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Abstract 
Learning problem solving from examples suffers 

from three problems. F i r s t , there is a strong 
dependency on the order of the presented examples. 
Second, each example has i t s own pecul iar i t ies 
which must be overcome. Third, the size of the 
generalization space can be huge, even if the 
instance language is small. By adding perturbation 
operators to the concept tree each of these 
problems can be al leviated. This is demonstrated 
in a system which learns, through interact ion with 
a teacher, to solve simultaneous l inear equations. 

1 . Introduction 
With the aid of a teacher, junior high school 

students can learn to solve simultaneous l inear 
equations. A program, given the same information, 
has numerous problems to overcome. One problem is 
focussing at tent ion: the solutions presented may 
contain spurious associations, hiding the 
essential characterist ics or features. Another 
problem is the extremely large space of possible 
rules (candidate generalizations) that match a 
given instance of a set of l inear equations and 
the given appropriate operation. For a natural 
representation of equations there are more than 
one mi l l i on rules one might in fe r . We avoid these 
problems by examining the effect of the same 
operator on a "near" example created by perturbing 
the given example. In th is manner we can focus 
attent ion on the essential features and reduce the 
size of the search space to several thousand 
poss ib i l i t i es . Once th is is done we can apply 
standard generalization techniques, such as 
described by Vere [10, 12, 13] , Michalski [ 5 ] , or 
Mitchel l [ 6 , 8 ] . As a side benefit th is technique 
also mitigates the effect of the part icular 
sequence of examples that the teacher presented. 
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2. Related Work 
Winston [15] showed the importance of "near" 

misses in learning concepts about the blocks 
world. By using perturbations "near" examples are 
generated automatically. We use a re lat ional 
production system, somewhat l i ke Vere's [12] 
except that we use a bag of conditions rather than 
a set, to represent the program's knowledge of 
when to apply operators. Production systems have 
been successfully used to model the acquisit ion of 
s k i l l for poker playing [14], puzzle solving [ 1 ] , 
algebra problems [9 ] , arithmetic problems [2 ] , and 
symbolic integration [ 7 ] . Of these, Neves's [9] 
system learned to solve one equation in one 
unknown from textbook traces. The system learned 
both the context (preconditions) of an operator as 
wel l as which operator was applied, although the 
operator had to be known to the system. His 
generalization language was simpler than ours in 
that a constant could only be generalized to a 
variable. Anzai [1] gradually refined weak general 
problem solving methods into strong ones by 
acquiring strategies for the tower-of-Hanoi 
problem, weak methods, without some heur ist ics, 
would leave our program with too large a space to 
search. The program LEX [7] uses version spaces 
to describe the current hypothesis space as wel l 
as concept trees to direct or bias the 
generalizations. As it is not the main point of 
our work, we keep only the minimal (maximally 
specif ic) generalization [10] of the examples. 

3. Perturbation Method 
Before discussing the general technique of 

perturbations, we w i l l i l l u s t r a t e i t s use in 
learning to solve simultaneous l inear equations. 
We adopt a re lat ional description of each 
equation, so equation(a) 2x-3y=-7 is stored as: 
{tenn(a,2*x) , term(a,-3*y),term(a,7)}. 

Following Mitchel l [7] and Michalski [5] we 
have concept trees for integers, variables, and 
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Figure 3 - 1 : Concept tree for integers 
For variables the concept tree is simpler. An 
algebraic variable stands for i t s e l f or can be 
generalized to var(X), where X is a variable in 
the pattern language. Simi lar ly labels are either 
the part icular label or a label variable. 
Basically we are using the typed variables of 
Michalski [ 5 ] . 

We permit generalizations by 1) deleting 
conditions, 2) replacing constants by variables 
(typed), and 3) climbing tree generalization. 
Disjunctive generalization is allowed by adding 
addit ional productions or rules. This covers a l l 
the generalization rules discussed by 
Michalski [5] except for closed interval 
generalization. 

To be more speci f ic , generalizations of 
equation(a) are achieved by generalizing any term 
according to i t s concept tree or by deleting any 
term. term(a,2*x) has two generalizations of a (a 
and label (X)), four generalizations of 2 (2, 
posit ive(N), nonzero (N), and integer (N)), and two 
generalizations of x (x and var (Y)), giving a 
t o ta l of 16 possible generalizations. Two 
equations may have four such terms as wel l as two 
constant terms, yielding a t o ta l of 
16*16*16*16*4*4 or more than a m i l l i on possible 
generalizations! Note we have not counted the 
addit ional generalizations that come about by 
deleting terms. 

The program is set the task of learning when to 
apply opaque operators, i . e . operators that are 
hard-coded and unanalyzable by the program. The 
operators are: add(a,b), sub(a,b), and 
cross(a,b,c l ,c2) . where a and b are equation 
labels and c l , and c2 are integers. The add(a,b) 
operator replaces equation (b) by the sun of 
equation (a) and equation(b). Simpl i f icat ion takes 
place as part of the application of an operator. 
The operator sub(a,b) is defined s imi la r ly . The 
operator cross(a,b,cl,c2) replaces equation(b) by 
cl*equation(a) - c2*equation(b) • We show how these 
powerful operators can be learned from simpler 
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sub(a,b) the result ing equations are: 
a: 2x+3y7 
b: - 3 y - 4 

which is not simplier (sub(b,a) would be effect ive 
however). 

Since the operator is ef fect ive in example i i , 
the system generalizes (minimally) i t s current 
rule conditions with th is example yielding the new 
ru le : 

{term(a,2*x),term(a,-7), 
term(b,2*x),tenn(b,-5*y),term(b,-3)} => sub(a,b) 

The major effect is to delete the condition on the 
y-term of equation (a). Perturbed examples for 
which the operator is not effect ive are 
disregarded. In other 'domains th is negative 
information might be useful, but it is not 
necessary for th is domain. After generalizing 
with example i v f the rule becomes: 

{term(a,2*x) ,term(b,2*x) ,term(b,-5*y), 
term(b,-3)} «> sub(a,b). 

The effect of generalizing with example v is to 
allow any negative coeff ic ient for the y-term of 
equation(b): 

{tem(a,2*x),term(b,2*x),term(b,neg(N)*y), 
term(b f-3)} => sub(a,b). 

Futher perturbations y ie ld the candidate ru le: 
{term(a,2*x) ,term(b,2*x) ,term(b,neg(N)*y) }=>sub(a,b). 
Since each term in th is rule has about 16 possible 
generalizations, th is rule has more than 4000 
possible generalizations. 

Sometime la te r , probably in the context of 
another example, the program may have to 
incorporate a rule of the form: 
{term(a,3*y) ,term(b,3*y) ,term(b,4*x)}«>sub(a,b). 
A minimal generalization of th is candidate with 
the previous rule yields the ru le: 
{tenn(a,pos(N) *var (X)) ,term(b,pos(N) *var ((X)) , 
term(b,nonzero(M))} «> sub(a,b). 

Eventually, depending on the examples chosen by 
the teacher, an effect ive set of rules w i l l be 
generated. Each rule can be f u l l y learned with 
only two instances, if the instances are choosen 
to be maximally dissimilar but s t i l l requiring the 
same operator. A more casual and usual set of 
examples, such as those found in [3] require 4-6 
examples to generate the ru le . At most f i ve 
instances or interactions wi th a teacher are 
required to learn the ru le : 

{term(label(A) ,nonzero(N)*var(X), 
term(label(B) ,nanzero(N)*var(X), 
term( label (B) ,nonzero(M)*var (Y)} 

-> sub (label (A), label (B)) 
A rough english translat ion of th is rule i s : I f 

two equations have equal terns, then subtract 
those equations, replacing equation(label(B)) with 
the resul t (provided equation(label(B)) has two 
terms) • 

The rule for the add operator is simi lar to the 
ru le for subtract: 

(tenn(labeKA) ,nonzero(N)*var(X), 
term(label (B) ,nonzero(-N)*var(X), 
term(label(B) ,nonzero(M)*var(Y)} 

=> add (label (A), label (B)) 
which can be paraphrased as: If two equations have 
l i k e terms such that the coeff ic ient of one is the 
negation of the coeff ic ient of the other, then add 
those equations, replacing equation(label(B)) wi th 
the result (provided equation (label (B)) has two 
terms) • 

A rule for the cross-multiply operator that the 
system forms given typical examples i s : 

{term(label(A) ,nonzero(M)*var(X)), 
term(label (B),nonzero (N) *var (X)), 
term(labeKB) ,nonzero(0)*var(Y))} 

=> cross (label (A), label (B), nonzero (N) ,nonzero(M)) 
which roughly means: If two equations have l i ke 
terms with non-zero coeff ic ients then replace the 
equation (label (A)) with the result of cross 
mult iplying and substracting the equations 
(provided equation(label(B)) has two terms). 

3.2. Perturbation Operators 
The perturbation operators map instances in to 

new s ib l ing instances. In f igure 3-4 we 
i l l u s t r a t e the concept tree for integers augmented 
with a possible set of perturbation operators, 
indicated in braces. 

Perturbation breaks up the generalization 
process in to two steps. Each example is perturbed 
mult iple times to create near examples and near 
misses. Minimal generalizations are formed from 
th is set. Primari ly t h i s has the effect of s i f t i ng 
out the essential conditions from the 
non-essential ones. No further teacher assistance 
is required for t h i s s i f t i n g . Additional teacher 
assistance is required to ref ine the 
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generalization formed. Because of the active 
nature of problem solving, as opposed to standard 
concept learning, the system is capable of relying 
less on the teacher for appropriate examples. 

Perturbations c lass i f ied as near-misses are 
distinguished from near examples by applying a 
test of whether the operator which s impl i f ied the 
example also simpl i f ies the perturbation. Since 
the cost of t ry ing the operator is small (as is 
the cost of generating the perturbation) there is 
no need to guide the selection of which 
perturbations to t r y . If there is a high cost 
associated with test ing an example, as in 
re-applying the problem solver in LEX [ 7 ] , 
heurist ics for guiding the generation of 
perturbations are needed. 

4. Limitations and Extensions 
As with most learning programs we require that 

the concept to be learned be representable in our 
generalization language. In addition the system 
has to be supplied with some coarse notion of when 
an operator has been ef fect ive in simplifying the 
current state. Furthermore we assume that the 
teacher is not malicious and gives only 
appropriate advice. 

Instead of generating a l l perturbations of an 
instance, though i t is pract ical in th is domain, 
we plan to allow the current generalization of the 
rule determine the appropriate perturbations. We 
also plan to allow sequences of non-improving 
operations. Currently no perturbation can modify 
more than one coef f ic ient . By adding the 
capabi l i ty to modify several coeff ic ients 
simultaneously, perturbations could be used to 
d i rect the tree generalization. Reconsider the 
example: 

a: 2x+3y=7 
b: 2x-5y=3 

We showed that by perturbing one coeff ic ient at a 
t ime, the rule 
{term(a,2*x) ,term(b,2*x) ,term(b,neg(M)*y)«>sub(a,b)} 
could be derived. If we could simultaneously 
modify the 2 's in the x-terms to 3 's , we could 
generate the new example: 

a: 3x+3y*7 
b: 3x-5y*3 

Since sub(a,b) is ef fect ive here, the new rule 
{term(a,pos(N)*x) ,term(b,pos(N)*x), 
term(b,neg(M)*y)} => sub(a,b) 

could be formed. Lastly we intend to apply the 
technique to other problem solving domains. 

5. Conclusions 
For learning operators, we have shown that 

perturbations form an ef fect ive means for 
eliminating nonessential features from the search 
space. For learning how to solve simultaneous 
l inear equations, the search space was reduced 
from approximately a mi l l i on candidates to several 
thousand. To learn the correct conditions for 
applying an operator, the system requires at most 
f i ve interactions with the teacher. Essential ly, 
perturbation is a technique for creating near 
examples and near misses upon which standard 
generalization techniques can be applied. 
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