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Abstract 
This paper will present a generalisation of chart 
parsing able to cope with the case where the object 
being parsed is a particular kind of diagram (a 
flowgraph) and the grammar is an appropriate type 
of graph grammar (a flowgraph grammar). A 
feature that often occurs in such diagrams is structure 
sharing. This paper also discusses the problem of 
diagram recognition in the case where structure 
sharing is allowed, noting that we want to permit 
structure sharing, but not enforce it. 

1 Introduction and Motivation. 

Many applications make use of diagrams to represent complex 
objects. Examples are electrical circuit diagrams and 
Programmer's Apprentice [Rich, 1981] style plan diagrams. In 
such applications it is often necessary to systematically 
recognise how some diagram has been pieced together from 
other diagrams. This is analogous to the parsing problem for 
strings, and this paper will present a generalisation of chart 
parsing [Thompson and Ritchie, 1984] able to cope with the 
case where the object being parsed is some kind of diagram (a 
flowgraph) and the grammar is an appropriate type of graph 
grammar (a flowgraph grammar). Often the various components 
of the diagrams can be regarded as producers of values which 
are fed as inputs to other components which in turn produce 
values to be passed on elsewhere. A feature that often occurs 
is structure sharing, when one component feeds one or more of 
its results to more than one other component (fan-out). In this 
situation the source component can be viewed as playing more 
than one role in the whole structure, and could have been 
duplicated so that separate copies of the component were 
responsible for each of these roles. This leads to no change in 
functionality, although there may be a loss in efficiency as 
measured by the number of components (electrical circuit 
case), or computational effort and code size (plan diagram 
case). This paper also discusses the problem of diagram 
recognition in the case where structure sharing is allowed, 
noting that we want to permit structure sharing, but not enforce 
it. 

The symmetric case of structure-sharing arising through 
fan-in, rather than fan-out is not dealt with explicitly in this 
paper. However, the parsing algorithm is easily modified to 
cope with it, the neccessary modifications to the algorithm 
being similar to those needed for fan-out. Tha algorithm 

described in this paper has been implemented in POP-11. 

2 Notation and Definitions. 

Flowgraphs and flow grammars will be defined as special 
cases of plex languages and plex grammars first studied by 
Feder [1971]. A plex is a structure consisting of labelled nodes 
having an arbitrary number, n, of distinct attaching points, 
used to join nodes together. A node of this kind is called an n-
attaching point entity (NAPE). Attaching points of NAPEs are 
not connected directly together, but are connected via 
intermediate points known as tie-points. A single tie-point 
may be responsible for connecting together two or more 
attaching points. If the direction of the connections is important 
then the plex is known as a directed plex. Many types of graph 
structure (e.g. webs [Pfaltz and Rosenfeld, 1969, Rosenfeld 
and Milgram, 1972], directed graphs, and indeed, strings) can 
be regarded as special cases of directed plexes. We will only 
consider the special case of directed plexes in which each 
NAPE's attaching points (from now on called ports) arc 
subdivided into two mutually exclusive groups, known as 
input ports (restricted to only have incoming connections) and 
output ports (restricted to only have outgoing connections). 
We will further restrict ourselves to the special case in which 
each port of a NAPE is only connected to a single tie-point. 
This type of plex will be called a flowgraph and is a 
generalisation of Brotsky's [1984] use of the term. Sec Figure 
1 (top) for an example of a simple flowgraph. 

Just as a set of strings constitutes a language, so a set of 
plexes constitutes a plex language, and it is possible to define 
a plex grammar and the plex language generated by a plex 
grammar. Similar remarks apply to flowgraphs, webs, and 
graphs etc. 

A production in a string grammar specifies how one string 
may be replaced by another, either in producing strings or in 
recognising them. In plex grammars the same is true but we 
encounter a difficulty (due to the 2-dimensional nature of 
plexes) not apparent in the string case. In the string case a 
production like 

A ==> aXYb 
applied to a string 

....dAe.— (say) 
results in the string 

....daXYbe 
and the question of how the replacement string is to be 
embedded in the host string in place of A never arises because 
there is a single obvious choice i.e. whatever is to the left of A 
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in the original string is to the left of the replacing string, and 
similarly on the right. In the graph case we no longer have this 
simple left-right ordering on the NAPEs and this question of 
embedding becomes much more complicated. Most of the 
discussion of this topic is in the web and graph grammar 
literature (e.g. [Pfaltz and Rosenfeld, 1969, Rosenfeld and 
Milgram, 1972]), but most of it applies (with some slight 
modifications) to the flowgraph case as well. The approach 
taken here is to specify with each production which tie-points 
on the left hand side correspond to which tie-points on the right 
and then connect everything connecting to one of these left 
hand tie-points (from the surrounding subgraph) to its 
corresponding right-hand tie-point. 

We define a flowgraph grammar G to be a 4-tuple 
(N,T,P,S) where: 

N is a finite non-empty set of NAPEs known as 
nonterminals. 
T is a finite non-empty set of NAPEs known as terminals. 
P is a finite set of productions. 
S is a special member of N known as the initial (or start) 
NAPE 

and the intersection of N and T must be empty. 
If we arbitrarily order the input and output ports of a NAPE 

then each NAPE in a flowgraph can be represented in the form 
of a triple 

(NAPE-label, input list, output list) 

where NAPE-label is the label on the NAPE, and input list is 
a list in which the ith entry is the tie-point to which the ith input 
port is connected. Similarly the output list specifies to which 
tie-point each of the output ports is connected. Using this 
convention a complete flowgraph G can be represented as a set 
Gc (known as the component set) of such triples. 

With the above conventions the productions in a flowgraph 
grammar have the general form 

where 
A is known as the left-side structure, represented as a 
component set 
C is known as the right-side structure, represented as a 
component set 
L, is the left-side input tie-point list 
R, is the right-side input tie-point list 
Lo is the left-side output tie-point list, and 
Ro is the right-side output tie-point list. 

L1, and Rj must be of the same length, as must L and R , and 
specify how an instance of the right-side structure is to be 
embedded into a structure W containing an instance of the left-
side structure which is being rewritten according to the 
production. The rewriting and embedding is done as follows: 

The instance of the left-side structure is removed from W 
and replaced by an instance of the right-side structure. Now, for 
each tie-point X in L, any previous connections from NAPEs 
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in W to X are replaced by connections from the same attaching 
points of the same NAPEs to the corresponding tie-point in Rr 
The same is done for tie-points in Lo and Ro. Note that one can 
eliminate the need for explicit storing of R1 and Ro by simply 
using the same variable names on the left and right hand sides 
of the production to denote corresponding tie-points. 

Just as in the string case, by considering various restrictions 
on the form of X and Y in a production of the form: 

X==>Y 
one can arrive at the notions of context-sensitive, context-free, 
and regular flowgraph languages [Ehrig, 1979]. In particular, 
restricting the productions to have a single NAPE in their left-
side structure gives us the flowgraph equivalent of context-free 
string languages, and we will only concern ourselves with 
these from now on. In this case we no longer need to store L1 
and Lo since the input and output lists of the single triple on the 
left of the production already specify this information. See 
Figure 1 for an example of the notation and of the rewriting 
process. 

3 Chart Parsing of Context-free Flowgraphs. 
In a chart parser, assertions about what has been found by the 
parsing algorithm are kept in a "database" known as the chart. 
Such assertions will be called covering patches (or simply 
patches), and are of two kinds - complete patches and partial 
patches. A complete patch is a statement that a complete 
grammatical entity (corresponding to some terminal or non­
terminal symbol of the grammar) has been found. Partial 
patches are assertions that part of some grammatical entity has 
been found, and about what would need to be found in order to 
complete the grammatical entity concerned. One can think of 
a patch as being a closed loop drawn round some subgraph of 
the flowgraph, indicating that this subgraph corresponds to all 
or part of some grammatical entity as defined by the grammar. 
If we regard the right-side structures of rules as uninstantiated 
templates, then complete patches with non-terminal labels 
correspond to the occurrence of an instantiation of the right-
side structure of some rule, thus forming an occurrence of the 
left-side structure of the rule. Partial patches correspond to 
partially instantiated instances of the right-side structure of 
some rule, and thus to partially recognised instances of the left-
sidestructure of the rule. Each patch A contains the following 
information: 

1) label(A) - the name of the grammatical entity 
corresponding to the patch, and is always one of the 
terminal .or non-terminal symbols of the grammar. 

2) inputs(A) - a set of input tie-points for the patch. 
3) outputs(A) - set of output tie-points for the patch. 
4) components( - a list of the other patches involved 

in making up this patch i.e. what other patches have 
been used to recognise this patch. 

5) needed(A) - a description of what else needs to be 
found to complete the patch. In the case of a complete 
patch this will be empty, and for partial patches will 
be a flowgraph structure, represented as a list of 
triples. 

For a partial patch, the input and output tie-points (i.e. those by 
which the patch connects to the surrounding flowgraph) are 
each subdivided into two categories - the set of active tie-points 
where the patch itself is still seeking other components to 

attach to these tie-points, and the set of inactive tie-points 
which are those which would be inputs or outputs of the patch 
were it complete. A NAPE needed by a partial patch will be 
called immediately needed if any of its tie-points are active. 
The components entry of a patch lists (instantiated versions of) 
those N APEs in the right hand side of the rule which have been 
completely instantiated, and the needed entry lists uninstantiated 
(as yet) parts of the rule. Note that some of the tie-points in the 
needed entry may be instantiated. These are where the needed 
NAPEs connect to the ones already found. We will say that a 
partial patch A is extendable by a complete patch B (or that B 
can extend A) in the case where A immediately needs a patch 
of the same type as B and the instantiated tie-points in this 
needed patch do not conflict with any instantiations actually 
occurring in B. 

The essence of the chart parsing strategy can then be stated 
as follows: 

Every time a complete patch is added to the chart a search 
is made for any partial patches immediately needing a patch of 
the sort just added at the appropriate place. For each of these 
partial patches a new patch is made extending it by the 
complete one, and this new patch is then added to an agenda of 
patches to be processed at some appropriate time. Similarly, 
every time a partial patch is added to the chart a search is made 
for any complete patches which could be used to extend the 
partial patch just added, and any are found new patches are 
made which extend the partial one, and these are added to the 
agenda to be processed when appropriate. Note that patches are 
only ever added to the chart. They are never removed, thus 
avoiding the need to redo work that has been done before. 

Figure 2 
It should be clear from this that the basic operation of the 

algorithm is that of joining a complete patch to a partial patch 
to make a new enlarged patch. Fig. 2 shows a partial patch 
being joined to a complete patch to make a new patch (the 
enclosing box). The resulting patch has the same items in its 
components entry as the original partial patch plus the complete 
patch. Its needed entry is equal to that of the original partial 
patch minus the needed patch corresponding to the complete 
patch. Note that the matching of a needed patch to an actual 
complete patch may introduce further instantiations of tie-
points in the needed entry of the new patch. On connecting the 
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two patches all the inactive tie-points of the partial patch 
remain inactive. Some of its active tie-points will correspond 
to tie-points of the complete patch (this is where the two 
patches actually join). Other active tie-points remain active in 
the new patch since it is still looking for other patches to attach 
to them. Of the complete patch's (input and output) tie-points 
some have already been mentioned i .e. those connecting directly 
to the partial patch. Others will become new inactive tie-points 
of the resulting patch since it will not be looking for anything 
to attach to them. However other (input and output) tie-points 
of the complete patch may now become active (viewed as 
belonging to the new patch) since it may now expect other 
patches to attach to them in order to complete itself. Provided 
all these distinctions are kept clear there is no great difficulty 
in implementing the joining operation. 

The initialisation of the chart and the agenda now needs to 
be described. To begin with a complete patch is made for each 
of the terminal NAPEs in the original graph, and these are 
added to the agenda. If the algorithm is to be run top-down then 

initialise chart and agenda; 
until the agenda is empty do 

pick a patch A from the agenda; 
unless A is already in the chart then 

add A to the chart; 
if A is complete then 

for each partial patch B in chart extendable by A do 
make a new patch extending B with A and put on agenda; 

endfor; 
if bottom-up then 

for each rule R in P such that rhs(R) has an input NAPE labelled by label(A) do 
for each such NAPE X in R do 

make new empty patch B with label(B)^lhs(R) and 
needed(B)=rhs(R) with instantiations dependent on match between X and A and 
inputs(B)=inputs(A) and 
active-outputs(B)=inputs(A); 

add B to agenda; 
endfor; 

endfor; 
endif; 

else 
for each complete patch B in chart which can extend A do 

make a new patch extending A with B and put on agenda; 
endfor; 
if top-down then 

for each object C immediately needed by A do 
for each rule R in P with lhs(R)=label(C) do 

make new empty patch B with labcl(B)=label(C) and 
needed(B)=rhs(R) with instantiations dependent on match between C and lhs(R) and 
inputs(B)=inputs(C) and 
active-outputs(B )=inputs(C); 

add B to agenda; 
endfor 

endfor 
endif 

endif 
endunless 

enduntil; 

Algorithm 1 

an additional step is needed in which partial patches with 
empty components entries are made for every rule in the 
grammar whose left-side structure is labelled by the start 
symbol of the grammar. Each such rule leads to several such 
empty patches, one for each permutation of the input tie-points 
of the original graph. The inactive-inputs and active-outputs 
entries for each of these patches are the permuted inputs. The 
needed entry is just the right-side structure of the rule with any 
appropriate instantiations of the tie points occurring in it. 

The complete algorithm is shown as Algorithm 1 below. 
When it terminates the parse is regarded as successful if the 
chart contains a complete patch for S, and the inputs and 
outputs entries are the same as the input and output tie-points 
of the graph being parsed. 

The only remaining issue is how to organise the chart so 
that it can be searched efficiently. The chart is first of all 
divided into two parts, one for complete patches, and one for 
partial. The part for complete patches is organised as two 
arrays, one for indexing each patch by its inputs, and one for 
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indexing by its outputs. So each complete patch is entered 
several times into the chart, once for each of its inputs and 
outputs. For further efficiency each of the elements in these 
arrays is a hash table and the patches are actually entered into 
these hashed by their label. This enables efficient retrieval of 
all patches with a particular label at a particular place in the 
graph. In a similar fashion partial patches are entered into their 
part of the chart indexed by their input and output tie-points, 
and hashed by the labels of each of the patches theY immediately 
need. Note that there may be several of these. 

Finally, note that a similar trick can be used to store the 
grammar rules themselves in order to enable efficient retrieval 
of appropriate rules. 

4 Structure-Sharing Flowgraphs. 

As stated in the introduction we are also interested in the case 
where structure sharing is allowed. To make this more precise The reflexive, transitive, symmetric closure of collapses 

is then an equivalence relation (share-equivalence) on the set 
of flowgraphs, and we then want any parsing algorithm which 
can recognise some graph G to also be able to recognise any 
flowgraphs share-equivalent to G. We also want thegrammatical 
formalism used to be able to generate not only the flowgraphs 
derivable directly from the grammar, but also all share-
equivalent flowgraphs. This can be done if we allow at any 
point in the generation of a flowgraph the replacement of the 
graph so far generated (G1) by any graph G2 for which either 
Gl collapses G2 or G2 collapses G l . A flowgraph grammar 
with the addition of this rewriting rule will be referred to as a 
structure sharing flowgraph grammar (a SSFG). Figure 3 
illustrates several phenomena that can occur with SSFGs, and 
which motivated the above definition. 

To see how the chart parsing algorithm can be modified to 
cope with SSFGs it should first be noted that for any flowgraph 
G there is a smallest flowgraph Gmin which is share-equivalent 
to G. Secondly it should be noted that the right-side structure 
of any rule in a SSFG can be replaced by any flowgraph share-
equivalent to it without altering the generative capacity of the 
grammar. Wecan therefore define a canonical form fora SSFG 
in which each rule of the form: 

A = = > B 
has been replaced by the rule: 

A ==> B . 
m m 

So the first change to the algorithm is actually to change the 
grammar to its canonical form, and to use this new form of the 
grammar for parsing. The second change is to the action of 
adding a complete patch to the chart. Previously the only check 
that was done was to see if the patch was already in the chart. 
Now the algorithm must additionally check that there is no 
other patch with the same label and the same inputs in the chart. 
If there is then the algorithm must collapse the new patch and 
the one that was there already into a single patch with a new set 
of output tie-points and identify the original outputs of the two 
patches with these new tie-points. Provided tie-points in the 
various triples making up the patches are represented as 
pointers to pointers to tie-points (rather than storing the tie-
points directly in the triples) then simply changing the values 
of the second set of pointers will implement the identification 
universally throughout all patches in the chart. If the information 
that this has been done is needed by an application the algorithm 
can make a note of this fact either by annotating the tie-points 
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involved or by an assertion held separately. 

5 Discussion 
Although there is quite a lot of literature on the generative 
abilities of various types of graph grammar formalisms (see 
e.g. [Ehrig, 1979, Feder, 1971, Fu, 1974, Gonzalez and 
Thomason, 1978, Pfaltz and Rosenfeld, 1969, Rosenfeld and 
Milgram, 1972]), there is relatively little on parsing strategies, 
except for rather restricted classes of graph and web grammars 
[e.g.Della Vigna and Ghezzi, 1978]. In its top-down strictly 
left-to-right form chart parsing of context-free suing languages 
corresponds to Earley's algorithm [Earley, 1970], which was 
generalised by Brotsky [1984] to parsing flowgraphs of the 
kind described here, except that his algorithm could not cope 
with fan-out at tie-points. However the approach laken here 
can also run bottom-up, and can cope with the case in which 
there is fan-out. Running bottom-up is particularly useful in 
applications in which we want to recognise as much as possible 
even though full recognition may be impossible (because of 
errors in the graph, or because the grammar is neccessarily 
incomplete). Zelinka [ 1986] has modified Brotsky's algorithm 
to cope with fan-out, but her algorithm only runs in a psuudo-
bottom-up fashion by starting it running top-down looking for 
every possible non-terminal at every possible place in the 
graph. As discussed earlier the algorithm presented here is also 
easily modified to cope with structure sharing in a natural way, 
and indeed can also be easily generalised to run right-to-left as 
well as left-to-right. It can also be easily modified to cope with 
fan-in at tie-points. 

A particular advantage of a chart parser is that it quite 
explicitly keeps a record of all partial patches it finds. This is 
useful in applications for which we may not just wish to verify 
that some graph can be generated from some grammar, but also 
to enable the system to make suggestions based on "near-miss" 
information about how to correct the graph. It is in such 
applications that it may be useful to modify the algorithm to run 
right-to-left as well, since this may enable one to find more 
"near-misses" (i.e. those missing their start NAPEs) than one 
would find if the parser only ran left-to-right. 

The algorithm presented here runs in time polynomial in 
the size (measured by the number of tie-points T) of the graph 
being parsed provided that we do not allow the right-hand sides 
of rules to have "dangling" points (i.e. tie-points which are 
neither input or output tie-points of the rule, but which do not 
have both incoming and outgoing connections). If we allow 
these then there are graphs for which the algorithm will take 
time exponential in the size of the graph. Some intuition into 
why the algorithm runs in polynomial time can be gained if one 
considers the maximum number of possible patches that can be 
built The algorithm only distinguishes patches which differ in 
at least one of their input tie-points, their output tie-points, or 
their label. Th e maximum number (K) of inputs andmaximum 
number (M) of outputs in a patch is determined by the 
grammar, as is the number of possible labels (L). So the 
number of possible patches is bounded above by the product of 
L and the number of possible ways of selecting at most K out 
of T tie-points, and the number of ways of choosing at most M 
out of T tie-points. This gives us 0(L.TK+M) patches altogether. 
Stemming from this fact a careful analysis then shows that the 
whole algorithm only takes timepolynomial in T. Full details 

will appear in a future paper. In this connection it should be 
noted that although the algorithm performs flowgraph 
recognition in polynomial time, it does not find all parses in 
polynomial time. This is because for some flowgraphs and 
some grammars there may well be an exponential number of 
parses (this is also true of Earley's algorithm operating on 
strings!). The algorithm will however find a parse if one exists. 
If an application requires all possible parses, then the algorithm 
can be modified to store any patch which is equal to one already 
in the chart in terms of its inputs, outputs, and label, but not 
equal in terms of its components, in an auxiliary data structure. 
At the end of the parsing there will then be enough information 
around in the chart to enable subsequent calculation of all the 
possible parses. 
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