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Abstract
Conventions are shown for representing
information in semantic networks in a linear form
called semantic case relations. Representations
of variables, truth functions, and quantified
statements are provided. Methods for answering

questions from the resulting semantic predicates
are illustrated and a computational procedure for
answering questions from quantified semantic
predicates is described.
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Introduction

In a recent criticism, "What's in a Link",
Woods (1975) noted that with few exceptions, most
semantic network systems for representing English
meanings were inadequately defined in several
ways, and, in particular, lacked suitable
conventions to encode the full meaning of
quantified statements. Several recent papers,
(such as those by Kay 1973, Hendrix 1975,
Mylopoulous, et. al. 1975, Shapiro 1976, &
Schubert 1975) have continued to explore
representation conventions and have generally
offered at least minimally acceptable schemes to
encode quantificational data. Only rarely,

is an algorithm described that uses those
conventions for answering quantified questions.
In our own experience, it is the algorithm for
using representation conventions that reveals the
computational costs and other consequences for any
particular encoding.

however,

In the following pages we briefly develop a
quantified predicate notation for semantic
networks, and describe a question-answering
algorithm and its use for finding and
distinguishing the meanings that are encoded.

Semantic Networks &d Relations
A semantic network for

representing aspects

of the meaning of English discourse is comprised
of a set of nodes that are interconnected by
directed and labelled arcs. A node is a symbolic
object that usually represents the conceptual
referent of an English expression, although it may
be a rule, the name of a function or program, or
some special symbol. Arcs typically represent
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deep case relations (Bruce 1975) that hold between
conceptual referents, but they also include
special quantifier symbols, and pointers to rules
associated with a given node.

If we consider the example sentence, "Rufolo

sailed his ship to Cyprus", the following network
might result from a semantic case analysis:
SAIL1 AGT—>RUFOLO1 .
—TH—»SHIP 14———OMN—'
I TO——»CYPRUS1
In this graph the convention is followed that a
word suffixed by a number, e.g. SAIL1, is a
uniquely named object that is an instance of the
concept associated with the unsubscripted word.
Thus, SAIL1 is an INSTance of SAIL. All lexical
information is associated with the ooncept; e.g.,
SAIL is a kind of MOVE, is a verb, takes arguments
of the form, AGT, THeme, FROM, TO, and has rules
that define its preconditions and results.
If we were to express the meaning of the

sentence in relational form,

(SAIL1 RUFOLO1 SHIP1 NIL CYPRUSH1)

(RUFOLO1 OAN SHIP1)

we would depend on ordering conventions to
recognize that the source or FROM of the sailing
is NIL or not known, RUFOLO1 is the agent and
CYPRUS is the TO or goal. Hendrix (1975) shows
that the semantic case relations are a variant
relational form in which the elements of the
relational n-tuple are identified by their case
arguments. The example appears as follows:

(HEAD SAIL1, AGT RUFOLO1, TH SHIP1,

TO CYPRUS1)
We follow the convention that the first element of
an n-tuple is always its HEAD and thus show the
semantic relation by,
(SAIL1 AGT RUFOLO1 TH SHIP1 TO CYPRUS1)
(RUFOLO1 OAN SHIP1)

The phrase "his ship" could be represented
as, (OWN1 R1 RUFOLO1 R2 SHIP1), but since OM is a
binary relation, the simpler form, (RUFOLO1 OMN
SHIP1) suffices. It should be noticed that the
semantic case relation form is a special notation
for a set of binary relations, e.g.((SAIL1 SUP
SAIL)(SAIL1T AGT RUFOLO1) (SAIL1 TH SHIP1)(RUFOLO1
SUP RUFOLO)(RUFOLO1 OM SHIP1)...) Each binary
relation could be represented uniformly as
(RELNAME R1 ARG1 R2 ARG2) but considerable savings

in writing and in computation are gained by use of
the mixed notation.

Nesting of relations in a manner analogous to
embedding English relative clauses is natural in
this form, so:

(SAIL1 AGT(RUFOLO1 OAN SHIP1)

TH SHIP1 TO CYPRUS1)
Every arc has an inverse, usually signified by
adding the suffix, * to its symbol. Thus the

following semantic relations mean the same thing:
(RUFOLO1 AGT»(SAIL1T TH SHIP1 TO CYPRUS1)
OWMN SHIP1)
(SHIP1 OWN* RUFOLO1
TH*(SAIL1 AGT RUFOLO1 TO CYPRRUS1))
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(CYPRUS1 TO*(SAIL1 AGT RUFOLOT
TH (SHIP1 OWN* RUFOLO1)))

The last three expressions if given to a certain
language generator would result in the English
sentences:

It was Rufolo who sailed his ship to Cyprus.

It was his ship that Rufolo sailed to Cyprus.

It was to Cyprus that Rufolo sailed his ship.
From these examples we can see that in expressing
a network in semantic case relational form, the
conventions for nesting and the fact that every
arc has its inverse allows for many alternative
equivalent relational expressions of the same
network. Each of the expressions when given to a
semantic network compiler results in exactly the
same network, because for every node-arc-node,
Ni-arc-Nj, the compiler creates both Ni-arc-Nj and
the inverse, Nj-arc*-Ni.

In general any semantic network can be
translated into linear form by taking the starting
node, Ni, as the first element of a relation, then
taking Ni's first arc and the node which is the
arc's value as the next two elements. If we
desire to nest, the procedure is recursively
followed on each value-node. If we wish an
un-nested form, each node which is the value of an

arc is put on a list and the procedure is iterated
over the members of the list. Alternatively, we
can produce the set of triples that represent a
network by taking the first node and forming a
triple with each of its arcs and that arc's
value-node, and iterating the process for the
value-nodes, until all value-nodes are terminals,

i.e. produce no new triples.

It is also apparent that any set of relations
can be represented by a semantic network. If we
assume that an ordinary ordered n-tuple such as

(SAIL  RUFOLO SHIP NIL CYPRUS) is decoded by means
of some template such as (ACT AGENT THEME FROM
TO), then it can be translated into a semantic
case expression by pairing each element of the
template with the corresponding element of the
n-tuple. The inverse operation can also be used
to convert from a semantic case expression to the
simpler n-tuple.

Semantic Predicates

If "add
networks for

conventions to our semantic
marking truth values and for
representing variables, truth functions and
quantifiers, the heads of semantic case relations
become logical predicates and we are justified in
referring to them as semantic case predicates, or
more simply, semantic predicates. It should be
noted that ours is an omega order logic as our
predicates can be n-ary relations between other
predicates. Such "compound" predicates are
propositions about how the other predicates are
related and as suoh can have truth values.

we

In a network each subscripted instance of a
concept, e.g. SHIP1, represents one or more
members of its Superclass. The expression, (SHIP1
PLural T) signifies that more than one instance of

the concept, SHIP, is referred to. The

expression, (SHIP3
SHIP3 refers to every

EQUIV  SHIP)
instance

signifies that

of the concept,

SHIP. Symbols such as W, X, Y, Z are reserved to
represent free variables, and often occur in rules
such as,

(IMPLY ANTE (NOT OF (NOT OF X)) CONSE X).

can
Two
of

A node representing a semantic relation
be marked True, False or UNDetermined.
conventions are followed to reduce the amount
marking:

1. If an unmarked predicate is embedded in
another (i.e. its node has backlinks
such as AGT*, TH*, ...*,ignoring SUP,
INST, BEFORE, AFTER, ENABLE, RESULTOF)
the embedded predicate is dependent on
the other and is UNDetermined unless
there is a rule or convention that allows
True or False to be inferred from the
embedding predicate.

2. Otherwise a predicate represented by an
unmarked node is True.
The previous example, "Rufolo sailed his ship to

Cyprus"
(SAIL1 AGT RUFOLO1 TH SHIP1 TO CYPRUS')
is taken as True. But, "Rufolo wanted to sail to
Italy",
(WANT1 AGT RUFOLO1
TH (SAIL2 AGT RUFOLO1 TO ITALY1))

provides an embedded predicate, SAIL2. Under the
first convention, this predicate is read as
UNDetermined, while the embedding predicate, WANT!
is True under the second convention.

The truth functions, AND, OR, NOT, IMPLY are
generally treated as compound predicates. For
example, "Rufolo bought and sold jewels" is
encoded:

(AND1 OF ((BUY1 AGT RUFOLO1 TH JEWEL1)
(SELL1 AGT RUFOLO1 TH JEWEL1)))
(JEWEL1 PL T)

The object AND1 is an instance of AND, and the
arc, OF connects it with a list of predicates.
Generally the English OR is taken as inclusive

even in the following context:

"Rufolo decided to recoup his loss or die trying."

(DECIDE1 AGT RUFOLO1 TH(OR1 OF(RECOUP1 DIED))
(RECOUP1 AGT RUFOLO1 THUOSS1 ASSOC RUFO0LO01))
(DIE1 TH RUFOLO1 DURING TRY1)
(TRY1 AGT RUFOLO! TH RECOUP1)

It is possible that even if Rufolo acts on his
decision, he might accomplish either, or both the
acts of recouping and dying. As the sentence
stands, the RECOUP, and DIE, predicates are
embedded in OR1. The OR truth function signifies
that one or both of the predicates is . true but

since we don't know which, the two predicates are
taken as UNDetermined. OR1 is embedded as the TH
argument of DECIDE so its value is also UND.

If we ask the question, "Did Rufolo die?" the
above statement does not provide an answer; but
it is relevant and the question-answering
algorithm must find it and reserve DECIDE1 for
further processing. This will be discussed in the
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next section.

For the sentence, “Rufolo decided either to
recoup his losses or die trying," the
representation would be as before exoept that XOR1
would be used in place of OR1. If we introduce an
implication rule that states that if X decides to
do Y, then Y happens,

(IMPLY 1 ANTE(DECIDE AGT X TH Y) CONSE Y)

then we could wuse it to assign a truth value to
what Rufolo decided to do. DECIDE1 instantiates
the rule, RUFOLO1 binds to X, and (XOR1 OF
(RECOUP1 DIED) becomes the value of in  both
occurrences of Y in the rule. Since the
ANTEcedent, DECIDE1, is True, the CONSEquent XOR1
is taken as True.

If we establish that,
(NOT1 OF (DIE1 TH RUFOLO1))
and we have the rule,
(IMPLY2 ANTECAND OF((NOT OF X)(XOR OF (X Y))))

CONSE YY)
which means "IF NOT X AND EITHER X OR Y, THEN Y",
then by binding DIE1 to X, and RECOUP1 to Y
throughout the rule, we can establish that Rufolo
recouped his losses.

Y

"Rufolo didn»t die,"

Although this is a valid

unfortunately the rule

argument pattern,
IMPLY1 is fallacious on
semantic grounds. If a person decides to do
something, then he will try to do it, but if X
tries Y, Y still remains UNDetermined. If we use

such rules as IMPLY1 with arguments whose truth
values are UND, we can suggest expectations that
may be substantiated by further text, but we
cannot deduce truth.

Additional implementation conventions are
used to minimize the number of nodes and arcs
required to represent conjunction. First, the

value of any argument arc from a predicate node is
a list of one or more nodes—an implicit
representation of  AND. Second, the set of
semantic predicates in the network forms an
implicit conjunction. The explicit AND is only
recorded when additional arguments apply to all
members of the conjunction as in the example,
"Rufolo danced and sang while the music played."
(AND2 OF (DANCE1 SING1) DURING PLAY1)

(DANCE1 AGT RUFOLO1)(SING1 AGT RUFOLO1)

(PLAY1 TH MUSIC1)

Representations of OR and NOT are always
explicitly encoded.

In all the above examples, universal
quantification has been assumed. BUY1, RUFOLO1,
and JEWEL1 are predicates true of particular
instances of their superset classes, BUY, RUFOLO,
and JEWEL. (BUY1 AGT RUFOLO1 TH JEWEL1) asserts
that EVERY  RUFOLO1 BOUGHT EVERY  JEWELL
Additional conventions are needed for a more
general treatment of quantification.

In the example, "Every ship has a captain"
WRONG:(HAVE1 R1 (SHIP2 EQUIV SHIP) R2 CAPTAIN1)

In a customary predicate logic notation the
quantifier symbols (A FORALL, E FORSOMVE) are
associated with the variables in the order in
which they are to be applied, e.g

A SHIP3 E CAPTAIN1 (HAVE1 R1 SHIP3 R2 CAPTAIN1)
This convention can easily be adopted for semantic
predicates with the following notation,

(HAVE1 R1 SHIP3 R2 CAPTAIN1 QA SHIP3, E CAPTAIN1))
This notation is sufficient to maintain the
information about quantifiers and their ordering.
The arc, Q, stands for a Quantifier ordering
prescription for the predicate node to which it is
attached.

For the sake of more effective computation we
have found it desirable to treat the Q arc as a
function which transforms its predicate into a
Skolem form as below:
(HAVE1 RKSHIP3 EQUIV SHIP) R2(CAPTAIN1 SK(SHIP3)))
These two quantifier forms have the following
graphs:

A
e 4

HAVE)—R1—pSHIP3
I-——na—--—-)cnpmzm

HAVE)——R1—» SHIP3—EQUIV-—mp SHIP

| SK
R?—}CAITAIM

The second or lower graph provides the simplest
structure.
The first graph is referred to as the Q-arc

form and it appears to be a desirable intermediate
representation that will allow transformations
into a canonical quantifier form using quantifier
transformations such as those described by Quine
(1959) and Chang and Lee (1973). The canonical
form we have chosen is one in which the negation

if any, is brought to bear on the predioate by
transforming every negated quantifier. The
following examples show how two logically
equivalent statements become identical in
canonical form:

E1 Not every ship sails every ocean.

E2 Some ship doesn't sail some ocean.
Their Q-arc forms:
QE1 (SAIL4 INSTR SHIP4 LOC O0CEAN1

Q (NOT A SHIP4 A O0CEANT1))
QE2 (NOT2 OF (SAIL5 INSTR SHIP5 LOC OCEAN2
Q (E SHIP5 E 0CEANZ2)))
By pushing the NOT of QE1 through A SHIPU we get,
Q(E SHIP4 NOT A OCEANT1)
Then pushing NOT through A OCEAN1, we get,
Q(E SHIP4 E OCEAN1 NOT)
The NOT now applies to the main predicate rather
than to the quantifiers, so we embed the predicate

we would have a false representation that in it:
signifies that every ship has CAPTAIN1 as its (NOT2 OF (SAILM . Q(E SHIP4 E 0CEANT1)))
oaptain. What is meant is that each ship has some which is identical to the form of QE2.
person as its captain and the person is not
necessarily the same for every ship.
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After transformation to canonical
statements are brought into the
Skolemized form;
(NOT2 OF (SAIL4

form, the
following

INSTR SHIP4 LOC 0CEANH1))

It is worth noticing that this simple form is
default for what ordinary English statements
" ship didn't sail the ocean" signify in
form. It will be seen in the next
the procedure for matching quantifier

the
such as
quantified

section that

conditions assumes that a term not explicitly
marked by an SK arc is not dependent on any other
quantified term.
THE Inference Algorithm

In  research oriented toward the eventual
development of a text understanding system we have
studied and programmed several approaches to
answering questions from semantic networks. These
approaches reduce logically to the idea that a
semantic network representing a discourse is an
interconnected set of true statements. The
lexical portion of the network contains additional
true statements and rules for forming new true
statements from existing ones. The question is
taken as a hypothesis and the inference algorithm

must accomplish the task of determining whether
the question is TRUE, FALSE or UNDetermined with
respect to the semantic network. It is also
required to return an answer that instantiates any
variables that are in the question.

A question is usually composed of class
symbols, i.e. unsubscripted words, and case

is either a node
instantiate each
statement

markers and variables. An answer
whose associated arc-value pairs
element of the question or a general

whose every element is instantiated by elements of that for Q2, and it is also matched by (SAIL1
the question. The content terms of a question are RESULTOF AND3). Since (WANT2 ENABLE AND3), AND3
not limited to class symbols and subscripted terms has the backlink, RESULTOF  WANT2. A complete
may be included answer to a WHY question appears to be the entire
causal chain, WANT2 ENABLE AND3 ENABLE SAIL1
This paradigm is not the only one that s ENABLE... In answering the why of an agentive act
followed in question answering work and some such as (GO AGT RUFOLO...) it is probably
criticisms of it will be discussed in the desirable to seek backward on the causal chain for
concluding section. Lehnert reports an unusual a motive such as (WANT AGT RUFOLO...) and forward
approach using scripts and conceptual dependencies to some corresponding outcome such as (SELL AGT
(Lehnert 1976). RUFOLO...FOR PROFIT). We have but little
experience with WHY-questions, but refer the
The following three examples will help to interested reader to an excellent discussion by
show the essential operation of the question Lehnert (1976). Questions concerning HON MANY are
answering procedure. treated most thoroughly in Woods (1969).
Q1. Did Rufolo sail to Cyprus?
(SAIL AGT RUFOLO TO CYPRUS) So far we have seen essentially a matching
process supported by the Iimited inferences
Q2. Where did Rufolo go? associated with the properties, INVERSE and
(GO AGT RUFOLO TO X) TRANSITIVE. A more general approach to inference
is given by an abbreviation of the IMPLY structure
Q3. Why did Rufolo go to Cyprus? in the form of CONSEQUENT rules such as the
(GO AGT RUFOLO TO CYPRUS RESULTOF X) following:
The first question is answered by a direct match ((X LOC Z)(Y PARTOF 2)(X LOC Y))
of a semantic predicate, (SAIL1 AGT RUFOLO1 TH If a question matches the first element of the
SHIP1 TO CYPRUS1). It can be notioed in Q1 that rule, e.g. (RUFOLO LOC ITALY) then the elements
the terms in the semantic representation are not of the question corresponding to the variables X
subscripted. It is therefore possible to look and Z are bound to these variables throughout the
directly into the lexioon to find the word, SAIL rule,
and retrieve its [INSTances, SAIL1, SAIL2, etc. ((RUFOLO LOC ITALY)(Y PARTOF ITALY)(RUFOLO LOC Y)).
Knowledge Repr.-5: Simmons
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is
the

Each instance is a
then examined to discover
terms of the question.

semantic predicate which
if it includes all

two miniscule
instance of GO,

The second question requires
inferences; first that SAIL is an
and second that CYPRUS matches X. The first
inference is accomplished with the use of the
lexical structure, (SAIL SUP(MOVE SUP GO)). The
relation SUP has the inverse INST, and SUP and
INST are transitive, so SAIL1 is an |INSTance of
GO. Free variables such as X match anything, so
once again, (SAIL1 ...TO CYPRUS1) is the answering
predicate. The short answer is the element
corresponding to X, CYPRUS1). The question words,
what, where, who, etc. are treated very much the
same as free variables except that each can limit
the candidates it can match by a semantic class.

that
network

In order
a discourse
needed.
(WANT2 AGT RUFOLO1 TH DOUBLE1 ENABLE AND3)
(DOUBLE1 AGT RUFOLO1 TH WEALTH1)
(RUFOLO1 OAMN WEALTH1)
(AND3 OF (BUY1 LOAD1) ENABLE SAIL1)

the third question be answered,
such as the following is

(BUY1 )
(LOAD1 )
(SAIL1 AGT RUFOLO1 TO CYPRUS1 RESULTOF AND3)
The two relations, ENABLE and RESULTOF are
inverses and are transitive. If (X ENABLE Y) then
X precedes Y and the conditions resulting from X
include those that are pre-requisite to Y. Rule
forms for computing causal links such as ENABLE
and RESULTOF are described in another paper,
(Simmons 1977).

The matching operation for Q3 is similar to



The first element of the rule is then detached and
the remainder is then substituted as a new set of
questions which if successfully answered prove the

first element is true. Thus if the semantic data
base contains,
(RUFOLO LOC RAVELLO) (RAVELLO PARTOF ITALY)
then, (RUFOLO LOC ITALY) is True.
A more complicated example is:
((GO AGT X TO Y INSTR 2)

(WANT AGT X TH(Y LOC* X))

(X LOC Z) (CONTROL AGT X TH Z2))
This rule might be used to answer the question,
"How can Rufolo go to Cyprus?" Rufolo can go to
Cyprus by ship, if he wants to be Ilocated at
Cyprus, is located at a ship, and if he controls
the ship.

This is the form of consequent rule described
by Fischer Black in 1964. Since then THANTES,
THCONSES, and rule-forms for establishing pre- and
postconditions have occurred frequently in Al
literature.

We can now describe the question-answering
procedure in the following steps,

1. For each question obtain a set of nodes
that are candidates for answers:

a. Candidates are nodes that are in
EQUIV, INST, or SUP relations to the
content terms of the question.

b. If the first term of the question is

a variable, transform the question so

the first term is a word. If there
are only variables in the question
refuse it.

For each candidate, for each arc-value
pair in the question, match the arc-value
pair in the candidate. Reject any
candidate that does not match every
arc-value pair of the question.

Two arc-value pairs match if the
arcs are identical and if the
candidate value QIMPLIES the question
value, i.e. (QIMPLY CV QV).

a.

QIMPLY CV QV is true if: Cv=Qv, CV
is a variable, or QV is a variable,
or if CV is an INSTance or EQUIV to
QV, or if CV is a SUPerset of QV or
of its EQUIVs.

If QIMPLY fails and the arc is
transitive and the CV is connected by
an identical arc to some CV, then
QMPLY CV' and QV.

If the arc in the question is
EQUIV* or SKolem it signifies a
quantification condition on the
question. (A EQUIV* B) is satisfied
only if the CV corresponding to A is
EQUV or SUP to B. (A SK B) is

an
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the CcVv
no SK arc,

satisfied only if

corresponding to A has
signifying a free variable, or has an
SK arc whose value is an ordered
subset of the value of A's Sk value.

3. Save the surviving candidates as
answers.

M. For each question get every inference
rule associated with its first term and
bind the corresponding elements of the
question with the variables in the rule.

5. For every bound rule, detach the first
predicate expression, and repeat steps 1
through 5 on the remaining predicate
expressions.

This procedure, a direct descendent of
Fischer Black's and of Schwarz, Burger and
Simmons, finds all answers to a set of questions.
It can be noticed that if the system had inference
rules associated with every node, it would not
terminate. Also certain classes of rules can
establish infinite recursions (see Black 1969).
Although these events can be avoided in other
ways, the procedure can be protected in steps 2

and 3
answers

by limiting the number of questions and
that it is allowed to accumulate. The
function QIMPLY is incomplete by design. It uses
only SUPerset, INStance, and EQUIValence arcs to
infer the match of a question term with a
candidate word and does not apply general IMPLY
rules. Experience will show if the proportion of
answers it misses is outweighed by the irrelevant
computations it eliminates.

Truth functions and truth values are
invisible to this procedure. If a semantic
predicate is QIMPLYed by a candidate answer, the
candidate is returned as relevant to the question.

A higher level function examines the truth
functions on both the question and its relevant
candidates to mark each candidate as True, False

or UNDetermined with respect to the question. If
no candidate matches, the null answer is taken as
unknown, and the truth value of the question is

UNDetermined.

Our current system is implemented in about
twenty concise LISP functions. Three functions of
great utility are FORI, FORSET, and FORALL. These
are mapping functions of three arguments; a
variable, a set, and a function with its arguments
(usually including the variable). The variable is
assigned to the first member of the set, and the
function is then evaluated. FORI is satisfied if
one member of the set causes the function to
return a non-nil value; FORALL requires every
member of the set to cause the function to return
non-nil; and FORSET goes through the entire set
and returns the set of non-nil values. These
functions are patterned after the quantifier
functions that were used by Woods (1969) in his
airlines data base work.

Simmons



The system is organized in a depth-first
search, but a best-first search is easily arranged
by applying an appropriate ordering function to
the sets of candidate nodes. For a relatively
small data base, the overhead for computing
best-first is probably too great to Justify its
use. A switch called MODE is provided to
substitute FORI for certain calls to FORSET, thus
providing a single answer mode.

set of
top-level

Figure 1 is a brief definition of
LISP functions that outline the
organization of the inference system.

a

Discussion

In previous sections we have introduced
conventions for representing variables, truth
functions and quantification in our form of
semantic relations and taken this as justification
for using the term, semantic predicates. The
question answering procedure was described as an
inference method that is computationally
effective. The intent was not to argue that
answering all English questions is simply a
theorem proving operation, but rather to show that
deductive question answering is one aspect of
questioning a textual data base that can be

clearly defined.

We notioed in Section Il that a statement
with an UNDetermined truth value, may nonetheless
be relevant to a question and conceivably
participate in further computations to establish
an answer. In that section it was also apparent
that it is easy to write plausible rules of
inference that are in fact, false. Generally our
experience with inference rules on English
meanings indicates that they suggest possibilities
that may be validated by the preceding or oncoming
text. Along with several others in the field, we
doubt that ordinary English text is organized or
understandable in purely deductive fashion.
Instead of establishing deductive chains, ordinary
discourse creates plausible connectivities. For
example, " Rufolo was a wealthy man. He wanted to
double his wealth. He bought a ship, loaded it
with goods that he paid for himself, and sailed to
Cyprus." What will he do in Cyprus? What will he
do with the goods? How will he double his wealth?
These and others are questions for which the text

suggests possible answers that can be obtained by
the use of rule-forms that look |like deductive
inference rules but which will establish only

plausible outcomes.

The text provides additional sentences, such
as: Y Rufolo arrived in Cyprus, he discovered
many ships carrying the same goods. He was forced
to sell at a loss. |In fact he was ruined." The
new statements support previous plausible
inferences that Rufolo was on a trading voyage,
that his intention was to double his wealth by
selling goods and that beoause of competition he
lost his wealth. So ordinary narrative discourse
suggests many plausible connections,
continuations, causal and purposive chains which
must be tested against the definite facts of the
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narrative as they emerge. This is where rules for
causal organization (Simmons 1977) and scripts
(Schank 1975) are applied to augment the text with
what we expect is the author's intention.

On the other hand, some deductive Inferences
are possible. If Rufolo bought the goods, he paid
for them. If he paid for goods, he bought them.
Goods are merchandise. If he loads a ship with
goods, the goods are on the ship. If he wants to
double his wealth he will either succeed or fail
to do so. If he is a wealthy man, he is a man.

Our point of view s
logic as one mode of thought needed for
understanding language and a primary method for
establishing that two statements may mean the same

to accept deductive

thing. Deductions are a necessary part of any
more sophisticated system for plausible inference.
And in applying rules of plausible inference,
variables must still be bound and simple questions
must be answered from the discourse content with
the wuse of deductive inferences that preserve
whatever truth values inhere.
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(ANSQ(LAMBDA(QSET)
(FORALL Q QSET (QANS Q)) ))

(QANS (LAMBDA(Q) (PROG (ANS Ql)
(SETQ ANS

(FORSET QI (CANDS (CAR Q)) (ASK Q Ql)

(RETURN (APPEND ANS

(FORSET QI(GET(CAR Q)"TRULE)(ANSQ(BIND Q Ql))

(ASK(LAMBDA(Q Ql)

(FORALL PAIR (CDR Q) (MATCHPAIR PAIR Ql)) ))

(MATCHPAIR (LAMBDA(PR Q)
(CONDUNULL (SETQ J (GETPAIR QI
(T(QIMPLY J (CADR PR))) )))
(CANDS (LAMBDA(WD)

(APPENDANSTANS WD) (APPEND (EQUIVS WDMSUPSETS WD)))

(CAR PR))))

Notes: Three mapfunctions FORI, FORSET, FORALL

argument to each member of the set
argument, and then evaluate their 3rd argument.
satisfied with one value, FORSET with any number of values
that every member

greater than zero, and FORALL requires

of the set have a non-nil value.

which

Figure 1. Top-Level Organization of the Inference System
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be true of the patient. If a rule is
satisfied, (by some set of ISPECs
associated with the source node), it then
specifies the creation of an ISPEC for the
target node (the node on the "far" side of
the link). The result of propagation
across a link is a set of ISPECs for the
target node, each one produced by a
satisfied rule.
2.4 Propagation

When an ISPEC is generated for a node,
all the links emanating from that node are
potential candidates for propagating the
effects of that ISPEC to neighboring
nodes. Only those links which have an
associated decision table can actually
support propagation. For each such link,
the decision table is evaluated, and the
ISPECs produced are added to the ISPECs
list for the node at the far end of the
link. The process then repeats
recursively, potentially producing a wave
of propagation across the semantic net.

Each
when
causes
distance

ISPEC
to
ripple

through

new
added
a

is like a droplet which,
our pool of knowledge,

which can propagate any
the pool.

2.5. Cones

node
set of nodes

a semantic net
a disease, and
the symptoms of that disease.

ISPEC is produced for one of
nodes, the truth-status of the
disease node may be affected.
Furthermore, these effects are generally
not independent. What we need in this
situation is a way for the symptom nodes
to interact propagation to the disease
node.

In IRIS,
associating the
all the Ilinks from
disease node.
configuration a
usually visualized
at the apex, and the
the cone's base.

Cones can also be created
direction of propagation is from
to the base. In this case, a
decision table is associated with all the
apex to base links. We then have a
structure which can be characterized as a
"scatter cone".

A simple semantic net
nodes. Propagation is defined by the
decision table associated with that link.
A cone is a generalization of this basic
structure. With cones, there can be a set
of nodes rather than a single node on one
side of the structure.

Consider
representing
representing
Whenever an
the symptom

a

in
this is accomplished
same decision table with
symptom nodes to the

We call such a
propagation cone. It is
with the disease node
other nodes occupying

by

in which the
the apex
single

link connects two
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2.6. QUESTIONS

All IRIS's
knowledge must ultimately be
information provided by the user. There
is nothing we can conclude about a
specific patient a priori. Accordingly,

medical
based on

of specific

we need a mechanism by which specific
medical knowledge can be entered.
OUESTIONs provide such a facility.

An IRIS QUESTION consists of the
following: a set of strings to output to

functions to
input is in the
mappings from
to the various
take. These actions
system variables,
specifying questions to be asked next, and
generating ISPECs. The set of ISPECs
produced in this way comprises that part
of IRIS's specific medical knowledge
obtained directly from the user.

a set of
the
and a

the user,
ensure that
proper form,
permissible user

actions IRIS can
include setting

checking
user's
set of
inputs

2.7 Vines

Once a consultation system has come to
set of conclusions about a patient, it
be able to communicate them to the

IRIS does this by generating an
english language string for each semantic
net node which represents a conclusion.
This string expresses how the concept
represented by the node is true of the
patient. We refer to these strings as
"vines" because they can be visualized as
festooning the semantic net.

There are two ways to generate a vine
for a node. The default (taken when the
node carries no explicit specification for
vine generation) is to create a vine for
the node using a standard procedure. This

a
must
user.

procedure produces a string of the form:
{modifiers, time, node-name, strength of
belief}. An example would be: "severe
sudden past increased intraocular pressure
[SB = .85]1". Alternatively, we can
associate a decision table with a node.
This decision table can then specify
different ways of generating the vine, or

different pre-stored vines. The choice
among the various possibilities can be
based on the truth-status of any node or
set of nodes.

1.5ExplanationAclinicalconsultationsystemmustbe

able to explain or justify its decisions
in terms acceptable to experts in its
application domain. Systems that lack
this ability have not gained wide
acceptance even when they attained a
satisfactory level of correctness in their
decisions. Such an explanation should
refer to the general medical knowledge on

which the decision was based.
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In IRIS, this is easily done. Suppose
that there are two semantic net nodes,
"injury" and "pain", which are connected
by a "causes" link (i.e. "injury causes
pain") which has an associated decision
table. If IRIS is told that the patient
has an injury, it can then conclude (via
propagation) that the patient is in pain.
When asked to explain this reasoning, IRIS
can reply: " conclude that pain is
present because | know that there is an
injury, and | know that injury causes
pain."

3. ISPECS

As stated above, an ISPEC is an
assertion that the concept represented by
a semantic net node is true of a patient,
or of the clinical situation. ISPECs are
IRIS's only representation for specific
medical knowledge. There are slots in
each ISPEC for specifying details about
how the concept represented by a node is
true. We will now describe these slots,
and the currently implemented data
structures that fill them.

3.1 Node

The NODE slot of an ISPEC specifies
which semantic net node it is an ISPEC
for. This slot is wusually not necessary,
but is needed for propagation in scatter
cones (see section 2.5), and for context
dependent decision tables (see section
4.2) .

1.2.  Strenght of Belief

The strength of belief (SB) slot of an
ISPEC specifies how much IRIS believes the
assertion represented by that ISPEC. The
possible range is from full belief to full
disbelief. IRIS has been designed so that
the mechanisms for manipulating numerical
strength of belief measures are easily
changed or replaced. Currently, IRIS uses
the strength of belief representation
developed by Shortliffe for MYCIN
(Shortliffe, 1974). This is described in
greater detail in (Trigoboff, 1977).

This representation for strength of
belief consists of two numbers: a measure
of belief (MB), and a measure of disbelief
(MD). Each of these can range from 0 to 1
with 0 representing no (dis)belief, and 1
representing full (dis)belief. The MD is
subtracted from the MB to obtain the
certainty factor (CF). The CF ranges from
-1 (full disbelief) through 0 (no opinion)
to 1 (full belief). The SB slot of each
ISPEC is filled with a two-element list of
the form (MB MD). Thus, IRIS's strength
of belief in an ISPEC is derived by using
the contents of its SB slot to generate a
CF.
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3.3 SIDE

The human body is bilaterally
symmetrical, and contains many paired
structures. An assertion about any such

structure must therefore specify which one
it refers to. Since IRIS is to perform as
an ophthalmological consultant, it needs
the ability to deal with this issue.

There are basically two ways to
approach this problem. Either we can have
semantic net nodes that represent "pain in
the left eye" and "pain in the right eye",
or we can have one node representing "pain
in the eye" and rely on some notation in
the ISPECs to tell us whether it is the
left or the right eye. In IRIS, we have
chosen the second course, avoiding an
otherwise unnecessary duplication of
semantic net nodes. Each ISPEC has a SIDE
slot which can contain either LEFT, RIGHT,
or NIL.

Not every node
refers to a

in the semantic net
duplicated structure.
"Diabetes” is a concept which is not
side-related. Nodes of this sort are
marked as SINGLE nodes. Any ISPEC for a
SINGLE node must have a SIDE slot value of
NIL. Conversely, any ISPEC for a
non-SINGLE node must have a SIDE slot
value of either LEFT or RIGHT.

3.4 Time

Clinical situations evolve through
time, and the configuration of assertions
describing a patient changes as new events
become known to the consultation system.
Any assertion must therefore be associated
with a specification of the time interval
it applies to. In IRIS, each ISPEC has a
TIME slot. TIME slots are filled with a
list of two dates of the form (from to).
The first is the date the ISPEC initially
became true of the patient, and the second
is the final date the ISPEC was true.

The creation of ISPECs is controlled by
means of create-expressions which specify
characteristics for the ISPEC to be
created. Values for the TIME slot are
generally specified in create-expressions
as one of the following: past, present,
past-or-present, future. When an ISPEC is
created from a create-expression, the
current date (obtained from the system) is
used translate these specifications
into IRIS's internal time representation
(the list of two dates).

The time representation
mechanism for
cases. Most of
decision table
that something be
specified time

to

is part of the
dealing with multiple-visit
the decision rules (i.e.
columns) in IRIS require
true of the patient in a
period. Again, these
specifiers are generally chosen from:
past, present, past-or-present, future.

If an ISPEC s created using a
create-expression that specifies a time of
present, its TIME slot will contain the
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date it was created on. It will therefore
be able to satisfy decision rules that
specify a time of present. At a
subsequent visit, this ISPEC  will no
longer satisfy those decision rules.
Instead, it will now satisfy ones that
specify past-or-present or past.

3.5 Modifiers

The SB and TIME slots are necessary for
all ISPECs. The SIDE slot is needed in a
high percentage as well (relatively few
nodes in IRIS's semantic net are SINGLE).
There are other slots which we need only
occasionally. For example, ISPECs for the
node representing "intraocular pressure”

need a VALUE slot, so that when we measure
a patient's intraocular pressure, we can
express that measurement with an ISPEC.
Thus, an intraocular pressure of 35 would
result in an ISPEC with a VALUE slot value
of 35.

It would be wasteful to allocate a
VALUE slot in all ISPECs, since only a few
nodes require it in their ISPECs. DEGREE,
COLOR, and WIDTH are other such
occasionally-needed slots. We have dealt
with this in IRIS by implementing a
modifiers (MODS) slot in the ISPEC. The
format of the value of the MODS slot is
(propertyl valuel property?2 value2 ...).
Thus, in the example above, the semantic
net node "intraocular pressure" would get
an ISPEC with a MODS slot value of
(VALUE 35). This allows us to specify any
slot we desire in any ISPEC without the
overhead involved in explicitly defining
that slot for all ISPECs.

We do not have a semantic net node
representing "severely increased intra-
ocular pressure"”. ISPECs representing
severely increased intraocular pressure
are actually ISPECS for the node
"increased intraocular pressure" which
have a MODS slot value of (DEGREE SEVERE).
The MODS slot thus allows ISPECS to
further specify the concepts represented
by nodes.

If this were not the case, there would
be a limit to the resolution of IRIS's
representation for specific medical
knowledge. I f "increased intraocular
pressure" were the highest resolution node
available, then ISPECs without a MODS slot
would provide us with no way of
representing "severely increased
intraocular pressure". The MODS slot thus
allows us to achieve any level of

resolution we desire
of specific medical

in our representation
knowledge.

3.6

Each ISPEC has a TYPE slot. The value
of this slot specifies the way in which
its ISPEC is to be semantically
interpreted. This is a feature which
provides IRIS's knowledge representation
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There
types

is no

that

with considerable
limit to the number
can be defined.

Currently, IRIS has seven ISPEC types.
They are: NIL, FAMILYHISTORY, PTHISTORY,
CHOSEN, COVEREDBY, SUBSUMEDBY, and
TREATEDBY NIL is the basic, standard
ISPEC type. An ISPEC of type NIL means
that the fact it represents is (or was)
believed true (with the specified strength
of belief) of the patient during the
specified time. FAMILYHISTORY ISPECs
represent facts which are true of people
in the patient's family. PTHISTORY ISPECs
represent facts about the patient which
have been obtained from the patient,

ISPECs  of type CHOSEN are very
important in the operation of IRIS. These
ISPECs are used to represent decisions
made by the system. When IRIS chooses a
diagnosis (by whatever strategy), the fact
of this choice must be included in the
store of patient-specific knowledge. IRIS
will then be able to use this fact in its
subsequent medical reasoning. The other
ISPEC types represent the various sorts of
inference s IRIS can make. A disease or
treatment node is given a CHOSEN ISPEC
when |RIS has decided to either make that
diagnosis or perform that treatment.

SUBSUMEDBY ISPECs propagate from
disease nodes which have enough positive
strength of belief to be candidates for
being CHOSEN. They propagate to other
disease nodes which should not be CHOSEN
when there is a sufficiently high level of
belief in a subsuming disease.

When a disease node is given a CHOSEN
ISPEC, it can then cause propagation of
COVEREDBY ISPECs. COVEREDBY ISPECs
propagate from CHOSEN disease nodes to
symptom nodes that the disease can
explain. This is part of IRIS's mechanism
for knowing whether any symptoms remain
unexplain ed.

When a treatment node is given a CHOSEN
ISPEC, it can then cause propagation of
TREATEDBY ISPECs. ISPECs propagate from
CHOSEN treatment nodes to disease
manifestations that the treatment has an
effect on. This is part of IRIS's
mechanism for knowing if every need for
treatment can be satisfied by the current
treatment regimen.

power.
of ISPEC

Au Mciaifin I&klej&

tables control
the links of
table can be

IRIS's decision
propagation of ISPECs along
the semantic net. A decision
thought of functionally as a set of rules,
but the actual mechanisms of a system
based on decision tables differ somewhat
from those of a rule based system.

A decision table in IRIS consists of a
set of conditions, and a set of columns.
Each condition is a predicate which tests
whether the fact (or facts) it specifies
is true of the patient. Columns function

Triftoboff



as independent decision rules. Each
column tests for a specified pattern of
truth-values for a subset of the
conditions. A column is said to be true
if the truth-values of the conditions
match its pattern. In this case, an ISPEC

is created according to a specification
also contained in the column. The ISPECs
that propagate across a link are those

created by the true columns of the link's
decision table.

There are cer tain patter ns of
propagation which we need to specify for

many diffe rent links in the semantic net.

One sych pattern s used for most of the
"cause 3" 1ijpks in the semantic net. The
pattern can be paraphrased as: "1f A
causes B, gnd A is true, then conelude B
with a strength of belief equal to the
streng_th of belief in A times a constant
associgted wjth the causal link. Specify

that B occyrs in time after A.",
We want to be able to implement gueh a
pattern ag g single decision tabjg which

can be agggciated With more than one
semantic pet link, This is accompljshed
in IRIS  through the use of context
dependent gecision tables. Propagation is

allways dong with respect to a
link, That link 1is the propagation
contex t. A context dependent gecjsion
table specifie s how to create an Igpgc for
the node On the far side of the link, if
the node ,, the near side of the [ink is

partic ular

true. The jqentitie s of these nodes are
o_btaln ed from the propagation context ( the
link being propagated with respect to) ,
rather than from the decision tgble.
Thus . we ngeq to specify only one gecision
table hat embod ies the  desired
PfOpagation pattern_
Zu. XK£ LLQ ELLFS.EF

The basic task facing any AIM system is
to draw conelusions about the clinical
situa tion, based on current knowledge of
that situation. In IRIS, this task is
per formed by the propagation process. So
far, we have described this process at the
level of single semantic net links. While
a description at this level can give an
intuitive view of how propagation works,
there are issues which become apparent
only when propagation is Vi ewed as
occurring within a npetwork Trather than
along a single link Propagation is a
localjy defined process which operates
SUCCBSSfun becau se ecertaln lobal
aspects of its behavior have been taken
into accoyunt.

The propagation process is designed to
be quite generaI and flexible. We want a
system whijch can automatically make all
the desirgq jnferences from a given set of
facts  witp respect to a given model.

KnowleHfte Repr.
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we then change some fact
or facts, we want the set of conclusions
to be altered automatically to reflect the
new set of facts. The results of the
propagation process will then be dependent
only on changes in the input data. Any
such change wil1 result in an appropriate
change in the output of the model without
any further intervention on the part of
the wuser.

When

Furthe rmore, if

propagation isat tempted aeross a

link, there is always the possibility that
propagation has prevlously taken place
across that same link. This complicates
the logic of propagation somewh at. When
propagation takes place across a link , the
decision table associated with that |link
is evaluated. This produces a list of
ISPECs for the target node. The target
node may aiready have ISPECs which
propagated from the source node, so the

follow ing three conditions must be checked
for in determining whether to alter the
ISPECs on the target node. If a column of
the decision table which was formerly not
true is now true, the ISPEC produced must
be added to the target node's ISPECs. If
a column of the decision table which was
formerly true is not now true, the ISPEC
it produced must now be deleted from the
target node's ISPECs. Finally, f a
former |y true column is still trye, but
has now produced an ISPEC  which is
different in some respect (e.g. the SB
slot value is a function of the gtrength
of belief in the node being propagated
from) , the ISPEC it produced must be
replaced by the new one. These ISPEC
matchipg tests are based on information
carrie g within each ISPEC specifying the
decisign table and column which produced
it. If any of the above conditions is
true , the ISPECs of the target node are
changed, leading in turn to propagation
from the target node.

LM. Clinical Strategy

IRIS's clinical strategy is impleraented

through the six nodes "chOSén diagnoses",
"possible diag nose Yunexplained
syrap toms" chosen treatments", "possible
trea tment gr, and "untreated pathology".
Any sympiorn for which an explanation is
nece ssary propag ates an ISPEC to
"une xplained symptoras" when it is found to
be true of the patjent In the same way,

to be treated
ISPEC to "untreated

at tempts t0 choose a
diagnoses) which will
the maximuym number of unexplained
and a treatment regimen which

as many pathological processes

any condition
prop agate S an
pathologyn IRIS
diagnosis '(or
explain

symptoms,
will hal t
as possib |e.

Initianpny, IRIS collects information
about thg™ patient. At the end of this
phase, IR|g's knowledge of the patient
consists of the current set of ISPECs in

Trirohoff
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the semantic net. These ISPECs have been We will illustrate this process in
produced directly from answers to operation using a simplified (from a
questions, or indirectly as the result of medical standpoint) example. In figure
propagation. Any disease which has 6.1, the nodes "angle closure", "increased
collected a sufficiently high CF via intraocular pressure", and "visual field
propagation will in turn have propagated loss" have received ISPECs as a result of
an ISPEC to "possible diagnoses'". user-supplied information. As a result,

IRIS now chooses a diagnosis. Each propagation (solid arrows) takes place
disease node which has propagated an ISPEC from the three symptom nodes to "angle
to "possible diagnoses" is taken in turn closure glaucoma", "unexplained symptoms",
and given an ISPEC of type CHOSEN. This and "untreated pathology". Propagation
causes COVEREDBY ISPECs to propagate from then takes place from "angle closure
that disease node to all symptoms whose glaucoma" to "possible diagnoses". In
presence the disease can explain. Symptom figure 6.2, "angle closure glaucoma" has
nodes with COVEREDBY ISPECs do not received a CHOSEN ISPEC. Propagation to
propagate to "unexplained symptoms". At "possible diagnoses” ceases (broken
this point the number of symptom nodes arrow), and propagation now takes place to
still propagating to "unexplained "chosen diagnoses" and "surgery".
symptoms" is noted. Comparing this to the COVEREDBY ISPECs propagate from "angle
number that propagated to "unexplained closure glaucoma" to each of the three
symptoms" before the disease was "chosen" symptom nodes, "surgery" propagates to
gives us a measure of the disease's "possible treatments", and propagation
ability to explain the observed symptoms. from the three symptom nodes to
The CHOSEN ISPEC is then removed from the "unexplained symptoms" ceases (a result of
disease node. the COVEREDBY ISPECs). In figure 6.3,

By doing this for each node that "surgery" is given a CHOSEN ISPEC, causing
propagated to "possible diagnoses", we get cessation of propagation to "possible
a comparative measure of how the treatments", propagation to "chosen
alternative diagnostic choices perform in treatments", and propagation of TREATEDBY
explaining the observed symptoms. This ISPECs to the three symptom nodes.
measure of performance, along with the Propagation to "untreated pathology" from
strength of belief which has propagated to the three symptom nodes then ceases
the disease node are the criteria IRIS (caused by the TREATEDBY ISPECs).
uses in choosing a diagnosis. Once the This approach to clinical strategy
diagnosis node has been chosen, it is enables us to restrict the points of
again given a CHOSEN ISPEC (permanently, contact between the semantic net/decision
this time). I f there are still table knowledge base and the program that
"unexplained symptoms", the process then uses it. Only the six nodes mentioned at
repeats. At the end, some set of disease the beginning of this section are known to
nodes will have been chosen, and each of the program. IRIS's clinical strategy can
these will have propagated an ISPEC to be summarized as: 1) give CHOSEN ISPECs
"chosen diagnoses". to nodes that propagate to "possible

The possible treatments for a disease diagnoses" in such a way as to minimize
are represented by nodes which are linked propagation to "unexplained symptoms";
to the disease node by "treatmentfor” 2) give CHOSEN ISPECs to nodes that
links. Propagation to the treatment nodes propagate to "possible treatments" in such
along these links takes place only when a way as to minimize propagation to
the disease node is chosen. Any treatment "untreated pathology"; 3) at the end of a
node which has accumulated a sufficiently session, produce output based on the
high strength of belief in this way will ISPECs of nodes that are currently
propagate to "possible treatments" just as propagating to "chosen diagnoses" and
diseases do to "possible diagnoses". "chosen treatments".

IRIS decides on treatments using The advantage of such a restricted area
basically the same choice algorithm it of contact between the program and its
uses for diagnostic decisions. Each knowledge base is that the knowledge base
treatment node which has propagated to can be extensively altered without
"possible treatments" is in turn given a requiring changes in the program. The
CHOSEN ISPEC. This causes TREATEDBY program only requires of its knowledge
ISPECs to propagate from the treatment base that the six nodes be present, and
node to all nodes representing conditions that giving CHOSEN ISPECs to disease and
this treatment can affect. They, upon treatment nodes will have effects on
receiving such ISPECs, cease propagating propagation to "unexplained symptoms" and
to "untreated pathology". From this "untreated pathology". The exact
process we get a measure of the mechanism of these effects is unknown to
alternative treatments’ suitability for and irrelevant to the program. It need
the patient. We then can choose one which not be done via COVEREDBY and TREATEDBY
gets a CHOSEN ISPEC permanently. ISPECs.

Treatment nodes with CHOSEN ISPECs
propagate to "chosen treatments".
Knowledge Repr.-5: Trlgoboff
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