtained. Care was taken to implement 
the algorithms as efficiently as possible. The OPEN set 
of A* was implemented as a priority queue. For search 
graphs that are not trees, a hashing technique was 
employed to check for duplicate nodes. In the tables, 
MREC (M = ) refers to the implementation of MREC 
assuming available memory is unlimited; it is then 
unnecessary to check in EXPLORE whether the memory 
bound has been exceeded. Again, when M = 0, 
EXPAND has no role to play since all expansions are 
virtual expansions; in this case, all references to 
EXPAND can be eliminated from the code. 

a) 8-puzzle and 15-puzzle : The goal node was fixed, 
and random, solvable initial configurations were 
generated. The search graph was represented as a tree. 
The Manhattan distance function was used as the 
heuristic. This heuristic is known to be admissible and 
consistent. One hundred instances of the 8-puzzle were 
solved by A * , IDA* and MREC (Table 1). The running 
time of MREC does not vary with change of M, so we 
arbitrarily chose M to be large. The table shows the 
running times, the number of nodes generated, and the 
number of nodes expanded (mean and standard 
deviation). For the 15-puzzle, 25 randomly generated 
instances were solved using IDA* and MREC (Table 2). 
For MREC, M is specified in terms of the number of 
nodes that can be stored in memory. As can be seen, 
there is very little variation in the running time of 
MREC as M is changed. The reason is that the time to 
expand a node and to calculate the heuristic estimates of 
successors is small; it is of the same order as the time 
taken to update the explicit graph and to retrieve stored 
values from it. 

b) Travell ing Salesman Problem (TSPJT) [Little et al, 
1963] : The well known method of Little et al. for 
solving the travelling salesman problem employs a depth-
first branch-and-bound technique. The search graph is a 
tree. The method can be easily modified to make the 
search best-first instead of depth-first. For the 30-city 
problem, 100 cost matrices were randomly generated. 
The matrices were asymmetric, and the costs did not 
necessarily satisfy the triangle inequality As can be seen 

T A B L E 3 : TSPJT 

Cities = 30 Mean Cost = 1616.03 
No. of r u m = 100 

time in 
algori thm seconds node gen node exp 

mean mean mean 

A* 3.69 1342.64 670.82 
MREC (M=∞) 3.57 1335.08 667.04 

300 Search 

from Table 3, A* and MREC (M = ∞) take almost the 
same time. Since the expansion time of a node is 
appreciable, there is no point in running either IDA* , or 
MREC with small values of M, on this problem. The 
original depth-first formulation of [Little et al., 1963] 
runs almost as fast as A* or MREC (M = ∞), and needs 
very little memory; on those grounds it would seem to 
be the preferred method. 

c) Rectangular Cutt ing Stock Problem (CRGKP) 
[Viswanathan and Bagchi, 1988] : Here we are given a 
single rectangular stock sheet S of length L and width 
W which must be cut (using guillotine cuts only) into N 
demanded rectangles of specified dimensions in such 
a way that total value is maximized and demand 
constraints on demanded rectangles are not violated. For 
given values of L, W and N, 25 problems were 
randomly generated, and A* and MREC (M = ∞) were 
run on them. The running times were almost the same 
for the two algorithms, since the node expansion time is 
very high (Table 4). The method of solution given in 
[Viswanathan and Bagchi, 1988] is such that depth-first 
methods become inapplicable, so IDA* , or MREC with 
small values of M, cannot be run at all. 

T A B L E 4 : CRGKP 

Length = 50 Wid th = 35 No. of rectangles = 10 

Mean Opt imal Value = 4974.40 No. of runs = 25 

time in 
algorithm seconds node gen node exp 

mean mean mean 

A* 2.58 2425.04 286.80 
MREC (M=∞) 2.55 2415.16 285.84 

d) General d-ary tree : Suppose we are given a uniform 
d-ary tree of unlimited depth with bi-directional edges of 
unit cost. There is a single goal node at a distance N 
from the root. The heuristic estimate of a node n is 
given by h(n) = r.h*(n), where h*(n) is the actual length 
of the shortest path from n to a goal node, and r is a 
random number between 0 and 1. The problem is to find 
a minimal cost solution path using a best-first search 
method (assuming of course that N is not known to the 
method). For d = 9 and N = 6, 100 problem instances 
were generated. The goal node position (at the specified 
depth) was randomly selected and h*-values were 
computed for all nodes; h-values were then generated 
using random values of r and tabulated in advance. 
These h-values were used in the search, and results are 
shown in Table 5. Here node expansion time is very 
small, but IDA* tends to make too many expansions, 
and MREC (M = ∞) appears to be the method of choice. 

e) Travell ing Salesman Problem (TSP_G) [Pearl, 1984, 
p.90] : The method of solution of the travelling salesman 
problem described in [Pearl, 1984, p.90] generates a 



search graph that is not a tree. The method is not 
efficient, and large instances of the travelling salesman 
problem cannot be solved, but it was nevertheless 
selected for study since very few search problems 
generate search graphs that are not trees. In our 
implementation, we randomly generated the x and y 
coordinates of each city, and computed and stored the 
distance matrix for use by all the algorithms. For the 
problem illustrated in Table 6, IDA* is not shown 
because it took a very long time to execute. The 
heuristic estimate function being consistent, no node is 
expanded more than once by A* ; moreover, node 
expansion time is appreciable. The running times of A* 
and MREC (M = ∞) are almost the same, and the 
running time of MREC increases sharply as M decreases. 
This is particularly noticeable here because the search 
graph is not a tree. Here, M can be viewed as the 
number of nontip nodes (along with their successor lists) 
that can be stored in the explicit graph. It is easy to 
express the total number of nodes in the explicit graph 
as a function of the number of nontip nodes and the 
branching factor [Sen, 1988]. 

5 Concluding Remarks 

Our findings from the experimental study are 
summarized below: 

1. When M is very small, MREC runs like IDA* , and 
is suitable for problems such as the 15-puzzle. When M 
is large, MREC runs as fast as A* on problems for 
which node expansion time is high. It is thus capable of 
serving the functions of both A* and IDA*. 

2. MREC can take advantage of additional memory and 
improve its performance by reducing the total number of 
node expansions when more memory is available. 

In ending, we describe another memory constraint 
algorithm L IMMARK [Sen, 1988]. This non-recursive 
algorithm is derived from the marking algorithm MarkA 
[Bagchi and Mahanti, 1985], and uses the idea of arc 
marking. Marking algorithms have the general advantage 
that they do not need to maintain large lists like OPEN. 
But a disadvantage of MarkA is that it always requires 
the entire explicit graph to be stored; moreover, it fails 
to work if the network has loops. L IMMARK was 
designed to get around these limitations. In practice, 
L IMMARK was found to be much slower than IDA* on 
the 8-puzzle and 15-puzzle problems although it made 
far fewer node expansions. But the main idea on which 
it is based appears to be worth consideration : deleting 
some (nonpromising) nodes and arcs from the explicit 
graph in order to accommodate newly generated nodes 
and arcs when memory is in short supply. This idea can 

Sen and Bagchi 301 



be tried out in certain problem domains. Extension of the 
same idea to recursive implementations also appears to 
hold some promise. MREC, as it stands now, makes a 
virtual expansion of a tip node when memory is 
unavailable; it is unable to store the graph below the tip 
node in such a case. Next time when it explores the 
same node, it is forced to reexpand the node. What 
could have been done instead is to remove some 
(nonpromising) nodes and successor arcs from the 
explicit graph and add the successor list of the newly 
expanded node to the graph. For example, we can 
remove nodes and arcs from the least recently explored 
path. This could, in principle, reduce the number of 
reexpansions of a node. The strategy wi l l succeed 
provided we are able to find out nonpromising nodes and 
arcs easily; an improper choice can lead to oscillations, 
the algorithm throwing a node out of the explicit graph 
but entering it again soon after. For the 8-puzzIe and 15-
puzzle problems, the Manhattan distance function is the 
commonest heuristic. When such a weak heuristic 
function is used, all paths in the explicit graph tend to 
appear equally promising and the method cannot be 
suitably applied. The idea is nevertheless interesting and 
deserves further study. A modified version of procedure 
EXPLORE incorporating the above idea is given below. 
There is no need here of any virtual expansion of a tip 
node in UPDATE. 

procedure EXPLORE(n:node;vor bnode:integer); 
begin 

if n is a goal node then 
begin terminate := true; return; end; 

if n is a tip node then 
begin 

if sufficient memory not available for 
storing successors of n 

then remove nonpromising nodes and arcs 
from the explicit graph; 

EXPAND(n); 
end; 

UPDATE(n,bnode); 
end; 

A memory constraint algorithm of a somewhat 
different kind, called M A * , has recently been proposed 
by Chakrabarti et al. [1989]. M A * is based on A* , and 
uses an OPEN list. Expansions are so controlled that 
successors get generated and added to OPEN one at a 
time. Nonpromising nodes get thrown out of OPEN 
when the memory bound is exceeded. Data on running 
time of M A * is unavailable, but as in the case of other 
pruning algorithms like L I M M A R K , the overheads are 
likely to be high. A comparative assessment of MREC 
and M A * has not been made yet. 

The algorithm MREC (M = ∞) can be readily 
generalized to heuristic search in AND/OR graphs with 
loops (see the recursive algorithm REC_A in [Sen, 
1988]). No existing marking algorithms for heuristic 
search in AND/OR graphs is able to take care of loops. 
Moreover, all established algorithms for AND/OR graphs 

are non-recursive in nature. We expect algorithm REC_A 
to run quite fast; its average performance is likely to be 
as good as, if not better than, that of existing marking 
algorithms for AND/OR graphs. It would be easy to 
reformulate REC__A to run under memory constraints. A 
detailed theoretical and empirical study of algorithm 
REC_A is yet to be undertaken. An alternative memory 
constraint algorithm for AND/OR graphs can be found in 
[Chakrabarti et al, 1989]. 

References 

[Bagchi and Mahanti, 1985] A. Bagchi and A. Mahanti, 
Three approaches to heuristic search in networks, 
JACM, vol.32, no.January 1985, pp.1-27. 

[Chakrabarti et al. 1989], P. P. Chakrabarti, S. Ghose, 
Arup Acharya and S. C. De Sarkar, Heuristic search 
in restricted memory, Artificial Intelligence, 
forthcoming. 

[Korf, 1985] Richard E. Korf, Depth-first iterative 
deepening : an optimal admissible search, Artificial 
Intelligence, vol.27, no. I , 1985, pp.97-109. 

[Little et al, 1963] J. D. C. Little, K. G. Murty, D. W. 
Sweeney and G. Karel, An algorithm for the 
travelling salesman problem, Operations Research, 
vol.11, 1963, pp.972-989. 

[Pearl, 1984] J. Pearl, Heuristics : Intelligent Search 
Strategies for Computer Problem Solving, Addison-
Wesley, Reading, Mass., 1984. 

[Sen, 1988] Anup K. Sen, Heuristic Search Algorithms : 
A Theoretical-Cum-Empirical Evaluation, Ph. D. 
Thesis, Department of Computer Science, University 
of Calcutta, November 1988. 

fViswanathan and Bagchi, 1988] K. V. Viswanathan and 
A. Bagchi, An exact best-first search procedure for 
the constrained rectangular guillotine knapsack 
problem, Proc. AAA1-88, St. Paul, U.S.A., August 
1988, pp. 145-149. 

302 Search 


