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ABSTRACT 

The performance of a new heuristic search 
algorithm is analyzed in this paper. The algorithm uses 
a formal representation (semantic representation) that 
contains enough information to compute the heuristic 
evaluation function h(n), as defined in the context of 
A*, without requiring a human expert to provide it. The 
heuristic is computed by solving less constrained 
subproblems (auxiliary problems) of the given problem. 
The new algorithm is shown to be less efficient than the 
Dijkstra algorithm, according to the complexity 
measure "number of node expansions." This proves that 
it is not efficient to compute heuristics for A* by solving 
auxiliary problems with backtracking. 

Basic Definitions and Auxiliary Problems 

A syntactic problem is a 5-tupIe 

where: 
N is a set of states (or nodes), called the state-space; 
E is a set of directed edges; 
W is a set of positive costs, greater than an arbitrary 
small constant, associated to each edge; 
i is a distinguished member of N, the initial state; 
k is a distinguished member of N. the final state. 

The optimal solution of a problem P is a path 
in the graph G = (N.E.W) from i to k of minimal cost, 
where the cost of a path is the sum of the costs of its 
edges. 

A semantic problem is a 6-tuple 

where: 
A is a set of attributes; 
V is a set of values; 
II is a set of predicates (called properties, each 
indicated by of one argument, whose domain is the 
set of all possible states; 
A is a set of predicates (called legal conditions, each 
indicated by ). of two arguments, each one being one 
of all possible states; 
i is a distinguished sequence of attribute-value pairs; 
k is a distinguished sequence of attribute-value pairs. 

A sequence of attribute-value pairs is called a 
semantic (or structured) state (or node). A semantic 
state has a structure: the sequence of attribute-value 
pairs that constitute its meaning. In the classic, 
"syntactic" framework, instead, a state is just an atomic 
concept; all the information carried over from the 
problem domain is contained in the graph. 
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Let us now consider how the structure of 
every semantic state is used to determine the state 
space and the legal moves in a semantic problem. The 
candidate states are all possible sequences of 
attribute-value pairs (indicated by a letter in italics, 
such as n ); the state space, N , consists of all the 
candidate states which satisfy all the properties (the 
states in N are called legal states); the candidate moves 
are ail possible pairs of legal states; the legal moves are 
all the moves ( n1 , n2 ) that satisfy all the legal 
conditions. Therefore, to every semantic problem one 
can associate a graph called the skeleton of the 
semantic problem. The structure of the states is lost in 
passing from a semantic problem to its skeleton. 

One could solve a semantic problem by solving 
the problem corresponding to its skeleton with the 
Dijkstra algorithm, but this method does not take any 
advantage from the extra information contained in the 
structure of the states. Reference [Valtorta, 1980] 
discusses some ways to exploit this information. One of 
them, algorithm M, will be discussed below. Before 
introducing it, I present the key notion of auxiliary 
problem. Informally speaking, a problem is auxiliary to 
another one if it is less constrained. 

A semantic problem 

is an auxiliary problem to 

if 

The following theorem provides a basis for 
computing an heuristic evaluation function (h(n)), as 
used by A* to focus its search [Nilsson. 3 980], from the 
information contained in the semantic representation 
of a computable problem (In this paper 1 follow the 
convention used in [Nilsson, 1980] in indicating the 
heuristic estimate with h(n) and its exact value with 
h*(n). Note that h*(i) is the cost of the optimal solution 
of P.) 

Theorem. If P' is auxiliary to P, where the 
initial state for P' and P is n, then the length of the 
optimal solution of P' is a possible value for an 
admissible heuristic estimate h(n) for the problem P. 

The proof is in [Guida and Somalvico, 1979]. 
Algorithm M 

This algorithm is a special case of both 
algorithm G given in [Guida and Somalvico, 1979] and 
algorithm S in [Valtorta, I960]. 
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Input: a semantic problem 

Output: an optimal solution of P. 

Method: Solve the problem corresponding to the 
skeleton of P using A*, where each necessary value of 
h(n) is computed by solving an auxiliary problem to Q, 
using the Dijkstra algorithm. Q differs from P only in 
the initial state, which for Q is n. 

All the auxiliary problems have the same set of legal 
conditions—A'. This ensures that the "consistency" 
condition [Niisson, 1971; Nilsson, 1980] is satisfied for 
h(n) computed by solving the auxiliary problems to Q 
This result is shown to hold in [Valtorta, I960]. 

Complexity of Algorithm M 

In this section, 1 compare algorithm M to the 
Dijkstra algorithm. It would be senseless to compare M 
to the A* algorithm, since, to focus its search, A* relies 
on information (i.e., h(n)) that is outside the problem 
representation formalism used (i.e., the syntactic 
graph). 

I compare these algorithms according to the 
criterion "number of node expansions," which is 
discussed and generally accepted in the published 
literature [Nilsson, 1971; Martelli, 1977]. First recall 
some results from [Martelli, 1977]. 

Let a (directed) graph G = (N.E.W) be given. 
Let g(n) be the length of the path from node i, the 
initial node, to node n, in graph G, passing through 
already expanded nodes. 

Fact 1. The Dijkstra algorithm will find a 
shortest path in G by expanding only the nodes, n, that 
satisfy the following inequality: 

(1) g(n)<h*( i) . 

Fact 2. The A* algorithm will find a shortest 
path in G by expanding only the nodes, n, that satisfy 
the following inequality: 

(2) g(n) + h(n) < h*(i) 

and some of the nodes that satisfy: 

(3) g(n) + h(n) = h*(i). 

Define the distance from node m to node p in 
the graph G = (N.E.W) to be the length of the shortest 
path from m to p in G. (If no path from m to p exists in 
G, then the distance is conventionally assumed to be 
infinite.) The following result can be proven: 

Main Theorem. Let a semantic problem 

be given. To solve problem P . algorithm M expands at 
least every node expanded by the Dijkstra algorithm to 
solve the syntactic problem corresponding to its 
skeleton. 

Since the Dijkstra algorithm never expands 
the same node twice, it follows as a corollary that 
algorithm M uses at least the same number of node 
expansions as the Dijkstra algorithm. 

Proof of the theorem. 

Algorithm M expands nodes in two phases: 
(a) to compute h(n); 

(b) to solve P, with the A* strategy. 

I shall consider three cases, which exhaust all 
possibilities, and show that for each case the 
computation of the estimate plus the solution of the 
problem using it is more expensive than the solution of 
the problem by using the Dijkstra algorithm, which does 
not require any estimate to be computed. 

Case 1 

The estimate h(n) allows node n to be 
expanded in phase (b). 

The computation of the heuristic, in this case, 
does not allow to save even a single node while using it 
in phase b. Since to compute h(n) by solving an 
auxiliary problem one needs to expand at least a node 
(in the non trivial case in which n is the final node, 
when it is obviously not useful to compute the 
heuristic!), it would have been better not to compute 
the estimate at all in the first place. 

Case 2 

The estimate h(n) is such that n is not 
expanded because 

(4) g(n) + h(n)*h*( i ) . 

(Note that if (4) is true with ">", node n will not be 
expanded for sure; if it is true with "=", it might.) If the 
only effect of h(n) is that node n will not be expanded, 
the cost of the estimate computation in phase (a), 
which necessitates at least the expansion of node n 
itself, offsets at best the saving arising from not 
expanding n in phase (b). 

Case 3 

There are nodes r that are expanded by the 
Dijkstra algorithm, but are not expanded by the M 
algorithm in phase (b) because, in order to be 
expanded, they should be reached through a node m 
whose estimate h(m) is so large that m is not expanded 
in phase (b). 

The nodes r are, at most, the ones for which 
the following holds: 

(5) d(m,r) < h*(i) - g(m), 

because d(m,r), the distance from m to r, plus g(m), 
equals g(r) which is bounded by h*(i) by Fact 1. 

By Fact 2, m is not expanded if h(m) is at least 
so large that the following holds: 

(6) h(m) > h*(i) - g(m). 

Since h(m) is computed, in phase (a), by 
solving an auxiliary problem to P using the Dijkstra 
algorithm, one must expand, according to Fact 1, all the 
nodes at distance less than h(rn) from m on the 
skeleton of the auxiliary problem. 

But we know that h(m) is at least so large that 
(6) holds. Therefore, at least the nodes at distance less 
than h*(i) - g(m) from m in the auxiliary problem must 
be expanded. A fortiori, since the distance of i to m in 
the auxiliary problem is not greater than the distance 
from i to m in P, at least the nodes at distance less 
than h*(i) - g(m) from m in Pmust be expanded. 

Therefore, the nodes (call them s ) expanded 



M. Valtorta 779 

by the M algorithm in phase (b) satisfy the following 
inequality: 

(7) d(m,s) < h*(i) - g(m). 

By comparing (7) with (5), one concludes that, 
even in the most favorable case, the set of nodes r 
which are not expanded in phase (b) because of the 
computation of the estimate h(m) in phase (a) is a 
subset of the set of the nodes (nodes s ) expanded to 
compute the estimate in phase (b). 

Therefore, even in this last case, it is better 
not to compute the heuristic at all and solve P by using 
the Dijkstra algorithm directly. 

Conclusion 

In this conclusion, I state two definitions and a 
theorem, and present an interpretation of the Main 
Theorem. 

Given that a shortest-path algorithm is blind if 
it does not use heuristic information, and it is 
unidirectional if it expands nodes at increasing 
distances from the initial node, the following result can 
be shown to hold: 

Theorem The Dijkstra algorithm is the 
algorithm that uses the least number of node 
expansions among blind, unidirectional, deterministic 
algorithms. 

The proof of this result consists of an 
"adversary" (or "oracle") based argument. Assume that 
another algorithm—B, can find a shortest path from i to 
k without expanding a node--n, for which the following 
holds: 

(B) g(n) < h*(i) 

Then, the adversary can find a problem such 
that there is an edge from node n to node f of such a 
small cost that the minimum cost path from i to f 
passes through n. 

This means that the B algorithm does not find 
the minimum cost solution. 

The above result, together with the Main 
Theorem, indicates that it is not efficient to compute 
heuristics by solving auxiliary problems with a trial 
and error strategy (i.e., a strategy involving 
backtracking). 

Recognizing that an auxiliary problem can be 
solved by means of a method that does not require 
backtracking seems to be an extremely difficult task, 
strictly related to the "change of representation" 
problem [Amarel, 1968], which is considered to be 
beyond the state of the art. (See, for example [Lenat, 
1982, pp. 237-241].) Even auxiliary problems whose 
solutions lead to the computation of simple heuristics 
do not display any apparent structure (as far as their 
skeleton is concerned; which may lead to their simple 
solution. An interesting example of this phenomenon is 
described in [Valtorta, 1980], where the auxiliary 
problem whose solutions compute the heuristic 
"number of misplaced tiles" for the eight-tile puzzle is 
presented. This heuristic is described in [Nilsson, 1971; 
Nilsson, 1980]. 

Appendix I: Related Research 

Work on the semantic representation, motivated by 
the effort to automate the computation of heuristics, was 
started at the Politecnico di Milano by Marco Somalvico and 
his assistants in the mid-seventies. 

Judea Pearl and the late John Gashnig have 
discovered, independently from the Milan team, that 
admissible heuristics for A* can be computed by solving 
auxiliary problems. Judea Pearl calls the auxiliary problems 
"relaxed models." John Gashnig calls them "edge 
supergraphs" [Gashnig, 1979]. Gashnig uses the syntactic 
formalism and he does not propose an algorithm that finds 
auxiliary problems automatically, using the "semantic" 
formalism, as algorithm M does. 

Judea Pearl and Dennis Kibler [Kibler, 1982] have 
postulated the need for changing representation paradigm to 
solve auxiliary problems efficiently. Their postulation is 
grounded on the negative result discussed in this paper of 
which i had informed them in personal correspondence. They 
quote this result explicitly in their reports [Pearl, 1982, 
p.131; Kibler 1982, p.4J. 

References 
[Amarel, 1968] Amarel, Saul. "On Representations of Problems 

of Reasoning About Actions." Machine Intelligence 3, 
Ed. D. Michie. Edinburgh: Edinburgh University 
Press, 1968, 131-171. 

[Dijkstra, 1959] Dijkstra, Edger W. "A Note on two Problems in 
Connection with Graphs." Numerische Matematik, 1 
(1959), 269-271. 

[Gashnig, 1979] Gashnig, John. "A Problem Similarity 
Approach to Devising Heuristics: First Results." Proc 
6th IJCAI, (1979) 301-307. 

[Guide and Somalvico, 1979] Guida, Giovanni and Marco 
Somalvico. "A Method for Computing Heuristics in 
Problem Solving." Information Sciences, 19 (1979), 
251-259. 

[Kibler, 1982] Kibler, Dennis. "Natural Generation of 
Admissible Heuristics." Technical Report TR-188, 
Information and Computer Science Department, 
University of California at Irvine, Irvine, California, 
1982. 

[Lenat, 1982] Lenat, Douglas B. "The Nature of Heuristics." 
Artificial Intelligence, 19, 2 (October 1982), 189-249. 

[Martelli, 1977] Martelli, Alberto. "On the Complexity of 
Admissible Search Algorithms." Artificial 
Intelligence, 8, 1 (1977), pp. 1-13. 

[Nilsson, 1971] Nilsson, Nils J. Problem Solving Methods in 
Artificial Intelligence. New York: McGraw-Hill, 1971. 

[Nilsson, 1980] Nilsson, Nils J. Principles of Artificial 
Intelligence. Palo Alto (Calif): Tioga Publishing 
Company, 1980 

[Pearl, 1982] Pearl, Judea. "On the Discovery and Generation 
of Certain Heuristics." The UCLA Computer Science 
Department Quarterly, 10, 2 (Spring 1982), 121-132. 

[Valtorta, 1980] Valtorta, Marco. "Un Contribute alia Teoria 
della Risoluzione dei Problemi: Rappresentazione 
Semantica, Proprieta' Algebriche e Algoritmi di 
Ricerca." Tesi di Laurea, Istituto di Ingegneria 
Elettrotecnica ed Elettronica, Politecnico di Milano, 
Milan, Italy, 1980 (in Italian). 


