PERTURBATION: A MEANS FOR GUIDING GENERALIZATION

Dennis Kibler
Bruce Porter

Information and Computer Science Department
University of California at Irvine

Irvine,

Abstract

Learning problem solving from examples suffers
from three problems. First, there is a strong
dependency on the order of the presented examples.
Second, each example has its own peculiarities
which must be overcome. Third, the size of the
generalization space can be huge, even if the
instance language is small. By adding perturbation
operators to the concept tree each of these
problems can be alleviated. This is demonstrated
in a system which learns, through interaction with
a teacher, to solve simultaneous linear equations.

1. Introduction

With the aid of a teacher, junior high school
students can learn to solve simultaneous linear
equations. A program, given the same information,
has numerous problems to overcome. One problem is
focussing attention: the solutions presented may
contain spurious associations, hiding the
essential characteristics or features. Another
problem is the extremely large space of possible
rules (candidate generalizations) that match a
given instance of a set of linear equations and
the given appropriate operation. For a natural
representation of equations there are more than
one million rules one might infer. We avoid these
problems by examining the effect of the same
operator on a "near" example created by perturbing
the given example. In this manner we can focus
attention on the essential features and reduce the
size of the search space to several thousand
possibilities. Once this is done we can apply
standard generalization techniques, such as
described by Vere [10, 12, 13], Michalski [5], or
Mitchell [6,8]. As a side benefit this technique
also mitigates the effect of the particular
sequence of examples that the teacher presented.

'This research was supported by the Naval Ocean
System Center under contract N00123-81-C-1165.

California;

2. Related Work

Winston [15] showed the importance of "near"
misses in learning concepts about the blocks
world. By using perturbations "near" examples are
generated automatically. We use a relational
production system, somewhat like Vere's [12]
except that we use a bag of conditions rather than
a set, to represent the program's knowledge of
when to apply operators. Production systems have
been successfully used to model the acquisition of
skill for poker playing [14], puzzle solving [1],
algebra problems [9], arithmetic problems [2], and
symbolic integration [7]. Of these, Neves's [9]
system learned to solve one equation in one
unknown from textbook traces. The system learned
both the context (preconditions) of an operator as
well as which operator was applied, although the
operator had to be known to the system. His
generalization language was simpler than ours in
that a constant could only be generalized to a
variable. Anzai [1] gradually refined weak general
problem solving methods into strong ones by
acquiring strategies for the tower-of-Hanoi
problem, weak methods, without some heuristics,
would leave our program with too large a space to
search. The program LEX [7] uses version spaces
to describe the current hypothesis space as well
as concept trees to direct or bias the
generalizations. As it is not the main point of
our work, we keep only the minimal (maximally
specific) generalization [10] of the examples.

3. Perturbation Method

Before discussing the general technique of
perturbations, we will illustrate its use in
learning to solve simultaneous linear equations.
We adopt a relational description of each
equation, so equation(a) 2x-3y=-7 is stored as:
{tenn(a,2*x) ,term(a,-3*y),term(a,7)}.

Following Mitchell [7] and Michalski [5] we
have concept trees for integers, variables, and

416 D. Kibler and B. Porter

equation labele, Our concept tree for integers is
shown in figure 3-1,

integer
/ AN
nom—zero ZEIo
/ \ \
poeitive rnegative 0
V2N IAN /|
1 2 3 s _1 "2 v

Figure 3-1: Concept tree for integers
For variables the concept tree is simpler. An
algebraic variable stands for itself or can be
generalized to var(X), where X is a variable in
the pattern language. Similarly labels are either
the particular label or a label variable.
Basically we are using the typed variables of
Michalski [5].

We permit generalizations by 1) deleting
conditions, 2) replacing constants by variables
(typed), and 3) climbing tree generalization.
Disjunctive generalization is allowed by adding
additional productions or rules. This covers all
the generalization rules discussed by
Michalski [5] except for closed interval
generalization.

To be more specific, generalizations of
equation(a) are achieved by generalizing any term
according to its concept tree or by deleting any
term. term(a,2*x) has two generalizations of a (a
and label (X)), four generalizations of 2 (2,
positive(N), nonzero (N), and integer (N)), and two
generalizations of x (x and var(Y)), giving a
total of 16 possible generalizations. Two
equations may have four such terms as well as two
constant terms, yielding a total of
16*16*16*16*4*4 or more than a million possible
generalizations! Note we have not counted the
additional generalizations that come about by
deleting terms.

The program is set the task of learning when to
apply opaque operators, i.e. operators that are
hard-coded and unanalyzable by the program. The
operators are: add(a,b), sub(a,b), and
cross(a,b,cl,c2). where a and b are equation
labels and cl, and c2 are integers. The add(a,b)
operator replaces equation (b) by the sun of
equation(a) and equation(b). Simplification takes
place as part of the application of an operator.
The operator sub(a,b) is defined similarly. The
operator cross(a,b,cl,c2) replaces equation(b) by
cl*equation(a) - c2*equation(b) « We show how these
powerful operators can be learned from simpler

operators using episodic segmentation [4]. In
this paper we concentrate on reducing the size of
the search space.

3.1. Learning Cycle

Initially the program has no rules for applying
ite operators. A high-level description of the
progran? is given in figures 3-2 and 3-3.

repeat
get problem fram teacher
repeat
if some rule matches problem then
apply it (no learning)
else get operation fram teacher and
call: integrate operation into rule base
until problem solved
display current set of rulee
until teacher aatisfied
Figure 3-2: Main driver
Subroutine: integrate operation into rule base
set candidate rule to instance
repeat
perturb problem
if operator still effective, minimally
general ize current (perturbed) instance
with candidate rule
until no more perturbations
if a member of rule base can be generalized to
cover aqurrent candidate rule, then replace
menber by generalization
elge add candidate rule to rule base.
Pigure 3-3: Perturbation subroutine

For example, given the problem:

a: x+3y=7

b: 2x~5y=3
the teacher advice to sub(a,b), and an empty rule
base, the gystem first describes the rule as:

{term{a,2%*x) ,term{a,3*%y) ,term{a,-T},
term(b, 2*x) ,term{b,-5%) ,temm{b,-3)} => sub{a,b)

Now the program "perturbs® the instance by
modifying each of the coefficients individually,
Thie is done by zeroing, incrementing and
decrementing each coefficient, Sane of the
equations generated by perturbation are:

(1) (1) (i14) (v} (v)
=] & =7 Zx43y=7 2xi3y=0 2x+3y=7
2x-5y=3 2x-6y=3 2x =3 2x-Sym3 2x-6y=3

Notice that sub(a,b) is still effective in
examples 11, iv and v but is not effective in
examples i and 111, By effective we mean that not
only i the operator applicable, but also that it
simplifies the problem atate. We were surprised
to discover that example iii is not a positive
instance for seub{a,b). HNote that by applying

2Implemenited in Prolog on DEC-2020., Available
upon rejuest,

sub(a,b) the resulting equations are:

a: 2x+3y7

b: -3y-4
which is not simplier (sub(b,a) would be effective
however).

Since the operator is effective in example ii,
the system generalizes (minimally) its current
rule conditions with this example yielding the new
rule:

{term(a,2*x),term(a,-7),

term(b,2*x),tenn(b,-5*y),term(b,-3)} => sub(a,b)
The major effect is to delete the condition on the
y-term of equation(a). Perturbed examples for
which the operator is not effective are
disregarded. In other 'domains this negative
information might be useful, but it is not
necessary for this domain. After generalizing
with example iv¢ the rule becomes:

{term(a,2*x) ,term(b,2*x) ,term(b,-5%y),
term(b,-3)} «> sub(a,b).

The effect of generalizing with example v is to
allow any negative coefficient for the y-term of
equation(b):

{tem(a,2*x),term(b,2*x),term(b,neg(N)*y),
term(bs-3)} => sub(a,b).
Futher perturbations yield the candidate rule:

{term(a,2*x) ,term(b,2*x) ,term(b,neg(N)*y) }=>sub(a,b).

Since each term in this rule has about 16 possible
generalizations, this rule has more than 4000
possible generalizations.

Sometime later, probably in the context of
another example, the program may have to
incorporate a rule of the form:

{term(a,3*y) ,term(b,3*y) ,term(b,4*x)}«>sub(a,b).
A minimal generalization of this candidate with
the previous rule yields the rule:

{tenn(a,pos(N) *var (X)) ,term(b,pos(N) *var ((X)),
term(b,nonzero(M))} «> sub(a,b).

Eventually, depending on the examples chosen by
the teacher, an effective set of rules will be
generated. Each rule can be fully learned with
only two instances, if the instances are choosen
to be maximally dissimilar but still requiring the
same operator. A more casual and usual set of
examples, such as those found in [3] require 4-6
examples to generate the rule. At most five
instances or interactions with a teacher are
required to learn the rule:

{term(label(A) ,nonzero(N)*var(X),

term(label(B) ,nanzero(N)*var(X),
term(label (B) ,nonzero(M)*var (Y)}

-> sub(label(A),label (B))

A rough english translation of this rule is: If

D. Kiblerand B. Porter 417

two equations have equal terns, then subtract
those equations, replacing equation(label(B)) with
the result (provided equation(label(B)) has two
terms) ¢

The rule for the add operator is similar to the
rule for subtract:

(tenn(labeKA) ,nonzero(N)*var(X),

term(label (B) ,nonzero(-N)*var(X),

term(label(B) ,nonzero(M)*var(Y)}

=> add(label(A),label(B))
which can be paraphrased as: If two equations have
like terms such that the coefficient of one is the
negation of the coefficient of the other, then add
those equations, replacing equation(label(B)) with
the result (provided equation(label (B)) has two
terms) ¢

A rule for the cross-multiply operator that the
system forms given typical examples is:

{term(label(A) ,nonzero(M)*var(X)),

term(label (B),nonzero (N) *var (X)),

term(labeKB) ,nonzero(0)*var(Y))}
=>cross (label (A), label (B), nonzero (N) ,nonzero(M))
which roughly means: If two equations have like
terms with non-zero coefficients then replace the
equation (label (A)) with the result of cross
multiplying and substracting the equations
(provided equation(label(B)) has two terms).

3.2. Perturbation Operators

The perturbation operators map instances into
new sibling instances. In figure 3-4 we
illustrate the concept tree for integers augmented
with a possible set of perturbation operators,
indicated in braces.

integer
/ \
nomr-zero {X->0} zero
/ \ N
positive negative 0
1N Re>X} /I N
1 2 3 anw -1 "2 _3..I
{X->X+1} {X->X=1}

Figure 3-d: Concept tree with
perturbation operators

Perturbation breaks up the generalization
process into two steps. Each example is perturbed
multiple times to create near examples and near
misses. Minimal generalizations are formed from
this set. Primarily this has the effect of sifting
out the essential conditions from the
non-essential ones. No further teacher assistance
is required for this sifting. Additional teacher
assistance is required to refine the

418 D. Kibler and B. Porter

generalization formed. Because of the active
nature of problem solving, as opposed to standard
concept learning, the system is capable of relying
less on the teacher for appropriate examples.

Perturbations classified as near-misses are
distinguished from near examples by applying a
test of whether the operator which simplified the
example also simplifies the perturbation. Since
the cost of trying the operator is small (as is
the cost of generating the perturbation) there is
no need to guide the selection of which
perturbations to try. |If there is a high cost
associated with testing an example, as in
re-applying the problem solver in LEX [7],
heuristics for guiding the generation of
perturbations are needed.

4. Limitations and Extensions

As with most learning programs we require that
the concept to be learned be representable in our
generalization language. In addition the system
has to be supplied with some coarse notion of when
an operator has been effective in simplifying the
current state. Furthermore we assume that the
teacher is not malicious and gives only
appropriate advice.

Instead of generating all perturbations of an
instance, though it is practical in this domain,
we plan to allow the current generalization of the
rule determine the appropriate perturbations. We
also plan to allow sequences of non-improving
operations. Currently no perturbation can modify
more than one coefficient. By adding the
capability to modify several coefficients
simultaneously, perturbations could be used to
direct the tree generalization. Reconsider the
example:

a: 2x+3y=7

b: 2x-5y=3
We showed that by perturbing one coefficient at a
time, the rule

{term(a,2*x) ,term(b,2*x) ,term(b,neg(M)*y)«>sub(a,b)}

could be derived. If we could simultaneously
modify the 2's in the x-terms to 3's, we could
generate the new example:
a: 3x+3y*7
b: 3x-5y*3
Since sub(a,b) is effective here, the new rule
{term(a,pos(N)*x) ,term(b,pos(N)*x),
term(b,neg(M)*y)} => sub(a,b)
could be formed. Lastly we intend to apply the
technique to other problem solving domains.

5. Conclusions

For learning operators, we have shown that
perturbations form an effective means for
eliminating nonessential features from the search
space. For learning how to solve simultaneous
linear equations, the search space was reduced
from approximately a million candidates to several
thousand. To learn the correct conditions for
applying an operator, the system requires at most
five interactions with the teacher. Essentially,
perturbation is a technique for creating near
examples and near misses upon which standard
generalization techniques can be applied.

REFERENCES
1. Anzai,Y. Learning strategies by computer.
CSCslI Il (1978), 181-190.

2. Brazdil, P. Experimental learning model. AISB
Conference Proceedings (1978), 46-50.

3. Keedy and Bittenger. Introductory Algebra.
Addison-Wesley, 1979.

4. Kibler, D.F., and Porter, BW. Episodic
Learning. 194, University of California, Irvine,
1983.

5. Michalski, R.S., Dietterich, T.G. Learning
and Generalization of Characteristic Descriptions:
Evaluation Criteria and Comparative Review of
Selected Methods. IJCAlI 6 (1979), 223-231.

6. Mitchell, T.M. Version spaces: a candidate
elimination approach to rule learning. [JCAI 5
(1977), 305-310.

7. Mitchell, T.M., Utgoff, P.E., Nudel, B, and
Banerji, R. Learning Problem-Solving Heuristics
Through Practice. [JCAI 7 (1981), 127-134.

8. Mitchell, T.M. Generalization as Search.
Artificial intelligence 18 (1982), 203-226.

9. Neves, D.M. A computer program that learns
algebraic procedures by examining examples and
working problems in a textbook, CSCSI Il (1978),
191-195.

10. Vere, S.A. Induction of concepts in the
predicate calculus. IJCAI 4 (1975), 281-287.
11. Vere, S.A. induction of Relational
Productions in the Presence of Background
Information. [JCAI 5 (1977), 349-355.

12. Vere, S.A. Inductive learning of relational
productions. In Waterman, D.A. and Hayes-Roth,
F., Ed., Pattern-Directed inference System,
Academic Press, 1978.

13. Vere, S.A. Multilevel Counterfactuals for
Generalizations of Relational Concepts and
Productions. Artificial intelligence 11 (1980),
138-164.

14. Waterman, D.A. Generalization learning
techniques for automating the learning of
heuristics. Al 1 (1970), 121-170.

15. Winston, P.H. Learning structural
description from examples. In Winston, P.H., Bd.,
The Psychology of Computer vision, McGraw-Hill,
1975.

