Session 2 Theory of Heuristic

THE BANDWIDTH HEURISTIC SEARCH

Larry R. Harris *
Department of Mathematics
Dartmouth College

Hanover,

Abstract

various restrictions on the
heuristic estimator it is possible to
constrain the heuristic search process to fit
specific needs. This paper introduces a new
restriction upon the heuristic, called the
"pandwidth" condition, that enables the
ordered search to better cope with time and
space difficulties. In particular, the
effect of error within the heuristic s
considered in detail.

By placing

Beyond this the bandwidth condition
quite naturally allows for the extension of
the heuristic search to MIN/MAX trees. The
resulting game playing algorithm affords many
desirable practical features not found in
minimax based techniques, as well as
maintaining the theoretical framework of
ordered searchs. The development of this
algorithm provides some additional insight to
the general problem of searching game trees
by showing that certain, somewhat surprising
changes in the cost estimates are required to
properly search the tree. Furthermore, the
use of an ordered search of MIN/MAX trees
brings about a rather provocative departure
from the conventional approach to computer
game playing.

KE/WORDS:
searching,
alpha-beta
trees.

Artificial Intelligence, tree
game playing, heuristic search,
minimax, game trees, MIN/MAX

Introduction

The heuristic search (Hart' , Nilsson)
has become an important aspect of artificial
intelligence because of its wide area of
application (Nilsson? , PohL®) and because of

the theoretical framework on which it is
based. This framework is in large part due
to various restrictions imposed wupon the
heuristic that guides the search and the
resulting effect on the search algorithm
itself.

In order to discuss some of these
restrictions it is necessary to introduce the

following notation. For a node n of a tree or
graph, the following functions are defined as
part of the problem.
k(m,n) = the arc cost from node m to node n.
g(n) = the minimum arc cost from the root
to node n.
h(n) =the minimum arc cost from node n to
a goal,
f(n)=g(n)+h(n) the minimum arc cost from the
root to a goal via node n.
* research partially sponsored by Office of
Naval Research contract ONR NO00014-7 3-A-0260

New Hampshire

23

Search
03755
Since some of these functions are not
known durinq the actual search, we must be

guided by estimates of these functions.

g*(n) = an estimate of g(n). NOTE: g'(n)«g(n)
for a tree.
h'(n) = an estimate of h(n). This is the

"heuristic".
f' (n)=g" (n)+h" (n))

At each step of the heuristic search the

an estimate of f(n

most promising node, the one with mimimum
f'() value, is expanded. In this way the
heuristic h' 0 orders the search. Using

Nilsson's terminology any node which has beed

expanded is called CLOSED, and any node not
yet expanded is labeled OPEN. The open
nodes are maintained on a list called the
OPEN list. With this notion of the
heuristic search, we can see the effect of
certain restrictions placed upon the
heuristic.

The most important restriction on the
heuristic h'O is the "admissibility"
condition (Hart', Nilsson?):

If h'(n) < h(n) for all nodes n, then the
heuristic" search will always find a minimal
cost (optimal) goal.

Another important restriction on the
heuristic is the "consistency" condition
(Nilsson”):

If h'(m)-h'(n) < k(m,n) then all nodes
expanded by the heuristic search have
g'(n)=g(n) even if the graph is not a tree.

This allows for considerable

of the algorithm.

simplification

introduces another
heuristic, which allows
search to better cope with the

This paper
restriction on the
the heuristic

practical problems of tine and space.
The "Bandwidth" Condition

When using the heuristic search to solve
complex problems, both time and space
difficulties arise because the number of
nodes in the search tree increases
exponentially. The time required to search
the tree or graph can be reduced only by

using a heuristic that more closely estimates

h(). It may be impractical to find such a
heuristic that never violates the
"admissibility" condition. For many
problems, an example of which will be given
shortly, it is often easier to find a
heuristic that estimates the future cost
well, but occasionally overestimates it. In
these cases it is reasonable to make use of
this inadmissible heuristic to order the
search and then to choose from one of two

alternatives.

1) Bound the extra cost of the resulting

goal by the extra cost in
overestimating h(). We may consider
accepting a non-optimal solution, if it
is much easier to find than an optimal
one.
2) Continue the search beyond the
expansion of a goal, reducing the added
cost bound wuntil an optimal goal s
found.
In either case the search process will run
faster than an admissible search since the

new heuristic is a more accurate estimator of
h(>.

The "bandwidth" condition requires that:
h(n)-d < h' (n) < h(n)+e

The above constraints, one of which is a

loosening of the admissibility condition, can

be used to provide a theoretically sound

method of coping with both the space and time

difficulties encountered in solving large
problems. We also assume that the bandwidth
heuristic is exact for any goal. It is clear
that when e=0 and d>h(n) for all nodes that
the bandwidth condition reduces to the
admissibility condition. The bandwidth
condition is similar to Pohl's* "bounded
error". However, our approach will be to
study the relation between this error bound

as applied to each node of the search and how

it effects the cost of the goal found by the
search. We will also demonstrate that
bandwidth heuristics can be used effectively
to find optimal goals, in spite of the

possibility of over-evaluation.

The upper bound allows us to compute the
extra cost of a non-optimal goal found by
using h'() to guide the search. We can bound
this added cost (Harris 5) by noting that some
node n* on the path to the optimal goal is
OPEN when the non-optimal goal p was selected
for expansion. Thus,

f'(p) < f'(n*) p chosen before n*
g(p)*+h(p) < g(n*)+h'(n*) definition of f'()
g(p)*+h(p) <'g(n*)+h'(n*) since h'(p)=h(p)=0
g{p)+h(p) < g(n*)+h(n*)+e bandwidth bound
f(p) < f(n*)+e definition of f()
f(p) < f(p*)+e n* on path to p*

providing the desired bound on the added cost
of goal p. Such a goal is called e-optimal
and the algorithm e-admissible.

Knowing this bound allows wus to use
heuristics that may not satisfy the
admissibility condition without fear of
encountering some degenerate case that could
add an arbitrary additional cost to the
resulting goal. In this sense bandwidth
heuristics are easier to find than

admissible heuristics since they are allowed
to overestimate the true future cost.

24

The lower bound of the bandwidth
condition allows us to save space by
dropping nodes from the open list without
surrendering the admissibility of the

algorithm. We can eliminate any nodes m from
the search if there exists a node q that
satisfies the cutoff condition:

f (q)<f' (m)-(e+d) .

It is clear from the bounding argument

above that we must insure that the path to
the optimal goal will not be dropped from the
search tree. Assume that it is; then for

some node g we have the following.

f'(q) < f (n*)-(e+d) the drop criterion
f(q)-d < f(n*)+e-(e+d) bandwidth bounds
f(q) < f(n*) collect terms

f(q) < f(p*) n* on path to p*
Yielding a contradiction since p* is an

optimal goal. We can determine a bound on the
extra cost for a goal p by comparing f(p) to

f' (s)-e for all open nodes s, since one of
these nodes is the n* used above. If we are
not satisfied with this result, we can
continue until the bound is Ilowered to a
desirable limit.

Knowing this bound, we may be satisfied
with the e-optimal goal, or we may wish to
continue the search for the optimal goal.
This can be done since all open nodes will

than
goal
the
the
and
open

eventually have estimated
f(p*)+e where p* is the
expanded by the search. |In either case
use of a bandwidth heuristic speeds
search by better estimating future cost,
allows the dropping of obviously bad

nodes to conserve storage.

cost greater
minimum cost

For many problems
to find a single
adequately fulfi11
criteria at one time.
define two heuristics,
bound.

h(n)-d < h2'(n) &

it may be
heuristic
both of the
In these cases
one to

(n)

For other cases we may wish e
themselves be functions of the
extension to these other
straightforward.

impractical
that can
bandwidth
we can
satisfy each
h1' < h(n)+e
and d to
node n. The
cases is

Example: The Traveling Salesman Problem

value of
Traveling

minimum
Since the
{N-DI
optimal
techniques
but can

As an example of the practical
bandwidth heuristics consider the
Salesman Problem of finding the
mileage tour of a set of cities.
search tree for an N-city problem has
nodes it is impractical to find the
tour for large N. Recent ad hoc
{Lin6) find "good" solutions
estimate the error only empirically.

The following heuristics can be used to

find "good" (e-optimal) solutions. All of
the heuristics make use of the reduced
mileage matrix defined by the partial tour
representing a node. For this problem it is
convenient to use two heuristics h1' & h2' to
fulfill the bandwidth condition. An
admissible heuristic hO' will be wused to
motivate the definitions of hi' and h2'.

FOR A 6-CITY PROBLEM PARTIAL TOUR: 1 3
CITIES TO LEAVE: 3 2 4 56
CITIES TO ENTER: 2 4 5 6 1

REDUCED MILEAGE MATRIX

ENTER

24561
L3 5§839X
E2 X4695
A4 4X372
V5 6 3X95
E6 9 7 9X4

hO'-max(3+4+2+3+4,4+3+3+7+2)=19

An admissible heuristic hO' would be the
maximum of the sums of the row and column
minima. The heuristic hO' is admissible since
any tour must use one element from each row
and column and can do no better than the
minimum element. Thus hO'(n) < h(n) for all
nodes n. A more accurate heuristic would be
one that accounts for the likelihood that the
minimum elements of all the rows cannot all
be used to form a tour. This can be done by
taking the weighted average of the two
smallest elements in each row.

hi'=w(3+4+2+3+4)+(1-w)(5+5+3+5+7)

This heuristic gives some weight to the
alternative choices. If it is indeed
possible to use only the minimum elements,
then this heuristic will overestimate the
true future cost. However for the majority
of nodes it will provide a much more accurate
estimate of the future cost and thus provide
a better guide for the search. It is because
this heuristic provides a more realistic
estimate of h() that the search algorithm
runs faster than the admissible search. of
course the resulting solution may be more
costly, but we can bound this added cost by
knowing how far we can overestimate a
particular node.

The heuristic h2' is an estimate on how
big h(n) can get for a particular node n.
For the Traveling Salesman Problem, given any
partial tour, we need only estimate the cost
of the rest of the tour from this point to
calculate this bound. Using the reduced cost
matrix we could simply sum the major
diagonal, or for a lower and therefore better
estimate we could take the minimum choice
from each city wuntil a tour is complete.
Each of these will have d=0 since we know the

minimum future cost must be lower than or
equal to the ~cost of a particular tour.
Typically h2' is only calculated when there

is a need to drop nodes.

know that we
Knowing this we
there exists a node q

Thus for each node n, we
can do no worse than h2'(n).
can drop any node m if

such that f2* (gXfl'(m)-(e+d) since any tour
through m must cost more than a tour through
g.

Searching Game Trees

Given the success of ordered searches in
so many domains it seems reasonable to extend
the heuristic search to game playing. The
advantages of ordering the search should be
as apparent in game playing as in the
Traveling Salesman Problem. Unfortunately
special problems occur which require
significant changes in the cost functions in
order to maintain certain desirable
properties.

Wewould like to be able to make the
optimal move from a given board
configuration. This would require being able

to prove that we <can win or tie from an
arbitrary board configuration, since someone
must be able to force a win or tie in a 2-

person 0-sum game. It is not that we cannot
devise algorithms to perform this proof
(Nilssonz), but that for any interesting game
the algorithms are impractical.

If we
game trees,

develop admissible algorithms for
such as Nilsson's ordered search

procedure for AND/OR trees, critics respond
that such an algorithm is impractical for any
interesting game such as checkers or chess.

On the other hand, algorithms that run in a
reasonable amount of time are criticized
because they don't always make the "best"
move, and that they Ilack the theoretical
framework of the admissible algorithms.

The use of a bandwidth heuristic allows

us to work somewhere between these two
extremes. We begin by reducing our aim in
two ways; first, by Ilooking for an (e+d)-

optimal goal instead of an optimal one and
second, by looking only for the first move
towards such a goal. The bandwidth heuristic

search can achieve these more modest goals.

The standard technique for finding a
good move from a current board position in 2-

person _games is the alpha-beta minimax
(Samuel’”) and its variations (Slagle®
Nilsson?). It is helpful to note some of the
possible shortcomings of minimaxing to
motivate an improved technique. The
following detrimental factors arise when
minimaxing.

1) The minimax technique implicitly

assumes that the opponent is using the same
evaluation of board positions as the program
when it minimizes on alternate ply levels.
This assumption must be made in order to
determine what move the opponent will make at
each of these levels. It is clear that this
is an unwarranted assumption that can lead to
serious errors in play.

2) Related to this problem is the fact
that minimaxing makes permanent decisions on
the basis of comparing board evaluations. If
the evaluator mis-orders two boards the
minimax will never recover. Me are forced to
admit that the evaluator must misorder some
nodes or else we could play optimally with no

tree search at all. In light of the
inaccuracy of the board evaluator, it seems
unwarranted to make irrevocable decisions

based upon it.

5

3) Minimaxing indicates what Iline of
play looks most promising in a particular
sub-tree, but does not provide an error

estimate of how good the move is with respect
to the entire move tree. It is desirable to
provide such a definition of a "good" move.

4) since minimaxing regenerates a
portion of the move tree each time the
program is to move there is little
consistency in play from move to move. While
substantial savings in computation can be
obtained by ordering the generation of the
tree (alpha-beta), there is |little tendency
to continue a particular line of attack on
the next move because the new search is based
solely upon values generated from 2 levels
deeper in the tree. Since these values tend
to vary somewhat from their ancestors the
line of play suggested earlier may not be
followed.

The bandwidth heuristic search provides
a means of coping with each of these problems
inherent to minimaxing. Before presenting
the algorithm in detail, some definitions are
required. First we define the cost functions
based upon one cost unit per move. For OPEN
nodes of the search tree:

g'(n)=g(n) cost from the root to node n

h(n)-d <h' (n) € h(n)+e estimate of future
cost

f' (n)=h"(n)+g* (n) total estimated cost via
node n

For terminal nodes of the search tree:
h*(WIN)=0 & h'(LOSS) >N+(e+d)

From this it is clear that h' () estimates the
number of moves to a win. Note that this
means a low value is good for the program,
the opposite of the minimax evaluator.
Special care is taken when estimating losing
nodes since h(LOSS) cannot be bounded. The
value of N is arbitrary.

For CLOSED nodes of
these functions are defined

the search tree

recursively.

node n on a MAX level:

Define node m to be that son
the best estimated move for
That is, f<m) > f'(k) for all

h*(n)-h" (m) ¢ fr(n)=h"(n)+g" (n)

of n that is
the opponent.
sons k of n.

(n)=g" (m)

Node n on a MIN level:

Define node m as the best estimated move for
the program. That is, f'(m) < f' (k) for all
sons k of n.
h' (n)-h' (m) g' (n)=g' (m) £'{n}=h®(n)=g’{n)
This last definition requires further
explanation but is absolutely required to
extend one of the desirable features of
regular heuristic searchs to MIN/MAX trees.
A detailed discussion of this definition
takes place in a following section.

A node n is said to be accessible if all
the opponents moves on the path to n
represent the best move for him in terms of
true cost. That is, for each MIN node m on
tr%e path to n, h(m)>h(b) for all brothers b
of m.

26

The Bandwidth Heuristic Search Algorithm

A linked
the following

search tree is maintained using
node specification.

4
1 FATHER
1

1 1 I
Fr 1 H' |=e=-=p BROTHER
i [!

-

/
/ 1ST SON

Closed nodes of the search
typically contain the 3 pointers plus values
for f'(n), g'(n) and possibly h'(n).
Typically the linked list of brothers s
sorted in increasing or decreasing order for
MAX or MIN levels respectively. Tip nodes of
the search tree must also contain the board
confiquration or a list of moves from which
the board can be constructed.

tree

The bandwidth heuristic search proceeds
as follows.
1) Select a node p for expansion by

following the first
node (the node p).
If p is a goal node (a Win),
make the 1st move towards p.
If p is a terminal node (a Loss), resign
or play towards p expecting to lose.
Double expand p (on both a MIN and MAX
level) using the drop criterion to avoid
the needless generation of the grandsons
of p (similar to the alpha beta
cutoff). Note: a check must be made that
a terminal node is not generated on the
first expansion of p.

Evaluate h'() and calculate f' () for all
grandsons of p. Add the generated nodes
to the search tree.
Recalculate f'(p)
definition of f'().
Recalculate f'() for all
and alter the brother
the order.

Drop all nodes n (and the subtree below
n) if for b a brother of n

n on a MAX level and f'(b)>f*(n)+(e+d)

n on a MIN level and f(b]<f'<n)-(e+d)
Go to (1)

The error of
bounded in a manner

son chain to a tip

2) stop and

using recursive
ancestors of p
lists to maintain

8)

9)
the final result can be
similar our earlier
argument (Harris®) First it is shown that
the path to the optimal accessible goal is
not dropped from the search tree. The proof
indicates that it cannot be dropped on a MAX

to

level because it is optimal, and it cannot be
dropped from a MIN level because it s
accessible. When a goal p is selected for
expansion it was at some level compared to
the optimal path. The maximum inaccuracy in
this comparison is one bandwidth or (e+d).

bound the added cost introduced
the heuristic.

Thus we
by the

can
imprecision within

Alternating Definition of f' ()

search bhe
is to add a
search. A
continue to
in h'()

In the standard heuristic
purpose of the cost function g'()
breadth-first component to the
particular path in the tree will
be expanded only if the decrease
outweighs the increase in g'. In order to
keep this desirable tendency for the
bandwidth search it is necessary to alter the
common definitions for h'(), g*{) and f ()
for closed nodes. Consider the following
case.

50

MIN A

HIN

MAX

If f' (n)=g'(n)+h' tn) for all levels in
the tree then the Ileft-most path would be
expanded ad infinitum even though there was
not an improvement from the opponents point
of view. We must force a breadth first
component to the opponent's choices as well
as the program's choices. To do this we must
alter the fact that on MIN levels qoing
deeper in the tree makes the opponents moves
look better instead of worse. This is
clearly the opposite of the case for the
program's choices, and of heuristic searches
in general. In fact this breadth first
tendency is critical to prove that any
heuristic search is admissible (Nilsson?).
The new definition f ()=h'" ()-g't) on MIN
levels will enable wus to extend this needed
tendency to the searching of MIN/MAX trees.
The recursive definitions of h'() and g'()
allow us to backup the knowledge gained at
the tip nodes to the middle of the tree where
it can be compared with intersecting paths.
If we do not use this alternating definition
of f'() the search will tend to investigate
only 1 or 2 of the opponents moves at each
level. Given the inaccuracies inherent to the
heuristic, it is clear that we must provide
for a more conservative search.

Finding Bandwidth Heuristics

Before considering the bandwidth
heuristic search any further we must answer
two questions which immediately come to
mind. First, can we really find a bandwidth
heuristic for a game such as chess or
checkers? Second, do we really expect the
algorithm to halt by expanding a goal each

time the computer is to make a move?

The first question
to ask "For
a bandwidth

should be rephrased
what values of e & d can we find
heuristic for a game such as

27

chess?" It is clear that for large e & d
bandwidth heuristics can easily be found, and
in fact the minimax board evaluators satisfy
the conditions for some e & d.

For complex games such as chess it s
unlikely that heuristics that can be proved
to satisfy the bandwidth conditions can be
found. In this case the e-admissibility of
the algorithm becomes academic. However, the
practical advantages of the bandwidth search
process remain unaffected. The e and d then

become parameters of the searh to vary the
density of the search tree.

The loosening of the admissibility
condition to the bandwidth condition was
originally meant to simplify the task of
finding a suitable heuristic for a specific
problem, not make it more difficult. The

main distinction made by the bandwidth search

is that it readily admits that there are
inaccuracies in the heuristic, and that we
must cope with these in a more subtle way
than a sinqle comparison of heuristic
values.

The answer to the second question
indicates the change in outlook implied by
the bandwidth search. The algorithm is not
meant to start and stop each move as is the
case when minimaxing. The bandwidth
heuristic search expands the move tree

continuously, even while it is the opponent's
turn to move. Of course as actual moves are
made the unused sections of the search tree
can be discarded. The algorithm only
suggests moves when it is forced to stop
because of time or space constraints. Under
these conditions programs can play as well as
current techniques with a_ near zero response
time, since much 07?7 the tree search could'
take place while the opponent is thinkingl
The expansion of a goal must take place at
some time during the game, but probably not
before move decisions have to be made.

devise a decision
move when the

We must therefore
procedure for picking a
algorithm has not halted, but time or space
constraints force us to make a move. The
first quess one might have is to make the

move towards the node to be expanded next.

That is, the accessible node with the minimum
() value. However this is very dangerous
since this node could be a misevaluated line
of play that would be discarded immediately
after its expansion, A safer technique
would be to move towards the optimal
accessible node as determined by h'() values.
This gives a strong bias toward lines of play
that have been looked into deeply, since no

cost is assigned to a move. It also allows
the program to save more of the move tree for
use next move, as well as keeping the program
from making serious mistakes.

Let us now view the bandwidth search in
light of our discussion of minimaxing. The
bandwidth search, as would any ordered
search, uses heuristic values as a means of
guiding the search, not as an end in
determining the best move. That is the
error due to a misevaluation of two nodes is
not critical, as with the minimax based
algorithms, since the misevaluation can be
corrected after further expansion. The

bandwidth search quite naturally follows
forces or obvious lines of play to an
arbitrary depth in the move tree. It is not

restricted to an a priori depth bound.

Since the accessibility of a node s
defined in terms of TRUE cost the bandwidth
search does not assume the opponent evaluates
boards in a manner similar to the program.
The bandwidth search does assume that the
opponent is trying to win the game in the
fewest moves possible. This is a much more
plausible assumption than the one mentioned
above for minimaxing.

Since the bandwidth search refines its
estimate of accessibility as the tree s
expanded the misordering of nodes by the
heuristic is not <critical. The search may
expand along the wrong path for a time but is

capable of returning to expand along the
correct path. Indeed it must return to
examine the better line of play if the

misordering is more than a bandwidth from the
true values of the nodes.

A "good" move is defined as the first
move towards an (e+d)-optimal accessible
goal. If the ~cost of this expanded goal is

less than N then the
this position.

program must win from
If the value is greater than

N+(e+d) then the program can expect to lose.
However, if the value is in the "uncertainty
zone" [N,N+(e+d)] as it will be most of the

time, then it is unknown who can win and the

game should be continued.

In essence, we are saying that the
heuristic should be accurate on a coarse
scale, but may not necessarily be accurate on
a fine scale. That is, for h' 0 values
sufficiently far apart the ordering of the
heuristic should be the same as the h()
ordering. Sufficiently far apart is, of
course, defined as one bandwidth (e+d). On a
fine scale we admit the inaccuracy of the
heuristic and reserve judgement wuntil the
nodes have been expanded further. Thus, when
h'() values appear in the "uncertainty zone",
all is not lost, we must simply continue to
expand the search tree until the heuristic
values become more exact.

Empirical Results

In order to better isolate the effect of
the bandwidth search/ extensive tests were
conducted using the games of chess and Four
Score, an interesting variant of three
dimensional tic-tac-toe. In both cases
existing programs that used a fixed ordered
alpha-beta minimax were modified to use the
bandwidth heuristic search. The new version
then competed against the old program as well
as human opponents. When two programs
competed identical time and space constraints
were imposed on each/ and both programs used
the identical heuristic evaluator. since all
the programs are deterministic it is only
possible to play two unbiased games, one with
each program going first.

For chess the bandwidth search
noticeably improved the play of the program
and easily won both games, playing white once
and black once. At no time in either game

did the minimax program mount a serious
offensive attack although its defense was
acceptable. In order to more accurately
assess the improvement in chess play a local
chess master, rated at 2200, was asked to
play each program until he had some feel for
their ratings. His estimate was 1100-1200
for the mininax program, and 1400-1500 for
the bandwidth search program.

The bandwidth search fared well in Four
Score competition, winning while moving first
and second. When playing first it was able to
effect an 8 move combination in the middle
geane, which was beyond the horizon of the
minimax, Four Score has no standardized
rating scheme, thus no meaningful numeric
comparison is possible.

Since it is known that minimax chess
programs can exceed the 1200 rating of our
program, it is clear that the chess heuristic
used in this experiment is not the best
possible. Since the bandwidth search makes
more extensive use of the heuristic than does

minimaxing, it seems intuitive, although
unsupported, that the bandwidth search should
improve at least as fast as the minimax
search, for every improvement in the
heuristic.
Double Expansion

It is possible to define an ordered

search along the sane lines as the Bandwidth
Search without using double expansion. The
following case demonstrates a more subtle
effect that would cause a single expansion
algorithm to order the search incorrectly.

2q 35 35
MIN A MIN /A MIN A
/N mmx SN == 11/ (21
20 30 35 30 / \
A 15 35
MAX / MAX A\ Fal
20 35 /N AR

20 35 30 35

When the heuristic is overly sensitive to the
last move, the sinqgle expansion search can
actually reverse the inital ordering of the
nodes. Move [2] will be considered next
since it was expanded last, even though move
[1] is the better play as initially
indicated by the heuristic. This problem
becomes more acute as the number of possible
moves increases, since the entire list of
moves can be reversed on a MIN level before
progressing beyond the next MAX level.

Conclusion

The "bandwidth" conditions for the
heuristic search provide a convenient means
for coping with the practical constraints of
time and space, as well as for maintaining
the admissibility of the search.

For game trees the bandwidth conditions
lead to an effective search procedure that
has many desirable features over the
conventional minimax techniques. Moreover,
the bandwidth search brings about a totally
different view of computer game playing.
Instead of regenerating sections of the move
tree each time the program is to move, the
bandwidth search expands the move tree over a

continuum of time. This allows for more
coherent play from move to move, as well as
the capability of "thinking" while the

opponent is making his move. The bandwidth
search minimizes the critical dependence upon
the heuristic and eliminates the need for
fixed, a limitations of the search
process.

priori

Another important aspect of this
approach to game playing is the capability of
the program to interact with a human partner
in ordering the search of the move tree. Ml
of these areas remain open for future
research.

The author wishes to
Professor Steve Garland and the following
Dartmouth undergraduates for their help in
the development and the testing of the
bandwid th search: Warren Hon Monetgomery, Dave
Chenerow, Dexter Knzen, and Steve Poulsen.

acknowledge

29

References
Hart, P.E., Nilsson, N.J., Raphael, B.,
"A Formal Basic for the Heuristic
Determination of Minimum Cost Paths",

IEEE Transactions of Systems Sciences and
Cybernetics, Vol SSC-4, No. 2, pp 100-
107

Nilsson, N.J., Problem Solving Methods in
Artificial Intelligence, Hew fork:
McGraw-Hill

Pohl, |I., "Heuristic Search Viewed as
Path Finding in a Graph", Artificial
Intelligence |, American Elsevier

Pohl, 1., "First Results on the effect of
error in Heuristic Search", Machine
Intelligence 5, 1969, pp 219-236

Harris, L.R, "A Model for Adaptive
Problem Solving Applied to Natural
Language Acquisition", Technical Report
TR-133, Computer Science Dept., Cornell
University

Lin, S., Kernigham, B.W,, "A Heuristic
Algorithn for the Traveling Salesman
Problem", Bell Telephone Laboratories
Computer Science Technical Report No. 1,
April in, 1972

Samuel, A.L., "Some Studies in Machine
Learning using the game of Checkers", |IBM
Journal, v 3, no. 3, pp 210-229

Slagle, J.R., "Game Trees, M & N
Minimaxing and the M & N alpha-beta
procedure”, Lawrence Radiation Laboratory
Al Report Mo. 3, November, Livermore,
Calif.

Lawler, E., wood, D., "Branch & Bound

Methods: A Survey", Operations Research
(4) 14, July-August 1966, pp 699-715

