
Chart Parsing of Flowgraphs

Rudi Lutz
School of Cognitive and Computing Sciences

University of Sussex
Falmer, Brighton

England

Abstract
This paper will present a generalisation of chart
parsing able to cope with the case where the object
being parsed is a particular kind of diagram (a
flowgraph) and the grammar is an appropriate type
of graph grammar (a flowgraph grammar). A
feature that often occurs in such diagrams is structure
sharing. This paper also discusses the problem of
diagram recognition in the case where structure
sharing is allowed, noting that we want to permit
structure sharing, but not enforce it.

1 Introduction and Motivation.

Many applications make use of diagrams to represent complex
objects. Examples are electrical circuit diagrams and
Programmer's Apprentice [Rich, 1981] style plan diagrams. In
such applications it is often necessary to systematically
recognise how some diagram has been pieced together from
other diagrams. This is analogous to the parsing problem for
strings, and this paper will present a generalisation of chart
parsing [Thompson and Ritchie, 1984] able to cope with the
case where the object being parsed is some kind of diagram (a
flowgraph) and the grammar is an appropriate type of graph
grammar (a flowgraph grammar). Often the various components
of the diagrams can be regarded as producers of values which
are fed as inputs to other components which in turn produce
values to be passed on elsewhere. A feature that often occurs
is structure sharing, when one component feeds one or more of
its results to more than one other component (fan-out). In this
situation the source component can be viewed as playing more
than one role in the whole structure, and could have been
duplicated so that separate copies of the component were
responsible for each of these roles. This leads to no change in
functionality, although there may be a loss in efficiency as
measured by the number of components (electrical circuit
case), or computational effort and code size (plan diagram
case). This paper also discusses the problem of diagram
recognition in the case where structure sharing is allowed,
noting that we want to permit structure sharing, but not enforce
it.

The symmetric case of structure-sharing arising through
fan-in, rather than fan-out is not dealt with explicitly in this
paper. However, the parsing algorithm is easily modified to
cope with it, the neccessary modifications to the algorithm
being similar to those needed for fan-out. Tha algorithm

described in this paper has been implemented in POP-11.

2 Notation and Definitions.

Flowgraphs and flow grammars will be defined as special
cases of plex languages and plex grammars first studied by
Feder [1971]. A plex is a structure consisting of labelled nodes
having an arbitrary number, n, of distinct attaching points,
used to join nodes together. A node of this kind is called an n-
attaching point entity (NAPE). Attaching points of NAPEs are
not connected directly together, but are connected via
intermediate points known as tie-points. A single tie-point
may be responsible for connecting together two or more
attaching points. If the direction of the connections is important
then the plex is known as a directed plex. Many types of graph
structure (e.g. webs [Pfaltz and Rosenfeld, 1969, Rosenfeld
and Milgram, 1972], directed graphs, and indeed, strings) can
be regarded as special cases of directed plexes. We will only
consider the special case of directed plexes in which each
NAPE's attaching points (from now on called ports) arc
subdivided into two mutually exclusive groups, known as
input ports (restricted to only have incoming connections) and
output ports (restricted to only have outgoing connections).
We will further restrict ourselves to the special case in which
each port of a NAPE is only connected to a single tie-point.
This type of plex will be called a flowgraph and is a
generalisation of Brotsky's [1984] use of the term. Sec Figure
1 (top) for an example of a simple flowgraph.

Just as a set of strings constitutes a language, so a set of
plexes constitutes a plex language, and it is possible to define
a plex grammar and the plex language generated by a plex
grammar. Similar remarks apply to flowgraphs, webs, and
graphs etc.

A production in a string grammar specifies how one string
may be replaced by another, either in producing strings or in
recognising them. In plex grammars the same is true but we
encounter a difficulty (due to the 2-dimensional nature of
plexes) not apparent in the string case. In the string case a
production like

A ==> aXYb
applied to a string

....dAe.— (say)
results in the string

....daXYbe
and the question of how the replacement string is to be
embedded in the host string in place of A never arises because
there is a single obvious choice i.e. whatever is to the left of A

116 Tools

in the original string is to the left of the replacing string, and
similarly on the right. In the graph case we no longer have this
simple left-right ordering on the NAPEs and this question of
embedding becomes much more complicated. Most of the
discussion of this topic is in the web and graph grammar
literature (e.g. [Pfaltz and Rosenfeld, 1969, Rosenfeld and
Milgram, 1972]), but most of it applies (with some slight
modifications) to the flowgraph case as well. The approach
taken here is to specify with each production which tie-points
on the left hand side correspond to which tie-points on the right
and then connect everything connecting to one of these left
hand tie-points (from the surrounding subgraph) to its
corresponding right-hand tie-point.

We define a flowgraph grammar G to be a 4-tuple
(N,T,P,S) where:

N is a finite non-empty set of NAPEs known as
nonterminals.
T is a finite non-empty set of NAPEs known as terminals.
P is a finite set of productions.
S is a special member of N known as the initial (or start)
NAPE

and the intersection of N and T must be empty.
If we arbitrarily order the input and output ports of a NAPE

then each NAPE in a flowgraph can be represented in the form
of a triple

(NAPE-label, input list, output list)

where NAPE-label is the label on the NAPE, and input list is
a list in which the ith entry is the tie-point to which the ith input
port is connected. Similarly the output list specifies to which
tie-point each of the output ports is connected. Using this
convention a complete flowgraph G can be represented as a set
Gc (known as the component set) of such triples.

With the above conventions the productions in a flowgraph
grammar have the general form

where
A is known as the left-side structure, represented as a
component set
C is known as the right-side structure, represented as a
component set
L, is the left-side input tie-point list
R, is the right-side input tie-point list
Lo is the left-side output tie-point list, and
Ro is the right-side output tie-point list.

L1, and Rj must be of the same length, as must L and R , and
specify how an instance of the right-side structure is to be
embedded into a structure W containing an instance of the left-
side structure which is being rewritten according to the
production. The rewriting and embedding is done as follows:

The instance of the left-side structure is removed from W
and replaced by an instance of the right-side structure. Now, for
each tie-point X in L, any previous connections from NAPEs

Lutz 117

in W to X are replaced by connections from the same attaching
points of the same NAPEs to the corresponding tie-point in Rr
The same is done for tie-points in Lo and Ro. Note that one can
eliminate the need for explicit storing of R1 and Ro by simply
using the same variable names on the left and right hand sides
of the production to denote corresponding tie-points.

Just as in the string case, by considering various restrictions
on the form of X and Y in a production of the form:

X==>Y
one can arrive at the notions of context-sensitive, context-free,
and regular flowgraph languages [Ehrig, 1979]. In particular,
restricting the productions to have a single NAPE in their left-
side structure gives us the flowgraph equivalent of context-free
string languages, and we will only concern ourselves with
these from now on. In this case we no longer need to store L1
and Lo since the input and output lists of the single triple on the
left of the production already specify this information. See
Figure 1 for an example of the notation and of the rewriting
process.

3 Chart Parsing of Context-free Flowgraphs.
In a chart parser, assertions about what has been found by the
parsing algorithm are kept in a "database" known as the chart.
Such assertions will be called covering patches (or simply
patches), and are of two kinds - complete patches and partial
patches. A complete patch is a statement that a complete
grammatical entity (corresponding to some terminal or non­
terminal symbol of the grammar) has been found. Partial
patches are assertions that part of some grammatical entity has
been found, and about what would need to be found in order to
complete the grammatical entity concerned. One can think of
a patch as being a closed loop drawn round some subgraph of
the flowgraph, indicating that this subgraph corresponds to all
or part of some grammatical entity as defined by the grammar.
If we regard the right-side structures of rules as uninstantiated
templates, then complete patches with non-terminal labels
correspond to the occurrence of an instantiation of the right-
side structure of some rule, thus forming an occurrence of the
left-side structure of the rule. Partial patches correspond to
partially instantiated instances of the right-side structure of
some rule, and thus to partially recognised instances of the left-
sidestructure of the rule. Each patch A contains the following
information:

1) label(A) - the name of the grammatical entity
corresponding to the patch, and is always one of the
terminal .or non-terminal symbols of the grammar.

2) inputs(A) - a set of input tie-points for the patch.
3) outputs(A) - set of output tie-points for the patch.
4) components(- a list of the other patches involved

in making up this patch i.e. what other patches have
been used to recognise this patch.

5) needed(A) - a description of what else needs to be
found to complete the patch. In the case of a complete
patch this will be empty, and for partial patches will
be a flowgraph structure, represented as a list of
triples.

For a partial patch, the input and output tie-points (i.e. those by
which the patch connects to the surrounding flowgraph) are
each subdivided into two categories - the set of active tie-points
where the patch itself is still seeking other components to

attach to these tie-points, and the set of inactive tie-points
which are those which would be inputs or outputs of the patch
were it complete. A NAPE needed by a partial patch will be
called immediately needed if any of its tie-points are active.
The components entry of a patch lists (instantiated versions of)
those N APEs in the right hand side of the rule which have been
completely instantiated, and the needed entry lists uninstantiated
(as yet) parts of the rule. Note that some of the tie-points in the
needed entry may be instantiated. These are where the needed
NAPEs connect to the ones already found. We will say that a
partial patch A is extendable by a complete patch B (or that B
can extend A) in the case where A immediately needs a patch
of the same type as B and the instantiated tie-points in this
needed patch do not conflict with any instantiations actually
occurring in B.

The essence of the chart parsing strategy can then be stated
as follows:

Every time a complete patch is added to the chart a search
is made for any partial patches immediately needing a patch of
the sort just added at the appropriate place. For each of these
partial patches a new patch is made extending it by the
complete one, and this new patch is then added to an agenda of
patches to be processed at some appropriate time. Similarly,
every time a partial patch is added to the chart a search is made
for any complete patches which could be used to extend the
partial patch just added, and any are found new patches are
made which extend the partial one, and these are added to the
agenda to be processed when appropriate. Note that patches are
only ever added to the chart. They are never removed, thus
avoiding the need to redo work that has been done before.

Figure 2
It should be clear from this that the basic operation of the

algorithm is that of joining a complete patch to a partial patch
to make a new enlarged patch. Fig. 2 shows a partial patch
being joined to a complete patch to make a new patch (the
enclosing box). The resulting patch has the same items in its
components entry as the original partial patch plus the complete
patch. Its needed entry is equal to that of the original partial
patch minus the needed patch corresponding to the complete
patch. Note that the matching of a needed patch to an actual
complete patch may introduce further instantiations of tie-
points in the needed entry of the new patch. On connecting the

118 Tools

two patches all the inactive tie-points of the partial patch
remain inactive. Some of its active tie-points will correspond
to tie-points of the complete patch (this is where the two
patches actually join). Other active tie-points remain active in
the new patch since it is still looking for other patches to attach
to them. Of the complete patch's (input and output) tie-points
some have already been mentioned i .e. those connecting directly
to the partial patch. Others will become new inactive tie-points
of the resulting patch since it will not be looking for anything
to attach to them. However other (input and output) tie-points
of the complete patch may now become active (viewed as
belonging to the new patch) since it may now expect other
patches to attach to them in order to complete itself. Provided
all these distinctions are kept clear there is no great difficulty
in implementing the joining operation.

The initialisation of the chart and the agenda now needs to
be described. To begin with a complete patch is made for each
of the terminal NAPEs in the original graph, and these are
added to the agenda. If the algorithm is to be run top-down then

initialise chart and agenda;
until the agenda is empty do

pick a patch A from the agenda;
unless A is already in the chart then

add A to the chart;
if A is complete then

for each partial patch B in chart extendable by A do
make a new patch extending B with A and put on agenda;

endfor;
if bottom-up then

for each rule R in P such that rhs(R) has an input NAPE labelled by label(A) do
for each such NAPE X in R do

make new empty patch B with label(B)^lhs(R) and
needed(B)=rhs(R) with instantiations dependent on match between X and A and
inputs(B)=inputs(A) and
active-outputs(B)=inputs(A);

add B to agenda;
endfor;

endfor;
endif;

else
for each complete patch B in chart which can extend A do

make a new patch extending A with B and put on agenda;
endfor;
if top-down then

for each object C immediately needed by A do
for each rule R in P with lhs(R)=label(C) do

make new empty patch B with labcl(B)=label(C) and
needed(B)=rhs(R) with instantiations dependent on match between C and lhs(R) and
inputs(B)=inputs(C) and
active-outputs(B)=inputs(C);

add B to agenda;
endfor

endfor
endif

endif
endunless

enduntil;

Algorithm 1

an additional step is needed in which partial patches with
empty components entries are made for every rule in the
grammar whose left-side structure is labelled by the start
symbol of the grammar. Each such rule leads to several such
empty patches, one for each permutation of the input tie-points
of the original graph. The inactive-inputs and active-outputs
entries for each of these patches are the permuted inputs. The
needed entry is just the right-side structure of the rule with any
appropriate instantiations of the tie points occurring in it.

The complete algorithm is shown as Algorithm 1 below.
When it terminates the parse is regarded as successful if the
chart contains a complete patch for S, and the inputs and
outputs entries are the same as the input and output tie-points
of the graph being parsed.

The only remaining issue is how to organise the chart so
that it can be searched efficiently. The chart is first of all
divided into two parts, one for complete patches, and one for
partial. The part for complete patches is organised as two
arrays, one for indexing each patch by its inputs, and one for

Lutz 119

indexing by its outputs. So each complete patch is entered
several times into the chart, once for each of its inputs and
outputs. For further efficiency each of the elements in these
arrays is a hash table and the patches are actually entered into
these hashed by their label. This enables efficient retrieval of
all patches with a particular label at a particular place in the
graph. In a similar fashion partial patches are entered into their
part of the chart indexed by their input and output tie-points,
and hashed by the labels of each of the patches theY immediately
need. Note that there may be several of these.

Finally, note that a similar trick can be used to store the
grammar rules themselves in order to enable efficient retrieval
of appropriate rules.

4 Structure-Sharing Flowgraphs.

As stated in the introduction we are also interested in the case
where structure sharing is allowed. To make this more precise The reflexive, transitive, symmetric closure of collapses

is then an equivalence relation (share-equivalence) on the set
of flowgraphs, and we then want any parsing algorithm which
can recognise some graph G to also be able to recognise any
flowgraphs share-equivalent to G. We also want thegrammatical
formalism used to be able to generate not only the flowgraphs
derivable directly from the grammar, but also all share-
equivalent flowgraphs. This can be done if we allow at any
point in the generation of a flowgraph the replacement of the
graph so far generated (G1) by any graph G2 for which either
Gl collapses G2 or G2 collapses G l . A flowgraph grammar
with the addition of this rewriting rule will be referred to as a
structure sharing flowgraph grammar (a SSFG). Figure 3
illustrates several phenomena that can occur with SSFGs, and
which motivated the above definition.

To see how the chart parsing algorithm can be modified to
cope with SSFGs it should first be noted that for any flowgraph
G there is a smallest flowgraph Gmin which is share-equivalent
to G. Secondly it should be noted that the right-side structure
of any rule in a SSFG can be replaced by any flowgraph share-
equivalent to it without altering the generative capacity of the
grammar. Wecan therefore define a canonical form fora SSFG
in which each rule of the form:

A = = > B
has been replaced by the rule:

A ==> B .
m m

So the first change to the algorithm is actually to change the
grammar to its canonical form, and to use this new form of the
grammar for parsing. The second change is to the action of
adding a complete patch to the chart. Previously the only check
that was done was to see if the patch was already in the chart.
Now the algorithm must additionally check that there is no
other patch with the same label and the same inputs in the chart.
If there is then the algorithm must collapse the new patch and
the one that was there already into a single patch with a new set
of output tie-points and identify the original outputs of the two
patches with these new tie-points. Provided tie-points in the
various triples making up the patches are represented as
pointers to pointers to tie-points (rather than storing the tie-
points directly in the triples) then simply changing the values
of the second set of pointers will implement the identification
universally throughout all patches in the chart. If the information
that this has been done is needed by an application the algorithm
can make a note of this fact either by annotating the tie-points

120 Tools

involved or by an assertion held separately.

5 Discussion
Although there is quite a lot of literature on the generative
abilities of various types of graph grammar formalisms (see
e.g. [Ehrig, 1979, Feder, 1971, Fu, 1974, Gonzalez and
Thomason, 1978, Pfaltz and Rosenfeld, 1969, Rosenfeld and
Milgram, 1972]), there is relatively little on parsing strategies,
except for rather restricted classes of graph and web grammars
[e.g.Della Vigna and Ghezzi, 1978]. In its top-down strictly
left-to-right form chart parsing of context-free suing languages
corresponds to Earley's algorithm [Earley, 1970], which was
generalised by Brotsky [1984] to parsing flowgraphs of the
kind described here, except that his algorithm could not cope
with fan-out at tie-points. However the approach laken here
can also run bottom-up, and can cope with the case in which
there is fan-out. Running bottom-up is particularly useful in
applications in which we want to recognise as much as possible
even though full recognition may be impossible (because of
errors in the graph, or because the grammar is neccessarily
incomplete). Zelinka [1986] has modified Brotsky's algorithm
to cope with fan-out, but her algorithm only runs in a psuudo-
bottom-up fashion by starting it running top-down looking for
every possible non-terminal at every possible place in the
graph. As discussed earlier the algorithm presented here is also
easily modified to cope with structure sharing in a natural way,
and indeed can also be easily generalised to run right-to-left as
well as left-to-right. It can also be easily modified to cope with
fan-in at tie-points.

A particular advantage of a chart parser is that it quite
explicitly keeps a record of all partial patches it finds. This is
useful in applications for which we may not just wish to verify
that some graph can be generated from some grammar, but also
to enable the system to make suggestions based on "near-miss"
information about how to correct the graph. It is in such
applications that it may be useful to modify the algorithm to run
right-to-left as well, since this may enable one to find more
"near-misses" (i.e. those missing their start NAPEs) than one
would find if the parser only ran left-to-right.

The algorithm presented here runs in time polynomial in
the size (measured by the number of tie-points T) of the graph
being parsed provided that we do not allow the right-hand sides
of rules to have "dangling" points (i.e. tie-points which are
neither input or output tie-points of the rule, but which do not
have both incoming and outgoing connections). If we allow
these then there are graphs for which the algorithm will take
time exponential in the size of the graph. Some intuition into
why the algorithm runs in polynomial time can be gained if one
considers the maximum number of possible patches that can be
built The algorithm only distinguishes patches which differ in
at least one of their input tie-points, their output tie-points, or
their label. Th e maximum number (K) of inputs andmaximum
number (M) of outputs in a patch is determined by the
grammar, as is the number of possible labels (L). So the
number of possible patches is bounded above by the product of
L and the number of possible ways of selecting at most K out
of T tie-points, and the number of ways of choosing at most M
out of T tie-points. This gives us 0(L.TK+M) patches altogether.
Stemming from this fact a careful analysis then shows that the
whole algorithm only takes timepolynomial in T. Full details

will appear in a future paper. In this connection it should be
noted that although the algorithm performs flowgraph
recognition in polynomial time, it does not find all parses in
polynomial time. This is because for some flowgraphs and
some grammars there may well be an exponential number of
parses (this is also true of Earley's algorithm operating on
strings!). The algorithm will however find a parse if one exists.
If an application requires all possible parses, then the algorithm
can be modified to store any patch which is equal to one already
in the chart in terms of its inputs, outputs, and label, but not
equal in terms of its components, in an auxiliary data structure.
At the end of the parsing there will then be enough information
around in the chart to enable subsequent calculation of all the
possible parses.

References
[Brotsky, 1984] Brotsky, D.C. An Algorithm for Parsing Flow
Graphs. Technical Report AI-TR-704 MIT Artificial
Intelligence Laboratory, 1984.
[Delia Vigna and Ghezzi, 1978] Delia Vigna, P. and Ghezzi, C.
Context Free Graph Grammars. Information and Control 37,
pp. 207-233,1978.
[Earley, 1970] Earley J. An Efficient Context-Free Parsing
Algorithm. CACM 13(2) pp.94-102,1970.
[Ehrig, 1979] Ehrig H. Introduction to the Algebraic Theory
of Graph Grammars (A Survey). Graph Grammars and their
Application to Computer Science and Biology, (eds. Claus, V.,
Ehrig, H. and Rozenberg, G.) Lecture Notes in Computer
Science, Springer-Verlag, 1979.
[Feder, 1971] Feder, J. Plex Languages. Information Sciences,
Vol. 3, pp. 225-241, 1971.
[Fu, 1974] Fu, K.S. Syntactic Methods in Pattern Recognition,
New York: Academic Press, 1974.
[Gonzalez and Thomason, 1978] Gonzalez,R.C. and Thomason,
M.G. Syntactic Pattern Recognition: An Introduction. Addison-
Wesley, 1978.
[Pfaltz and Rosenfeld, 1969] Pfaltz, J.L., and Rosenfeld, A.
Web Grammars. Proc. IJCAI 1, pp. 609-619,1969.
[Rich, 1981] Rich C. Inspection Methods in Programming
MIT Artificial Intelligence Laboratory AI-TR-604,1981.
[Rosenfeld and Milgram, 1972] Rosenfeld, A. and Milgram,
D.L. Web Automata and Web Grammars. Machine Intelligence
1 pp.307-324 (eds. Meltzer, B. and Michie, D.) Edinburgh
University Press, 1972.
[Thompson and Ritchie, 1984] Thompson H. and Ritchie, G.
ImplementingNatural Language Parsers. Artificial Intelligence:
Tools, Techniques, andApplicationspp.245-300 (eds. O'Shea,
T. and Eisenstadt, M.) Harper and Row, 1984.
[Zelinka, 1986] Zelinka, L.M. Automated Program Recognition.
MSc Thesis MIT Dept. Electrical Engineering and Computer
Science, 1986.

Lutz 121

