
LEARNING STRATEGIES BY REASONING ABOUT RULES 

D. Paul Benjamin 

Philips Laboratories, North American Philips Corporation 
345 Scarborough Road Briarcliff Manor, NY 10510 

ABSTRACT 

One of the major 'weaknesses of current automated 
reasoning systems is that they lack the ability to con­
trol inference in a sophisticated, context-directed 
fashion. General strategies such as the set-of-support 
strategy are useful, but have proven inadequate for 
many individual problems. A strategy component is 
needed that possesses knowledge about many particu­
lar domains and problems. Such a body of knowledge 
would require a prohibitive amount of time to con­
struct by hand. This leads us to consider means of 
automatically acquiring control knowledge from exam­
ple proofs. One particular means of learning is 
explanation-based learning. This paper analyzes the 
basis of explanations — finding weakest preconditions 
that enable a particular rule to fire — to derive a 
representation within which explanations can be 
extracted from examples, generalized and used to guide 
the actions of a problem-solving system. 

1. Int roduct ion 
The current generation of automated reasoning 

systems is characterized by very sophisticated inference 
mechanisms but relatively simple mechanisms for guid­
ing inference. Typical strategies consider the set of 
existing clauses (the "clause space") and the recency of 
derivation of each clause. Useful general strategies can 
be formulated with this information. Unfortunately, 
these weak strategies have proven inadequate in many 
instances. 

In order for a strategy to be able to respond to 
features of individual problems and domains it must 
have access to a large body of knowledge. In addition, 
it must take into account more types of information 
than just the clause space and the recency of the 
clauses. This paper describes how strategy information 
can be automatically learned from examples by 
explanation-based learning, and presents a 
metalanguage that permits the use of more sophisti­
cated strategies and facilitates the analysis of 
explanations. 

Explanation-based learning is a widely-used tech­
nique in AI [10] [12] [13] [15], It has been used to gen­
eralize methods within a top-down problem-solver, to 
generalize control information, to facilitate interaction 
with users, and to refine knowledge bases. Logically 
formulating explanation-based learning provides us 
with two strengths that logic typically contributes to 
the problem-solving process: 

A precise notation for describing explanation-
based learning; 
The precise semantics of logic, which provides a 
semantics for precondition-based reasoning [16]. 

Also, formulating explanation-based reasoning within a 
logical framework permits its application to areas of 
mathematics for which standard axiomatizations exist, 
such as group theory. This opens the possibility of 
using explanation-based learning to acquire general 
strategies to guide theorem-proving systems in such 
domains. This paper presents one facet of our research 
on metatheoretical formulation of strategies [l] [3] [2]. 

2. Formalizing Explanations 
In order to be able to use explanation-based learn­

ing in a wide variety of domains and to more fully 
understand its strengths and weaknesses, it is desirable 
to formalize the use of explanations. We present a sys­
tem which formalizes the organization, acquisition and 
generalization of control rules. 

Many production system ]14] architectures distin­
guish between two types of information. The first type 
consists of the rules for manipulating the objects in the 
task environment, often called the object-level" rules. 
We will consider the system to be initially provided 
with a fixed set of object-level rules. We can think of 
these rules as corresponding to the statements in a pro­
gramming language. The second type of information 
contains the knowledge about how to fire the object-
level rules in order to successfully achieve a goal. This 
information is sometimes referred to as "meta-level" 
information [6l. We can think of this information as 
descriptions or programs written in the language of 
object-level rules. We use a production system as the 
object-level language in order to illustrate the useful­
ness of this approach to an existing AI programming 
system, and to take advantage of the conflict set, a 
data structure that contains the set of fully instan­
tiated rules. Production systems compute the conflict 
set, but theorem-proving programs typically do not. 

The object-level rules contain all the initial 
domain-specific procedural knowledge in the system, 
and therefore constitute a model of problem-solving in 
the domain. An object-level rule can be viewed as a 
transformation, and an example execution trace is then 
a sequence of transformations leading from the initial 
state to the goal state. Thus, an example execution 
trace is a proof that the goal state is reachable from 
the initial state via the object-level rule set, or 
alternatively, that the initial state is a sufficient 
precondition to guarantee the truth of the goal condi­
tion after executing a specific sequence of instructions. 
This observation permits us to construct a system that 
examines object-level proofs. 

Such proofs are valid only to the extent that the 
object-level rule set is correct. If the object-level rules 
contain errors or omissions, then a proposed proof may 
be incorrect, or the system may not be able to find a 

256 KNOWLEDGE AQ 



proof tha t exists. For example, if the domain is mani­
pulations of a robot arm, then the object-level rules are 
al l possible movements of the arm. In this case, it is 
possible to formulate a complete and correct set of 
object-level rules. On the other hand, if the domain is 
medical diagnosis, then this is not possible. In the fol-
lowing sections, we describe a language for describing 
the state of the object-level production system that 
facil itates reasoning about problem-solving methods. 

8 . T h e Space o f R u l e I n s t a n t i a t i o n s 
A ground instance of a rule is called a rule instan­

tiation. When a system draws inferences from its 
knowledge of its possible actions, we say that it is rea­
soning in instantiation space. In order to reason in this 
space, it is necessary for a system to have a language 
tha t provides access to its rule instantiations. 

At each point in the execution of a task, the state 
of a system can be represented in terms of its ful l and 
par t ia l instantiations. This representation captures 
existing and possible relationships among working 
memory elements. In addit ion, given a sequence of such 
state descriptions, i.e. a trajectory in instantiation 
space, we can derive relationships among instantia­
tions. In part icular, explanation-based reasoning is 
based upon the precondition relationship, in which an 
instantiat ion helps another instantiation to become 
matched by either placing an element needed by that 
instantiat ion in working memory or removing an ele­
ment that matches a negated condition in that instan­
t ia t ion. Precondition analysis has been used in the 
derivation of programs [7] and in the formulation and 
modification of plans [16]. The representation 
described in the next section combines Waldinger's 
approach to planning wi th Davis' approach to reason­
ing about rules and controlling rules [5] [6j. 

4 . T h e Rep resen ta t i on 
This section provides a very brief description of 

the representation. Detai l is omitted for brevity and 
clar i ty. The production system used is OPS5 [8]. The 
OPS5 system does not have the capabil ity of accessing 
its matching network as data for the productions. This 
precludes wr i t ing OPS5 meta-rules. Thus, we have 
designed the meta system to sit above the OPS5 sys­
tem, and access its internals. Each object-level rule is 
represented at the meta-level as a term of the , form: 
rule(variables) —► action 1 & action2 ... where "rule" 
denotes the the left-hand side of a rule, and each 
action i denotes an action that can be executed. For 
example, the following OPS5 rule is from the monkey-
and-bananas problem (a well-known AI task in which a 
monkey must retrieve a bunch of bananas from the 
ceiling using a ladder.) 

which moves the monkey to an object's location, is 
represented as: walk(0,P,C) ->+ modify(monkey,at,P). 
The parameters of the "walk" function are the var i ­
ables in the rule definition. Instantiations of the 
"walk" object-level rule are represented as meta-level 
terms, which permits the meta-system to reason about 
the rules tha t are fire able. 

Representing rules in this way permits rules to be 
characterised both according to their variable bindings, 
and according to the actions that they perform. This 

Benjamin 257 



258 KNOWLEDGE ACQUISITION 



References 
1. 

2. 

D. P. Benjamin, Extraction and Generalization of 
Expert Advice, Ph.D. Thesis, Courant Institute of 
Mathematical Sciences, New York University, 
1084. 
D. P. Benjamin, Towards a Metatheory for Using 
Explanations in Production Systems, TR-86-018, 
Philips Laboratories, 1986. 

3. D. P. Benjamin, A Method for Representing Plans 
in a Production System, TR-86-017, Philips 
Laboratories, 1086. 

4. A. Bundy, The Computer Modelling of 
Mathematical Reasoning, Academic Press, New 
York, NY, 1083. 

5. R. Davis, Content-reference: Reasoning About 
Rules, Artificial Intelligence i5(1080), 223-230. 

6. R. Davis, Meta-Rules: Reasoning About Control, 
Artificial Intelligence i5(1080), 170-222. 

7. E. W. Dijkstra, Guarded Commands, 
Nondeterminacy, and Formal Derivation of 
Programs, Communications of the ACM 18,8 
(August 1075). 

8. C. L. Forgy, OPS5 Users' Manual, Technical 
Report CMU-CS-81-135, Department of Computer 
Science, Carnegie-Mellon University, July 1081. 

0. R. Kowalski, A Proof Procedure Using 
Connection Graphs, Journal of the ACM 22(1075), 
572-505. 

10. J. E. Laird, P. S. Rosenbloom and A. Newell, 
Towards Chunking as a General Learning 
Mechanism, Technical Report, Computer Science 
Department, Carnegie-Mellon University, June 
1084. 

11. E. Lusk and R. Overbeek, The Automated 
Reasoning System ITP, ANL-84-27, Argonne 
National Laboratory, 1084. 

12. S. Minton, Constraint-Based Generalization, 
Proceedings of the National Conference on 
Artificial Intelligence, Austin, TX, August 1084, 
251-254. 

13. T. M. Mitchell, S. Mahadevan and L. I. Steinberg, 
LEAP: A Learning Apprentice for VLSI Design, 
9th International Joint Conference on Artificial 
Intelligence, Los Angeles, USA, August 1085, 573-
580. 

14. A. Newell, Production Systems: Models of Control 
Structures, in Visual Information Processing, W. 
Chase (editor), Academic Press, New York, NY, 
1073. 

15. R. G. Smith, T. M. Mitchell, H. A. Winston and 
B. G. Buchanan, Representation and Use of 
Explicit Justifications for Knowledge Base 
Refinement, 9th International Joint Conference on 
Artificial Intelligence, Los Angeles, USA, August 
1085, 673-680. 

16. R. Waldinger, Achieving Several Goals 
Simultaneously, in Machine Intelligence, vol. 8 , 
E. Elcock and D. Michie (editor), Ellis Horwood, 
Ltd., 1077, 04-136. 

Falkenhainer 259 


