
PERTURBATION: A MEANS FOR GUIDING GENERALIZATION

Dennis Kibler
Bruce Porter

Information and Computer Science Department
University of Cal i fornia at Irvine

I rv ine, Cal i fornia1

Abstract
Learning problem solving from examples suffers

from three problems. F i r s t , there is a strong
dependency on the order of the presented examples.
Second, each example has i t s own pecul iar i t ies
which must be overcome. Third, the size of the
generalization space can be huge, even if the
instance language is small. By adding perturbation
operators to the concept tree each of these
problems can be al leviated. This is demonstrated
in a system which learns, through interact ion with
a teacher, to solve simultaneous l inear equations.

1 . Introduction
With the aid of a teacher, junior high school

students can learn to solve simultaneous l inear
equations. A program, given the same information,
has numerous problems to overcome. One problem is
focussing at tent ion: the solutions presented may
contain spurious associations, hiding the
essential characterist ics or features. Another
problem is the extremely large space of possible
rules (candidate generalizations) that match a
given instance of a set of l inear equations and
the given appropriate operation. For a natural
representation of equations there are more than
one mi l l i on rules one might in fe r . We avoid these
problems by examining the effect of the same
operator on a "near" example created by perturbing
the given example. In th is manner we can focus
attent ion on the essential features and reduce the
size of the search space to several thousand
poss ib i l i t i es . Once th is is done we can apply
standard generalization techniques, such as
described by Vere [10, 12, 13] , Michalski [5] , or
Mitchel l [6 , 8] . As a side benefit th is technique
also mitigates the effect of the part icular
sequence of examples that the teacher presented.

1This research was supported by the Naval Ocean
System Center under contract N00123-81-C-1165.

2. Related Work
Winston [15] showed the importance of "near"

misses in learning concepts about the blocks
world. By using perturbations "near" examples are
generated automatically. We use a re lat ional
production system, somewhat l i ke Vere's [12]
except that we use a bag of conditions rather than
a set, to represent the program's knowledge of
when to apply operators. Production systems have
been successfully used to model the acquisit ion of
s k i l l for poker playing [14], puzzle solving [1] ,
algebra problems [9] , arithmetic problems [2] , and
symbolic integration [7] . Of these, Neves's [9]
system learned to solve one equation in one
unknown from textbook traces. The system learned
both the context (preconditions) of an operator as
wel l as which operator was applied, although the
operator had to be known to the system. His
generalization language was simpler than ours in
that a constant could only be generalized to a
variable. Anzai [1] gradually refined weak general
problem solving methods into strong ones by
acquiring strategies for the tower-of-Hanoi
problem, weak methods, without some heur ist ics,
would leave our program with too large a space to
search. The program LEX [7] uses version spaces
to describe the current hypothesis space as wel l
as concept trees to direct or bias the
generalizations. As it is not the main point of
our work, we keep only the minimal (maximally
specif ic) generalization [10] of the examples.

3. Perturbation Method
Before discussing the general technique of

perturbations, we w i l l i l l u s t r a t e i t s use in
learning to solve simultaneous l inear equations.
We adopt a re lat ional description of each
equation, so equation(a) 2x-3y=-7 is stored as:
{tenn(a,2*x) , term(a,-3*y),term(a,7)}.

Following Mitchel l [7] and Michalski [5] we
have concept trees for integers, variables, and

416 D. Kibler and B. Porter

Figure 3 - 1 : Concept tree for integers
For variables the concept tree is simpler. An
algebraic variable stands for i t s e l f or can be
generalized to var(X), where X is a variable in
the pattern language. Simi lar ly labels are either
the part icular label or a label variable.
Basically we are using the typed variables of
Michalski [5] .

We permit generalizations by 1) deleting
conditions, 2) replacing constants by variables
(typed), and 3) climbing tree generalization.
Disjunctive generalization is allowed by adding
addit ional productions or rules. This covers a l l
the generalization rules discussed by
Michalski [5] except for closed interval
generalization.

To be more speci f ic , generalizations of
equation(a) are achieved by generalizing any term
according to i t s concept tree or by deleting any
term. term(a,2*x) has two generalizations of a (a
and label (X)), four generalizations of 2 (2,
posit ive(N), nonzero (N), and integer (N)), and two
generalizations of x (x and var (Y)), giving a
t o ta l of 16 possible generalizations. Two
equations may have four such terms as wel l as two
constant terms, yielding a t o ta l of
16*16*16*16*4*4 or more than a m i l l i on possible
generalizations! Note we have not counted the
addit ional generalizations that come about by
deleting terms.

The program is set the task of learning when to
apply opaque operators, i . e . operators that are
hard-coded and unanalyzable by the program. The
operators are: add(a,b), sub(a,b), and
cross(a,b,c l ,c2) . where a and b are equation
labels and c l , and c2 are integers. The add(a,b)
operator replaces equation (b) by the sun of
equation (a) and equation(b). Simpl i f icat ion takes
place as part of the application of an operator.
The operator sub(a,b) is defined s imi la r ly . The
operator cross(a,b,cl,c2) replaces equation(b) by
cl*equation(a) - c2*equation(b) • We show how these
powerful operators can be learned from simpler

D. Kiblerand B. Porter 417

sub(a,b) the result ing equations are:
a: 2x+3y7
b: - 3 y - 4

which is not simplier (sub(b,a) would be effect ive
however).

Since the operator is ef fect ive in example i i ,
the system generalizes (minimally) i t s current
rule conditions with th is example yielding the new
ru le :

{term(a,2*x),term(a,-7),
term(b,2*x),tenn(b,-5*y),term(b,-3)} => sub(a,b)

The major effect is to delete the condition on the
y-term of equation (a). Perturbed examples for
which the operator is not effect ive are
disregarded. In other 'domains th is negative
information might be useful, but it is not
necessary for th is domain. After generalizing
with example i v f the rule becomes:

{term(a,2*x) ,term(b,2*x) ,term(b,-5*y),
term(b,-3)} «> sub(a,b).

The effect of generalizing with example v is to
allow any negative coeff ic ient for the y-term of
equation(b):

{tem(a,2*x),term(b,2*x),term(b,neg(N)*y),
term(b f-3)} => sub(a,b).

Futher perturbations y ie ld the candidate ru le:
{term(a,2*x) ,term(b,2*x) ,term(b,neg(N)*y) }=>sub(a,b).
Since each term in th is rule has about 16 possible
generalizations, th is rule has more than 4000
possible generalizations.

Sometime la te r , probably in the context of
another example, the program may have to
incorporate a rule of the form:
{term(a,3*y) ,term(b,3*y) ,term(b,4*x)}«>sub(a,b).
A minimal generalization of th is candidate with
the previous rule yields the ru le:
{tenn(a,pos(N) *var (X)) ,term(b,pos(N) *var ((X)) ,
term(b,nonzero(M))} «> sub(a,b).

Eventually, depending on the examples chosen by
the teacher, an effect ive set of rules w i l l be
generated. Each rule can be f u l l y learned with
only two instances, if the instances are choosen
to be maximally dissimilar but s t i l l requiring the
same operator. A more casual and usual set of
examples, such as those found in [3] require 4-6
examples to generate the ru le . At most f i ve
instances or interactions wi th a teacher are
required to learn the ru le :

{term(label(A) ,nonzero(N)*var(X),
term(label(B) ,nanzero(N)*var(X),
term(label (B) ,nonzero(M)*var (Y)}

-> sub (label (A), label (B))
A rough english translat ion of th is rule i s : I f

two equations have equal terns, then subtract
those equations, replacing equation(label(B)) with
the resul t (provided equation(label(B)) has two
terms) •

The rule for the add operator is simi lar to the
ru le for subtract:

(tenn(labeKA) ,nonzero(N)*var(X),
term(label (B) ,nonzero(-N)*var(X),
term(label(B) ,nonzero(M)*var(Y)}

=> add (label (A), label (B))
which can be paraphrased as: If two equations have
l i k e terms such that the coeff ic ient of one is the
negation of the coeff ic ient of the other, then add
those equations, replacing equation(label(B)) wi th
the result (provided equation (label (B)) has two
terms) •

A rule for the cross-multiply operator that the
system forms given typical examples i s :

{term(label(A) ,nonzero(M)*var(X)),
term(label (B),nonzero (N) *var (X)),
term(labeKB) ,nonzero(0)*var(Y))}

=> cross (label (A), label (B), nonzero (N) ,nonzero(M))
which roughly means: If two equations have l i ke
terms with non-zero coeff ic ients then replace the
equation (label (A)) with the result of cross
mult iplying and substracting the equations
(provided equation(label(B)) has two terms).

3.2. Perturbation Operators
The perturbation operators map instances in to

new s ib l ing instances. In f igure 3-4 we
i l l u s t r a t e the concept tree for integers augmented
with a possible set of perturbation operators,
indicated in braces.

Perturbation breaks up the generalization
process in to two steps. Each example is perturbed
mult iple times to create near examples and near
misses. Minimal generalizations are formed from
th is set. Primari ly t h i s has the effect of s i f t i ng
out the essential conditions from the
non-essential ones. No further teacher assistance
is required for t h i s s i f t i n g . Additional teacher
assistance is required to ref ine the

418 D. Kibler and B. Porter

generalization formed. Because of the active
nature of problem solving, as opposed to standard
concept learning, the system is capable of relying
less on the teacher for appropriate examples.

Perturbations c lass i f ied as near-misses are
distinguished from near examples by applying a
test of whether the operator which s impl i f ied the
example also simpl i f ies the perturbation. Since
the cost of t ry ing the operator is small (as is
the cost of generating the perturbation) there is
no need to guide the selection of which
perturbations to t r y . If there is a high cost
associated with test ing an example, as in
re-applying the problem solver in LEX [7] ,
heurist ics for guiding the generation of
perturbations are needed.

4. Limitations and Extensions
As with most learning programs we require that

the concept to be learned be representable in our
generalization language. In addition the system
has to be supplied with some coarse notion of when
an operator has been ef fect ive in simplifying the
current state. Furthermore we assume that the
teacher is not malicious and gives only
appropriate advice.

Instead of generating a l l perturbations of an
instance, though i t is pract ical in th is domain,
we plan to allow the current generalization of the
rule determine the appropriate perturbations. We
also plan to allow sequences of non-improving
operations. Currently no perturbation can modify
more than one coef f ic ient . By adding the
capabi l i ty to modify several coeff ic ients
simultaneously, perturbations could be used to
d i rect the tree generalization. Reconsider the
example:

a: 2x+3y=7
b: 2x-5y=3

We showed that by perturbing one coeff ic ient at a
t ime, the rule
{term(a,2*x) ,term(b,2*x) ,term(b,neg(M)*y)«>sub(a,b)}
could be derived. If we could simultaneously
modify the 2 's in the x-terms to 3 's , we could
generate the new example:

a: 3x+3y*7
b: 3x-5y*3

Since sub(a,b) is ef fect ive here, the new rule
{term(a,pos(N)*x) ,term(b,pos(N)*x),
term(b,neg(M)*y)} => sub(a,b)

could be formed. Lastly we intend to apply the
technique to other problem solving domains.

5. Conclusions
For learning operators, we have shown that

perturbations form an ef fect ive means for
eliminating nonessential features from the search
space. For learning how to solve simultaneous
l inear equations, the search space was reduced
from approximately a mi l l i on candidates to several
thousand. To learn the correct conditions for
applying an operator, the system requires at most
f i ve interactions with the teacher. Essential ly,
perturbation is a technique for creating near
examples and near misses upon which standard
generalization techniques can be applied.

REFERENCES
1. Anzai,Y. Learning strategies by computer.
CSCSI II (1978), 181-190.
2. Brazdi l , P. Experimental learning model. AISB
Conference Proceedings (1978), 46-50.
3. Keedy and Bittenger. Introductory Algebra.
Addison-Wesley, 1979.
4. Kibler, D.F., and Porter, B.W. Episodic
Learning. 194, University of Cal i fornia, I rv ine,
1983.
5. Michalski, R.S., Diet ter ich, T.G. Learning
and Generalization of Characteristic Descriptions:
Evaluation Cr i te r ia and Comparative Review of
Selected Methods. IJCAI 6 (1979), 223-231.
6. Mi tchel l , T.M. Version spaces: a candidate
elimination approach to rule learning. IJCAI 5
(1977), 305-310.
7. Mi tchel l , T.M., Utgoff, P.E., Nudel, B, and
Banerj i , R. Learning Problem-Solving Heuristics
Through Practice. IJCAI 7 (1981), 127-134.
8. Mi tchel l , T.M. Generalization as Search.
Ar t i f i c ia l intelligence 18 (1982), 203-226.
9. Neves, D.M. A computer program that learns
algebraic procedures by examining examples and
working problems in a textbook, CSCSI II (1978),
191-195.
10. Vere, S.A. Induction of concepts in the
predicate calculus. IJCAI 4 (1975), 281-287.
11 . Vere, S.A. induction of Relational
Productions in the Presence of Background
Information. IJCAI 5 (1977), 349-355.
12. Vere, S.A. Inductive learning of re lat ional
productions. In Waterman, D.A. and Hayes-Roth,
F. , Ed. , Pattern-Directed inference System,
Academic Press, 1978.
13. Vere, S.A. Mult i level Counterfactuals for
Generalizations of Relational Concepts and
Productions. Ar t i f i c ia l intelligence 11 (1980),
138-164.
14. Waterman, D.A. Generalization learning
techniques for automating the learning of
heur is t ics. AI 1 (1970), 121-170.
15. Winston, P.H. Learning structural
description from examples. In Winston, P.H., Bd.,
The Psychology of Computer vision, McGraw-Hill,
1975.

