
A RESULT ON THE COMPUTATIONAL COMPLEXITY OF HEURISTIC ESTIMATES
FOR THE A* ALGORITHM

Marco Valtorta

Department of Computer Science
Duke University

Durham, North Carolina 27706, USA

ABSTRACT

The performance of a new heuristic search
algorithm is analyzed in this paper. The algorithm uses
a formal representation (semantic representation) that
contains enough information to compute the heuristic
evaluation function h(n), as defined in the context of
A*, without requiring a human expert to provide it. The
heuristic is computed by solving less constrained
subproblems (auxiliary problems) of the given problem.
The new algorithm is shown to be less efficient than the
Dijkstra algorithm, according to the complexity
measure "number of node expansions." This proves that
it is not efficient to compute heuristics for A* by solving
auxiliary problems with backtracking.

Basic Definitions and Auxiliary Problems

A syntactic problem is a 5-tupIe

where:
N is a set of states (or nodes), called the state-space;
E is a set of directed edges;
W is a set of positive costs, greater than an arbitrary
small constant, associated to each edge;
i is a distinguished member of N, the initial state;
k is a distinguished member of N. the final state.

The optimal solution of a problem P is a path
in the graph G = (N.E.W) from i to k of minimal cost,
where the cost of a path is the sum of the costs of its
edges.

A semantic problem is a 6-tuple

where:
A is a set of attributes;
V is a set of values;
II is a set of predicates (called properties, each
indicated by of one argument, whose domain is the
set of all possible states;
A is a set of predicates (called legal conditions, each
indicated by). of two arguments, each one being one
of all possible states;
i is a distinguished sequence of attribute-value pairs;
k is a distinguished sequence of attribute-value pairs.

A sequence of attribute-value pairs is called a
semantic (or structured) state (or node). A semantic
state has a structure: the sequence of attribute-value
pairs that constitute its meaning. In the classic,
"syntactic" framework, instead, a state is just an atomic
concept; all the information carried over from the
problem domain is contained in the graph.

The writing of this paper was supported by the Air
Force Office of Scientific Research under grant AFOSR-81-
0221. The paper is based on work done at the Politecnico di
Milano, Milan, Italy.

Let us now consider how the structure of
every semantic state is used to determine the state
space and the legal moves in a semantic problem. The
candidate states are all possible sequences of
attribute-value pairs (indicated by a letter in italics,
such as n); the state space, N , consists of all the
candidate states which satisfy all the properties (the
states in N are called legal states); the candidate moves
are ail possible pairs of legal states; the legal moves are
all the moves (n1 , n2) that satisfy all the legal
conditions. Therefore, to every semantic problem one
can associate a graph called the skeleton of the
semantic problem. The structure of the states is lost in
passing from a semantic problem to its skeleton.

One could solve a semantic problem by solving
the problem corresponding to its skeleton with the
Dijkstra algorithm, but this method does not take any
advantage from the extra information contained in the
structure of the states. Reference [Valtorta, 1980]
discusses some ways to exploit this information. One of
them, algorithm M, will be discussed below. Before
introducing it, I present the key notion of auxiliary
problem. Informally speaking, a problem is auxiliary to
another one if it is less constrained.

A semantic problem

is an auxiliary problem to

if

The following theorem provides a basis for
computing an heuristic evaluation function (h(n)), as
used by A* to focus its search [Nilsson. 3 980], from the
information contained in the semantic representation
of a computable problem (In this paper 1 follow the
convention used in [Nilsson, 1980] in indicating the
heuristic estimate with h(n) and its exact value with
h*(n). Note that h*(i) is the cost of the optimal solution
of P.)

Theorem. If P' is auxiliary to P, where the
initial state for P' and P is n, then the length of the
optimal solution of P' is a possible value for an
admissible heuristic estimate h(n) for the problem P.

The proof is in [Guida and Somalvico, 1979].
Algorithm M

This algorithm is a special case of both
algorithm G given in [Guida and Somalvico, 1979] and
algorithm S in [Valtorta, I960].

778 M. Valtorta

Input: a semantic problem

Output: an optimal solution of P.

Method: Solve the problem corresponding to the
skeleton of P using A*, where each necessary value of
h(n) is computed by solving an auxiliary problem to Q,
using the Dijkstra algorithm. Q differs from P only in
the initial state, which for Q is n.

All the auxiliary problems have the same set of legal
conditions—A'. This ensures that the "consistency"
condition [Niisson, 1971; Nilsson, 1980] is satisfied for
h(n) computed by solving the auxiliary problems to Q
This result is shown to hold in [Valtorta, I960].

Complexity of Algorithm M

In this section, 1 compare algorithm M to the
Dijkstra algorithm. It would be senseless to compare M
to the A* algorithm, since, to focus its search, A* relies
on information (i.e., h(n)) that is outside the problem
representation formalism used (i.e., the syntactic
graph).

I compare these algorithms according to the
criterion "number of node expansions," which is
discussed and generally accepted in the published
literature [Nilsson, 1971; Martelli, 1977]. First recall
some results from [Martelli, 1977].

Let a (directed) graph G = (N.E.W) be given.
Let g(n) be the length of the path from node i, the
initial node, to node n, in graph G, passing through
already expanded nodes.

Fact 1. The Dijkstra algorithm will find a
shortest path in G by expanding only the nodes, n, that
satisfy the following inequality:

(1) g(n)<h*(i) .

Fact 2. The A* algorithm will find a shortest
path in G by expanding only the nodes, n, that satisfy
the following inequality:

(2) g(n) + h(n) < h*(i)

and some of the nodes that satisfy:

(3) g(n) + h(n) = h*(i).

Define the distance from node m to node p in
the graph G = (N.E.W) to be the length of the shortest
path from m to p in G. (If no path from m to p exists in
G, then the distance is conventionally assumed to be
infinite.) The following result can be proven:

Main Theorem. Let a semantic problem

be given. To solve problem P . algorithm M expands at
least every node expanded by the Dijkstra algorithm to
solve the syntactic problem corresponding to its
skeleton.

Since the Dijkstra algorithm never expands
the same node twice, it follows as a corollary that
algorithm M uses at least the same number of node
expansions as the Dijkstra algorithm.

Proof of the theorem.

Algorithm M expands nodes in two phases:
(a) to compute h(n);

(b) to solve P, with the A* strategy.

I shall consider three cases, which exhaust all
possibilities, and show that for each case the
computation of the estimate plus the solution of the
problem using it is more expensive than the solution of
the problem by using the Dijkstra algorithm, which does
not require any estimate to be computed.

Case 1

The estimate h(n) allows node n to be
expanded in phase (b).

The computation of the heuristic, in this case,
does not allow to save even a single node while using it
in phase b. Since to compute h(n) by solving an
auxiliary problem one needs to expand at least a node
(in the non trivial case in which n is the final node,
when it is obviously not useful to compute the
heuristic!), it would have been better not to compute
the estimate at all in the first place.

Case 2

The estimate h(n) is such that n is not
expanded because

(4) g(n) + h(n)*h*(i) .

(Note that if (4) is true with ">", node n will not be
expanded for sure; if it is true with "=", it might.) If the
only effect of h(n) is that node n will not be expanded,
the cost of the estimate computation in phase (a),
which necessitates at least the expansion of node n
itself, offsets at best the saving arising from not
expanding n in phase (b).

Case 3

There are nodes r that are expanded by the
Dijkstra algorithm, but are not expanded by the M
algorithm in phase (b) because, in order to be
expanded, they should be reached through a node m
whose estimate h(m) is so large that m is not expanded
in phase (b).

The nodes r are, at most, the ones for which
the following holds:

(5) d(m,r) < h*(i) - g(m),

because d(m,r), the distance from m to r, plus g(m),
equals g(r) which is bounded by h*(i) by Fact 1.

By Fact 2, m is not expanded if h(m) is at least
so large that the following holds:

(6) h(m) > h*(i) - g(m).

Since h(m) is computed, in phase (a), by
solving an auxiliary problem to P using the Dijkstra
algorithm, one must expand, according to Fact 1, all the
nodes at distance less than h(rn) from m on the
skeleton of the auxiliary problem.

But we know that h(m) is at least so large that
(6) holds. Therefore, at least the nodes at distance less
than h*(i) - g(m) from m in the auxiliary problem must
be expanded. A fortiori, since the distance of i to m in
the auxiliary problem is not greater than the distance
from i to m in P, at least the nodes at distance less
than h*(i) - g(m) from m in Pmust be expanded.

Therefore, the nodes (call them s) expanded

M. Valtorta 779

by the M algorithm in phase (b) satisfy the following
inequality:

(7) d(m,s) < h*(i) - g(m).

By comparing (7) with (5), one concludes that,
even in the most favorable case, the set of nodes r
which are not expanded in phase (b) because of the
computation of the estimate h(m) in phase (a) is a
subset of the set of the nodes (nodes s) expanded to
compute the estimate in phase (b).

Therefore, even in this last case, it is better
not to compute the heuristic at all and solve P by using
the Dijkstra algorithm directly.

Conclusion

In this conclusion, I state two definitions and a
theorem, and present an interpretation of the Main
Theorem.

Given that a shortest-path algorithm is blind if
it does not use heuristic information, and it is
unidirectional if it expands nodes at increasing
distances from the initial node, the following result can
be shown to hold:

Theorem The Dijkstra algorithm is the
algorithm that uses the least number of node
expansions among blind, unidirectional, deterministic
algorithms.

The proof of this result consists of an
"adversary" (or "oracle") based argument. Assume that
another algorithm—B, can find a shortest path from i to
k without expanding a node--n, for which the following
holds:

(B) g(n) < h*(i)

Then, the adversary can find a problem such
that there is an edge from node n to node f of such a
small cost that the minimum cost path from i to f
passes through n.

This means that the B algorithm does not find
the minimum cost solution.

The above result, together with the Main
Theorem, indicates that it is not efficient to compute
heuristics by solving auxiliary problems with a trial
and error strategy (i.e., a strategy involving
backtracking).

Recognizing that an auxiliary problem can be
solved by means of a method that does not require
backtracking seems to be an extremely difficult task,
strictly related to the "change of representation"
problem [Amarel, 1968], which is considered to be
beyond the state of the art. (See, for example [Lenat,
1982, pp. 237-241].) Even auxiliary problems whose
solutions lead to the computation of simple heuristics
do not display any apparent structure (as far as their
skeleton is concerned; which may lead to their simple
solution. An interesting example of this phenomenon is
described in [Valtorta, 1980], where the auxiliary
problem whose solutions compute the heuristic
"number of misplaced tiles" for the eight-tile puzzle is
presented. This heuristic is described in [Nilsson, 1971;
Nilsson, 1980].

Appendix I: Related Research

Work on the semantic representation, motivated by
the effort to automate the computation of heuristics, was
started at the Politecnico di Milano by Marco Somalvico and
his assistants in the mid-seventies.

Judea Pearl and the late John Gashnig have
discovered, independently from the Milan team, that
admissible heuristics for A* can be computed by solving
auxiliary problems. Judea Pearl calls the auxiliary problems
"relaxed models." John Gashnig calls them "edge
supergraphs" [Gashnig, 1979]. Gashnig uses the syntactic
formalism and he does not propose an algorithm that finds
auxiliary problems automatically, using the "semantic"
formalism, as algorithm M does.

Judea Pearl and Dennis Kibler [Kibler, 1982] have
postulated the need for changing representation paradigm to
solve auxiliary problems efficiently. Their postulation is
grounded on the negative result discussed in this paper of
which i had informed them in personal correspondence. They
quote this result explicitly in their reports [Pearl, 1982,
p.131; Kibler 1982, p.4J.

References
[Amarel, 1968] Amarel, Saul. "On Representations of Problems

of Reasoning About Actions." Machine Intelligence 3,
Ed. D. Michie. Edinburgh: Edinburgh University
Press, 1968, 131-171.

[Dijkstra, 1959] Dijkstra, Edger W. "A Note on two Problems in
Connection with Graphs." Numerische Matematik, 1
(1959), 269-271.

[Gashnig, 1979] Gashnig, John. "A Problem Similarity
Approach to Devising Heuristics: First Results." Proc
6th IJCAI, (1979) 301-307.

[Guide and Somalvico, 1979] Guida, Giovanni and Marco
Somalvico. "A Method for Computing Heuristics in
Problem Solving." Information Sciences, 19 (1979),
251-259.

[Kibler, 1982] Kibler, Dennis. "Natural Generation of
Admissible Heuristics." Technical Report TR-188,
Information and Computer Science Department,
University of California at Irvine, Irvine, California,
1982.

[Lenat, 1982] Lenat, Douglas B. "The Nature of Heuristics."
Artificial Intelligence, 19, 2 (October 1982), 189-249.

[Martelli, 1977] Martelli, Alberto. "On the Complexity of
Admissible Search Algorithms." Artificial
Intelligence, 8, 1 (1977), pp. 1-13.

[Nilsson, 1971] Nilsson, Nils J. Problem Solving Methods in
Artificial Intelligence. New York: McGraw-Hill, 1971.

[Nilsson, 1980] Nilsson, Nils J. Principles of Artificial
Intelligence. Palo Alto (Calif): Tioga Publishing
Company, 1980

[Pearl, 1982] Pearl, Judea. "On the Discovery and Generation
of Certain Heuristics." The UCLA Computer Science
Department Quarterly, 10, 2 (Spring 1982), 121-132.

[Valtorta, 1980] Valtorta, Marco. "Un Contribute alia Teoria
della Risoluzione dei Problemi: Rappresentazione
Semantica, Proprieta' Algebriche e Algoritmi di
Ricerca." Tesi di Laurea, Istituto di Ingegneria
Elettrotecnica ed Elettronica, Politecnico di Milano,
Milan, Italy, 1980 (in Italian).

