LEARNING STRATEGIES BY REASONING ABOUT RULES

D. Paul Benjamin

Philips Laboratories, North American Philips Corporation

345 Scarborough Road

ABSTRACT

One of the major ‘weaknesses of current automated
reasoning systems is that they lack the ability to con-
trol inference in a sophisticated, context-directed
fashion. General strategies such as the set-of-support
strategy are useful, but have proven inadequate for
many individual problems. A strategy component is
needed that possesses knowledge about many particu-
lar domains and problems. Such a body of knowledge
would require a prohibitive amount of time to con-
struct by hand. This leads us to consider means of
automatically acquiring control knowledge from exam-
ple proofs. One particular means of learning is
explanation-based learning. This paper analyzes the
basis of explanations — finding weakest preconditions
that enable a particular rule to fire — to derive a
representation within which explanations can be
extracted from examples, generalized and used to guide
the actions of a problem-solving system.

1. Introduction

The current generation of automated reasoning
systems is characterized by very sophisticated inference
mechanisms but relatively simple mechanisms for guid-
ing inference. Typical strategies consider the set of
existing clauses (the "clause space") and the recency of
derivation of each clause. Useful general strategies can
be formulated with this information. Unfortunately,
these weak strategies have proven inadequate in many
instances.

In order for a strategy to be able to respond to
features of individual problems and domains it must
have access to a large body of knowledge. In addition,
it must take into account more types of information
than just the clause space and the recency of the
clauses. This paper describes how strategy information
can be automatically learned from examples by
explanation-based learning, and presents a
metalanguage that permits the use of more sophisti-
cated strategies and facilitates the analysis of
explanations.

Explanation-based learning is a widely-used tech-
nique in Al [10] [12] [13] [15], It has been used to gen-
eralize methods within a top-down problem-solver, to
generalize control information, to facilitate interaction
with users, and to refine knowledge bases. Logically
formulating explanation-based learning provides us
with two strengths that logic typically contributes to
the problem-solving process:

A precise notation for describing explanation-
based learning;

The precise semantics of logic, which provides a
semantics for precondition-based reasoning [16].

256 KNOWLEDGE AQ

Briarcliff Manor, NY 10510

Also, formulating explanation-based reasoning within a
logical framework permits its application to areas of
mathematics for which standard axiomatizations exist,
such as group theory. This opens the possibility of
using explanation-based learning to acquire general
strategies to guide theorem-proving systems in such
domains. This paper presents one facet of our research
on metatheoretical formulation of strategies [I] [3] [2].

2. Formalizing Explanations

In order to be able to use explanation-based learn-
ing in a wide variety of domains and to more fully
understand its strengths and weaknesses, it is desirable
to formalize the use of explanations. We present a sys-
tem which formalizes the organization, acquisition and
generalization of control rules.

Many production system]14] architectures distin-
guish between two types of information. The first type
consists of the rules for manipulating the objects in the
task environment, often called the object-level" rules.
We will consider the system to be initially provided
with a fixed set of object-level rules. We can think of
these rules as corresponding to the statements in a pro-
gramming language. The second type of information
contains the knowledge about how to fire the object-
level rules in order to successfully achieve a goal. This
information is sometimes referred to as "meta-level"
information [6l. We can think of this information as
descriptions or programs written in the language of
object-level rules. We use a production system as the
object-level language in order to illustrate the useful-
ness of this approach to an existing Al programming
system, and to take advantage of the conflict set, a
data structure that contains the set of fully instan-
tiated rules. Production systems compute the conflict
set, but theorem-proving programs typically do not.

The object-level rules contain all the initial
domain-specific procedural knowledge in the system,
and therefore constitute a model of problem-solving in
the domain. An object-level rule can be viewed as a
transformation, and an example execution trace is then
a sequence of transformations leading from the initial
state to the goal state. Thus, an example execution
trace is a proof that the goal state is reachable from
the initial state via the object-level rule set, or
alternatively, that the initial state is a sufficient
precondition to guarantee the truth of the goal condi-
tion after executing a specific sequence of instructions.
This observation permits us to construct a system that
examines object-level proofs.

Such proofs are valid only to the extent that the
object-level rule set is correct. If the object-level rules
contain errors or omissions, then a proposed proof may
be incorrect, or the system may not be able to find a

proof that exists. For example, if the domain is mani-
pulations of a robot arm, then the object-level rules are
all possible movements of the arm. In this case, it is
possible to formulate a complete and correct set of
object-level rules. On the other hand, if the domain is
medical diagnosis, then this is not possible. In the fol-
lowing sections, we describe a language for describing
the state of the object-level production system that
facilitates reasoning about problem-solving methods.

8. The Space of Rule Instantiations

A ground instance of a rule is called a rule instan-
tiation. When a system draws inferences from its
knowledge of its possible actions, we say that it is rea-
soning in instantiation space. In order to reason in this
space, it is necessary for a system to have a language
that provides access to its rule instantiations.

At each point in the execution of a task, the state
of a system can be represented in terms of its full and
partial instantiations. This representation captures
existing and possible relationships among working
memory elements. In addition, given a sequence of such
state descriptions, i.e. a trajectory in instantiation
space, we can derive relationships among instantia-
tions. In particular, explanation-based reasoning is
based upon the precondition relationship, in which an
instantiation helps another instantiation to become
matched by either placing an element needed by that
instantiation in working memory or removing an ele-
ment that matches a negated condition in that instan-
tiation. Precondition analysis has been used in the
derivation of programs [7] and in the formulation and
modification of plans [16]. The representation
described in the next section combines Waldinger's
approach to planning with Davis' approach to reason-
ing about rules and controlling rules [5] [6j.

4. The Representation

This section provides a very brief description of
the representation. Detail is omitted for brevity and
clarity. The production system used is OPS5 [8]. The
OPS5 system does not have the capability of accessing
its matching network as data for the productions. This
precludes writing OPS5 meta-rules. Thus, we have
designed the meta system to sit above the OPS5 sys-
tem, and access its internals. Each object-level rule is
represented at the meta-level as a term of the ,form:
rule(variables) —» action 1 & action, ... where "rule"
denotes the the left-hand side of a rule, and each
action; denotes an action that can be executed. For
example, the following OPS5 rule is from the monkey-
and-bananas problem (a well-known Al task in which a
monkey must retrieve a bunch of bananas from the
ceiling using a ladder.)

{pwalk {object "mame <o> “ut <p>)

{imonk on floor 'até(c} <> <pﬂ *holds nil) < monkey>>}
—>{write {erlf) WALKING TO <p> (crl

{wodify < monkey> “at <p>)

which moves the monkey to an object's location, is
represented as: walk(0,P,C) ->+ modify(monkey,at,P).
The parameters of the "walk" function are the vari-
ables in the rule definition. Instantiations of the
"walk" object-level rule are represented as meta-level
terms, which permits the meta-system to reason about
the rules that are fire able.

Representing rules in this way permits rules to be
characterised both according to their variable bindings,
and according to the actions that they perform. This

opens up the possibility of implementing strategies that
use these types of information to control inference,
Two of the meta-level predicates are:

- match{],f4} which returns the most general sub-
stitution that can be applied to the formula f, to
yield the formuls fy;

- instantiale(rhs,match} which returns the result of
applying the substitution maich to the rule right-
hand side rha.

These two formulas permit the meta-level to rea-
son aboyt the object-level instantiations and nre neces-
sary in order for the meta-level to be able to handle
the object-level properly. Object-level variables must
be meta-leve] conatants to avoid spurious matches
between meta-level variabies and object-level variables.
The structure of this system strozgly resemblea that of
the PRESS system [4].

6. Reasoning with Meta-information

The usefulpess of reasoning in instantiation space
is that it facilitates reasoning about the object-level. In
the following sections we describe how preconditions
can be extracted, generalised and applied within a ays-
tem that utilizes this representation. First we show
how mets-information can be represented in terms of
the preconditions that are necessary to enable rules to
fire.

An example is given by the following OFS5 rules
for the monkey-and-bananas task, their instantintions
n; and condition elements ¢;, together with the
correaponding connection graph I(ﬂ]:

{p grab-from-ceiling
object “name <w> “at <p>> “on ceillng)
ohject "name ladder "at <p>
monkey “on ladder “holds nil {monl:eéé-d‘
w>>{write {crlf} GRABBING <w> FROM CEILING (c1lf})
[modify <monkey> “holds <w>))
(p carzy
object “‘name <o> “at <p>)
S[monh'_r “on Boor “st {<e> <> <p>} ‘bolds <w>> <> nll)

<1nont:if‘>}
{{object “name <w> “at <c>) <carriod-object>}
~>{write {crlf} CARRYING <w> TO <p> [cri])
modify <monk?> “at <p>)
modify < carrizd-object> “nt <p>})
{p climb
object “name < o> “at <p> “on <n>
monkey “at <p> "“holds nil “on <n>) <monkey>>}
~>(write (crlf) CLIMBING ONTO <o {erll) }
{wodify <monkey>> “on <o})

&

igure 2,
ng carri.- ombananas pw2-3 cm9-§ w=lsdder
ny: climb: o=mludder pm2-2 amfloor
Ryt grab-from-ceiling: wabananns pe=d-2
Instantistion ny depends on firing m,;, and a, depands upon
firing both a, snd 8. (5, sad ny also dapana on previous
firinga or iniéalintiom.} Some conditions are omitted for
clarity and space. 2-2 and §-5 refar to x-y coordinates.

D,

Benjamin 257

Given s connection graph for an example proof,
the precondition chunks in the copnection graph can
be extracted. A precondition chunk is a rule whose
right-hand side i an instantiation n; in the graph, and
whose left-hand side is the sequence of instantiations
Ay that directly caused n; to completely instan-
tiate, either by inserting tokems in working memory
that satisfled condition elements of n;, or removing
tokens that matched negated condition elements of n,.
A precondition chunk describes sufficient conditions to
enable n; to fire. For the above example, the precondi-
tion e¢hunk for ny Ia:

carry(bananas,2-2,9-6 Jadder) & climb(ladder 2-2,400r)
—+ greb-from-ceiling(bananas,2-3

Precondition chunks ¢an be used as problem-
reduction methods to construct plane in a top-down
fashion. A key feature of precondition chunks in that
they are not apecified in terms of & separaie goal voca-
bulary. Problem-reduction methods are often specified
in terms of a goal vocabulary in which the goals' types
and attributes are not all part of the original
specification of the task — the objecis and rules.
Precondition chunks specity how to satisfy the goal of
firing & rule in terms of trying to fire other rules. The
only information contained in precondition chunks is
information about instantiations and their variable
bindings. This domain-independent vocabulary provides
a useful means of relating goals to each other.

8. Generalising Preconditlon Chunks

Since we sre viewing the object-level execution
trace as » proof of the goal's attainability, the most
general conditions under which a sequence of rules can
be uzed lo saltafy certain instanitiction condilions are
given by the most general unification of those rules ond
conditions. This observation shows the usefulpess of
using Instantiation information as the underlying
representation —- state and goal information are uni-
formly represented, and can be unified.

In general, there can be more than one way to
resolve a set of rules. In order to decide which resolvent
to use the exarople proof is used to guide the
unification process. This ia done before the unification
process by renaming variables according to Precondi-
tion relationships. For example, the "¢limb’, “grab-
from-ceiling” and “carry” rules are resolved to produce
s general precondition chunk for "grab-from-ceiling”
with the variables "o" and "p" in "climb" renamed to
"w" and "c", respectively, since they correspond to the
same actual object in "carry” (the Iadder). Also, in the
example the "w" in "Frab-from ceiling” corresponds to
the "o" in "carry" so “w" ia renamed to "o". The result-
ing generalixed precondition chunk for ‘“grab-from-
ceiling" is:

l:qu(o,p,c,hddﬂ? & climb(ladder 2 floor}
— grab-from-ceiling{op)

This chunk deacribes the most general conditions under
which execution of the "carry” and "climb" instructions
will enable the “grab-from-ceiling” instruction to be
executed. Generalised chunks function as meta-level
lemmas. They are deducible from the object-level rulea
and provide solutions to subproblems. Chunks contain
strategy information, as they select resolvents and
guide the object level.

258 KNOWLEDGE ACQUISITION

7. Uslng Generalisad Precondltion Chunks

After precondition information haa been extracted
from examples and generalised, the generalised chunks
are added to the meta-level system and used as
?roblem-reduction operators. The goal Instantiation
the rule instantiation whose firing is desired) ia
inserted into the meta-system as a goal clause:

goal-instantiation —
Conflict set elements are represented as assertions:
—+ instantiation

Precondition chunks are represented as assertions:
preconditions — instantiation

Resolution is used to chain back from the goal instan-
tiation to find a reduction to ground instances — a
plan to achieve the goal. Object-level rule instantia-
tiops are represented as meta-level ground clauses, and
change aa the task environment changes, i.e. as actions
are taken by the system, or external forces affect the
environment. The firing of object-level rules is & side
effect of matching a goal instantiation to a greound
instantiation.

To use these chunks it is necessary to provide a
meta-level c¢ontrol component. There are many
different possible types of control that can be specified.
The method of selecting which clauses to match is
independent of the representation presented here. We
use the ITP reascning system [11] as the meta-level.
The atrategy for selecting problem reductions is the
set-of-support strategy, which is ITP's default strategy.
A more sophisticated means of selecting problem reduc-
tions iz desirable. In order to take advantage of
demain-specific information in the chunks we intend to
inveatigate heuristic control rules such as preferring
problem reductions that have been most successful in
the past.

8. An Example

This system was tested on a number of tasks. A
short example is the monkey-and-bananas task. The
following set of production rules, together with those
already presented, defines all the possible actions of
the monkey. These ruies contain no control information
at all — they only specify legal actiona.

{p pick-up object "name <w>> “at <p> “on floor)
{{monkey “at <p> “holds nil) <monkey>}
- [write érll'} PIEK[NG UP <w> {crlf]i
modify <monkey> “holds <w>>))
{p jump-down {{monkey "on <x>) <monkey>
object “name < x> “on <n>>)
~> (write (crif) JUMPING DOWN ONTO <n3> {c1lf))
modify < monkey>> “on <al>
{p drop {{monkey “holds {<x>> <> ml)))) <monkey>}
-2 [write {crlf) DROPFPING <x>> Scrl!))
modify < monkey>> “holds nil)

The system is provided with these rules together with
an “initialize” rule that sets up the situation. When the
system is given & specific task situation (the monkey is
on a couch, and the bananas are on the ceiling):
{monkey “at 5-7 “on conch

object “name couch “at 5-7 “weight heavy “on floor)

bject “name ladder “on floor “at 8-5 “weight light)

object “nsme bananss “on ceiling "at 3-7)

and a problem (grab the bananas from the ceiling), the
default strategy of OPS5, which is to prefer rules that
use more recently generated facts, causes the system to
make the monkey repeatedly jump from the couch to
the floor and then climb back onto the couch.

Using B modified OPS5 in which » trainer can
guide the actiops of the system by performing the
conflict resolution, the following execution trace ia
provided to the learning system:
initixlize () = (12 3 4 5)
Jmlr-dm (23)—(7)

walk {4 7)—» {9

pick-up { 9)-—»{112

earry fﬁ 11 4) — (18 15}

drop (18} — (17)

climb (15 17) — (19)

grab-from-ceiling (5 15 19) — (21)

In this trace, the lists of numbera are the timetags of
the elements used by and created by each instantia-
tion, e.g. "walk" used elements 4 and 7, and created
element ¢, which in turn was used by “pick-up”,

The precondition relationships among the instan-
tiations are analyzed to produce the following precon-
dition chunks:

initiatixe{couch floor) — Eﬂmp-dm(couch,ﬂoor)
initislise{ladder,9-5,6-7} & jump-down{couch,Boor}
—_ wllk[l'ldder, 5,5-7
initislise{ladder) & walk{lndder $-5,5-7} — pick-up(ladder,8-6)
initialise(bananae,2-2) & pick-up(hdder,i-sr

we carry(bansnas,2-2,9-5 Jadder
carry(bananas,3-2,6-6,Indder) — drop(ladder)
jump-down(couch floor) & carry(bansnas,2-2,9-5,lndder)

— climb(indder,2-2,800r
earry(bananae,2-2,9-5 ladder) & climb(lndder,2-2,Bo00t)

—+ grab-from-ceiling(brnanas,2-2)

These chunks are generzlized by resolving their general
forms and renaming variables according to precondi-
tion relationships, as deacribed above, yielding the fol-
lowing set of generalized precondition chunks:
initialise(x,0) — jump-down{x,n)

initislise{o,p.c) & 'ump—dm{x,nl—o walk(o,p.c)

i.nitial.in:-w})& walk{o,p,c) — pick-up(w,p}

initialise(o,p) & pick-upf{w,) — carryfo,pc,w}

carry(o,p.c,w) — drop(x

jnmp-downjx,n & carry o,p,c,!? — climb{w,,n)
carry(o,p,c,ladder) & climb{ladder,c,Boor) — grab-from-ceiling(o,p)

‘When these chunks are used as problem-reductions, the
systemn then solves new situations that it would not
solve before, such as when the monkey is on a box that
is on a box and the ladder ia on a box.

9. Summary

We have described a system that acquires strategy
information from examples. An execution trace is
viewed as a proof that the goal is reachable from the
initial state, Explanation-based generalization is then
used to find the most general unification of & given
goal rule and the rules that are preconditions for firing
that goal rule. A representation is presented thal facili-
tates reasoning about rules, The representation is
based upon the instantiation space, and in particular
upon preconditional relationships in that space. The
nolion of precondition chunks is presented.

Future work on this system will copcentrate on
expanding the range of relationships about which it
can reason, to include such relationships as inverse,
where one action undoes another, and
generalization/specialization, where one rule is a gen-
eralisation or specialization of another.
Acknowledgements
I would like to thank Richard Caruana, Brian Coffey,
K.P. Lee, Damiap Lyons, Richard Pelavin, Paul Rutter
and Dick Wexelblat for reading drafts of this paper.
Their comments and suggestions were very helpful.

References

1.

10.

11.

12.

13.

14.

15.

16.

D. P. Benjamin, Extraction and Generalization of
Expert Advice, Ph.D. Thesis, Courant Institute of
I;/Iathematical Sciences, New York University,
084.

D. P. Benjamin, Towards a Metatheory for Using
Explanations in Production Systems, TR-86-018,
Philips Laboratories, 1986.

D. P. Benjamin, A Method for Representing Plans
in a Production System, TR-86-017, Philips
Laboratories, 1086.

A. Bundy, The Computer Modelling of
Mathematical Reasoning, Academic Press, New
York, NY, 1083.

R. Davis, Content-reference: Reasoning About
Rules, Artificial Intelligence i5(1080), 223-230.

R. Davis, Meta-Rules: Reasoning About Control,
Artificial Intelligence i5(1080), 170-222.

E. W. Dijkstra, Guarded Commands,
Nondeterminacy, and Formal Derivation of
Programs, Communications of the ACM 18,8
(August 1075).

C. L. Forgy, OPS5 Users' Manual, Technical
Report CMU-CS-81-135, Department of Computer
Science, Carnegie-Mellon University, July 1081.

R. Kowalski, A Proof Procedure Using
Connection Graphs, Journal of the ACM 22(1075),
572-505.

J. E. Laird, P. S. Rosenbloom and A. Newell,
Towards Chunking as a General Learning
Mechanism, Technical Report, Computer Science
E)epartment, Carnegie-Mellon University, June
084.

E. Lusk and R. Overbeek, The Automated
Reasoning System ITP, ANL-84-27, Argonne
National Laboratory, 1084.

S. Minton, Constraint-Based Generalization,
Proceedings of the National Conference on
Artificial Intelligence, Austin, TX, August 1084,
251-254.

T. M. Mitchell, S. Mahadevan and L. |. Steinberg,
LEAP: A Learning Apprentice for VLSI Design,
9th International Joint Conference on Artificial
Intelligence, Los Angeles, USA, August 1085, 573-
580.

A. Newell, Production Systems: Models of Control
Structures, in Visual Information Processing, W.
Chase (editor), Academic Press, New York, NY,
1073

R. G. Smith, T. M. Mitchell, H. A. Winston and
B. G. Buchanan, Representation and Use of
Explicit Justifications for Knowledge Base
Refinement, 9th International Joint Conference on
Artificial Intelligence, Los Angeles, USA, August
1085, 673-680.

R. Waldinger, Achieving Several Goals
Simultaneously, in Machine Intelligence, vol. 8 ,
E. Elcock and D. Michie (editor), Ellis Horwood,
Ltd., 1077, 04-136.

Falkenhainer 259

