
[ding 463

A LANGUAGE BASED PROBLEM-SOLVER

S. Ramani
Computer Group

Tata Institute of Fundamental Research,
Bombay 5, India

Abstract

Language learning and language use
play central roles in problem-solving. It is
argued here that a r ig idly bui l t - in language w i l l
not serve the needs of problem-solving. To use
language as significantly as in human problem-
solving it is necessary to design language pro­
cessors specially suited to the task. The pro-
cesBoi should use language as a medium for
describing situations so that their s imi lar i t ies
are recognized. Recognition of such s imi lar i ty
would enable the system to respond to new s i tu­
ations with forms of response known to be ap­
propriate in s imi la r , fami l iar situations.

The design and implementation of a
problem-solving system based on this principle
are described. This system exhibits some cap­
abi l i ty to learn and use a language, and to solve
problems.

1• Introduction

The state of the art in problem-
solving, constituting the background to the work
reported here, is based on a number of con­
cepts and techniques, including the following:

use of heur ist ics, in addition to
algor i thms, in programs (1,2);

provision for pursuing a h ie rar ­
chically organized set of goals
and subgoals, by the use of rec­
ursive routines and push-down
stacks (3);

use of a scheme of representation
for mapping problem-situations
into data structures (4);

uBe of an input language resembling
a natural language (5);

use of sets of strings in a language
as representations, to provide for
generality (6).

The use of an adequate language for
input and output, and for the internal represen­
tation of relevant information as we l l , is very

attractive as a possible solution to the problem
of generality. S imi lar ly , one is also attracted
by the possibil i ty of realizing a system which
w i l l accept directions (complete or part ial) for
solving problems in some language resembling
a natural language (7). Obviously, such a sys­
tem w i l l be open-ended in a very significant
sense of the t e rm ,

We start with these concepts and argue
further that a general problem-solver should
possess a general language-using capability.
This capability should uniformly provide for
input /output communication, for the internal
representation of the totality of problem situa­
tions constituting the problem wor ld , and for
the communication and representation of
problem-solving techniques, including a lgor i ­
thms and heurist ics.

The approach reported here is further
characterized by three features:

(a) the requirement that the system be
open-ended, in regard to the language used;
it should be possible, at any stage, to add
incrementally to the repertoire of the system,

(b) the requirement that the system be
s imi lar ly open-ended in regard to the class of
questions answered, or the class of problems
solved, and

(c) the requirement that the capability of
the system be enhanced in a simple and natural
manner. Specifically, it is required that the
system should enhance its capabilities automat­
ical ly when a worked-out example is supplied.

The f i rs t two requirements raise
major questions regarding the nature of the
language processor to be used. The following
sections describe these questions and provide
an answer for them, based on the concept of
analogy directed behaviour. This concept is
then extended to provide a basis for meeting
the th i rd requirement cited above - that the
problem-solving should itself be example
dr iven. It is argued that such a problem -
solver w i l l cope with an open-ended problem
wor ld , in a sense, creatively.

2. The Basic Issues

One needs a theory of language to
design any language-using system, a theory
which covers syntax, semantics and pragmatics.

464

Designers have been quick to borrow f rom l i n ­
guistics whatever has been available in the way
of syntax and it has been suggested that a fo r ­
mal grammar of a language, such as a transfor­
mational generative grammar, could be used
in conjunction with a syntax-directed parser to
perform an analysis of natural language
sentences (8, 9).

Another frequently suggested possibi­
l i t y is the use of a semantic processor which
w i l l map sentences of a natural language into
strings in a formal language (say, a f i r s t order
predicate calculus) using information obtained
f rom syntax analysis, whenever necessary (10).

There are diff icult ies in adopting syn­
tax directed parsing methods for use in a
problem-solver of the type visualized in the
previous section. For example, it is a lgor i th-
mical ly impossible to produce a generative gra­
mmar for every given set of sentences (see(l l)
for a fo rmal analysis). Making incremental
additions to a generative grammar to extend the
language is an equally demanding task, sharing
many features with the task of program derelo-
pment and debugging.

These l imitations on automatic acqui­
sit ion are severe in view of the enormous
effort required to create grammars manually.
Machine-usable grammars for chunks of nat­
u ra l language large enough to be useful are not
yet available.

A s im i la r , if not worse, situation
prevails in the area of semantics of useful
chunks of natural language. The mapping of an
input sentence into a formula in some logical
calculus requires an a lgor i thm. There is no
uni form procedure for a r r iv ing at such an algo­
r i thm which maps sentences in a given language
into formulas in a chosen logical calculus. Any
such algori thm w i l l require considerable mod i ­
f ication and debugging when the set of sentences
it has to handle is enlarged in any significant
manner.

3. The Case for Analogy

Is there any alternative, then, to the
design of a language processor? Is it possible
to avoid syntax-directed analysis, followed by
a mapping of the input sentences into strings in
a logical calculus ?

Session No. 10 Computer Understanding I (Communication)

The alternative explored in the work
reported here is based on the notion that human
language behaviour is analogy directed. One's
response to a verbal stimulus is generally de­
termined by the s im i la r i t y it has to a fami l ia r
st imulus. The response to the new stimulus
resembles the response to the fami l ia r one in
certain ways. One is often taught the answer
to a new kind of stimulus by being given an
example.

To model this type of behaviour, one
has to look for a programmable process which
w i l l car ry out this analogizing and answer new
questions on the basis of a set of question-
answer pairs used as examples. Each question-
answer pair that is supplied as an example
would be accompanied by a set of sentences
(the context). The processor would obviously
use a store for factual information (say, in the
form of sentences) which describes the class
of situations about which it can be questioned.
This store forms a kind of data-base. When
presented with a new question, the processor
creates a reply to it by recognizing its s im i la ­
r i ty to a question given ear l ier as an example.
F rom the example, the processor would ident i ­
fy the form of the informative sentences re le­
vant to the question. Then the processor would
identify such sentences in the data-base and
create a reply.

Proceeding further, one could add to
the system being visualized to enable it to
handle inputs other than simple questions. Some
inputs may be informative sentences which have
to be analyzed in order to extract the informat­
ion they bring to the system. The extracted
information is then incorporated into the data
base.

F inal ly , one could imbed a language
processor of this sort into a problem-solver .

The following sections show how these
tasks are tackled. But, it is useful here to
summarize the motivations for investigating
analogy as a principle directing natural language
behaviour:

(a) Analogy appears attractive as one
technique by which a language may be acquired.
An analogy directed processor can be made to
tackle a new class of questions or statements
by supplying it wi th an example. The process
is incremental.

Session No. 10 Computer Understanding I (Communication) 465

(b) An analogy directed processor is not
limited to any specific language. Depending
upon the examples supplied, it tackles different
languages.

(c) Recognizing a familiar structure under­
lying a new situation, and responding to it acc­
ordingly, appears to be an essential component
of all intelligent behaviour. A language proce­
ssor used by a problem-solver will provide for
such recognition at each step of problem-
solving. For instance, a simple question that
arises at some step of problem-solving will be
recognized by its familiar structure, even if it
is new in certain respects, and be answered
appropriately. In other words, a language
processor which can handle new sentences by
analogy provides the basis for a problem-
solver which can handle new problems by
analogy.

A detailed treatment of the role of
language learning in intelligent behavior may
be found in (12). In this paper, Narasimhan
argues that the use of a rigidly determined
language denies a problem-solver the ability
to cope with new classes of situations, (in
McCarthy's words (7) a problem-solver using
such a limited language cannot be 'told' about
the new classes of situations, and therefore,
it cannot also learn their relevant features by
itself).

(d) The approach prescribes a simpler
structure for a language processor. Seemingly
arbitrary compartmentalization of the process
is avoided. Consider, for example, the syntax
directed processors which fail to use semantic
or contextual clues in syntactic disambiguation.
Analogy directed processors are not divided
into such non-communicating sub-systems.

A detailed critique of language behavior
models incorporating generative grammars has
been written by Hockett (13). He also presents
arguments for recognizing the important role
of analogy in human language behavior.

4. The Proposed Model for a Language
Processor

The considerations described in the
previous sections lead to a model for a language
processor having the following features:

(a) The processor deals with situations,
a situation being a stimulus (or input) in its

context.

The stimulus is a string of symbols
(e.g., a question in a natural language, the
words being treated as symbols here). The
context is a set of strings of symbols (e.g., a
set of sentences describing some aspect of the
world that is being questioned).

(b) The response of the processor to any
situation is based on pattern setting examples
(or paradigms) given to it earlier.

A paradigm consists of a context (a
set ol strings of symbols), an input (a string
of symbols) and a response (or output). The
response is a sequence of strings of symbols
(e.g., a sequence of sentences in a natural
language).

(c) Paradigms are stored in a form that
highlights their structure, de-emphasizing the
particulars of the situation involved. A para­
digm stored in this form, called a schema, can
be used by the processor to create responses
to new situations by a process of extrapolation.

(d) The processor has access to a store
for sentential strings, constituting a data-base
(see Fig. l) .

Inputs to the processor are of two
kinds. The f i rs t kind of inputs are paradigms
labelled as such. The other kind of inputs are

466 Session No. 10 Computer Understanding I (Communication)

sentential strings (e . g . , questions, commands
or informational sentences in a natural language
The processor schematizes and stores the para­
digms for later use. The processor responds
to sentential s t imul i by extrapolating f rom an
appropriate schematized paradigm, if such a
paradigm is available. In any case, the sent­
ential input is added to the data-base, for poss­
ible functioning as a contextual str ing for later
inputs.

(e) The suitabi l i ty of a (schematized) para­
digm for determining the creation of a response
to a given stimulus is based on two factors:

i) s t ructura l s im i la r i t y between the
current stimulus and the stimulus
component (or input component) of
the paradigm,

i i) the presence or absence in the
data-base of a set of strings having
specified structures (the processor
obtains the specification for these
structures by extrapolating f rom
the schematized paradigm being
tested for sui tabi l i ty) .

(f) Assume a suitable schema is found for
determining the response in a given situation.
The processor computes a response having a
structure determined by the schema. Elements
of the response (e . g . . words, numbers and
phrases) may be obtained by the processor from
the sentential store and incorporated into the
structure as specified by the schema.

Obviously, the processes referred to
in paragraphs (c), (d), (e) and (f) above have to
be described in detai l . This is done in the
following sections. Before proceeding fur ther,
it i s , however, necessary to describe an impo­
rtant feature of the processor which provides
for a problem-solving capabil i ty. The same
faci l i ty enables the processor to respond to a
stimulus which has a complex structure, wi th
phrases nested inside other phrases at several
levels,

(g) The extrapolation procedure referred
to in paragraph (f) determines a series of s t r ­
ings called !the response'. In the case of cer t ­
ain classes of situations, the response may
simply be printed out (e. g. , a simple question
is given a factual answer, without involving
nested computation).

In the general case, however, the ext­
rapolated 'response' may function as a sequence

of internal s t imu l i . In other words, in response
to a given st imulus, the processor presents
i tself with a sequence of internal s t imu l i . The
processor has appropriate provision to halt the
main sequence of computation at one level to
per form necessary subcomputations at a lower
level , as necessitated by the internal s t imu l i .
The processor can, in this manner, respond to
internal s t imul i precisely as it rerponds to an
external one, choosing suitable schema to det­
ermine the response. Generally, the nesting
extends only a f inite number of levels and the
process ul t imately terminates.

The processor prints out each str ing
in 'the response' at each level when it arises as
an internal st imulus. Many such strings do not
require any further processing, as the available
schemata do not provide for i t . Any such s t r ­
ing just gets printed out and the processor
moves on to the next internal st imulus. The
complete pr int-out is the true record of respon­
ses at a l l the levels.

The machinery for nested computation
of responses to a h ierarchical ly organized set
of s t imul i is basically the GPS (3) machinery,
involving push-down stacks, etc.

5. The Nature of the Paradigms Used

A simple paradigm is :
Context: The weight of the ship is

2000 tons
Input : What is the weight of the

ship?
Output : 2000 tons

Given the new situation,
Context : The height of the boy is

four feet
Input : What is the height of the

boy?
Extrapolat ion at one level yields the answer:

"Four feet".

On the other hand, a more complex
paradigm would be something l ike th is :

Context: The density of lead is 8 gm
per cc

The volume of a sphere is
0.75 x PI x radius **3

The radius of a sphere is
0. 5 x the diameter

Input : Find the weight of a lead
sphere 6 cm in diameter

Output : 1. Find the volume of the
sphere

Session No. 10 Computer Understanding I (Communication) 467

2. Mult iply the volume by the
density

3. That is the weight of the sphere

Obviously, the three strings in the
'output' are internal s t imul i which tr igger off
internal act ivi ty to create the final output.

The choice of these forms for paradi­
gms reflects certain beliefs regarding human
verbal behavior. One belief is that the prese­
nting of a paradigmatic example of the desired
behavior is most valuable when it is clearly
separated f rom the preceding and succeeding
act iv i ty. The paradigm should be wel l segmen­
ted f rom the background activity and be labelled
as such, Secondly, when question-answering
or problem-solving is taught, it is very useful,
if not imperative, to draw attention to the re ­
levant facts - the context.

6. The Paradigmatic Processor

6. 1 Schematization of Paradigms

Consider a paradigm consisting of
strings of words and symbols, these strings
being statements, questions or commands occ­
ur r ing in the paradigm. The paradigm is d iv i ­
ded into a contextual component, consisting of
the strings C 1 , C2, C3, . . . , C n , an 'input'
component consisting of one string Q and an
'output' component consisting of the strings

A1, A2, A3,,An.

ating extrapolation. Any input stimulus S, a
string of words and symbols, tr iggers off a
search activity in the processor. The search
is for the 'schema' of a paradigm p [C,Q,A]
which has an input component, Q, maximally
resembling S. By a linear mapping of symbols
of S onto matching symbols in Q, substrings of
S are placed in one-to-one correspondence with
substrings of Q (i l lustrated below).

Substrings such as 'the weight of the
ship1, che radius of the sphere', etc. , are
treated as integral units whenever necessary.
This follows the conception of a sentence as a
string of units in specified order, some units
being words or single symbols, while others
are phrases defined by sets of recursively app­
licable rules (Bobrow(5) and Weizenbaum (14)
describe approaches which suggested this dev­
elopment. Leavenworth (15) and Woods (16) are
also relevant papers).

Consider a paradigm p [C,Q,A] .
To assign a structure to this paradigm, we
look for maximal substrings which occur in one
or more places in one Bet of Btrings as wel l as
in one or more places in another set of str ings.
For example, the maximal substrings common
to C and Q below are (the cost of, i s , 4,
pencils)

C : The cost of one pen is 4 rupees
The cost of two pencils is 1 rupee

Q : What is the cost of 4 pens and 3
pencils

Let S cq be the set of maximal substrings com­
mon to Q on one hand and to C on the other.
Sa q is the set s imi la r ly defined with respect
to "K and Q. The set of maximal substrings,
each one of which occurs somewhere in A as
wel l as somewhere in C, is called S c a • We
define two new sets

The schematization of the paradigm
p [C , Q. A] is performed by substituting
uniformly for each substring in the set S a
corresponding formal variable, at each of its
occurrences in p. This requires the generation
of a set of distinct formal variables Sf , such
that |Sf| = |Sv| • The schematization gives

does one extrapolate f rom them to compute the
appropriate response to a new stimulus?

As mentioned ear l ier , paradigms sup­
plied to the processor are 'schematized' and
stored. The schematization serves essentially
to assign a structure to the paradigm, fac i l i t -

468 Session No. 10 Computer Understanding I (Communication)

us the schema K [S q , _S c f ,C , Q, A']where
C' is obtained f rom C and A' f rom A by the
substitution process described above. Scf is
a new set of variables obtained by substituting
in Sca every occurrence of a variable in Sv by
the corresponding formal variable f rom Sf .
This process is i l lustrated by the following
example:

Paradigm

71 : G is 31. 5 feet per second squared
The ball is thrown ver t ica l ly upward at

31 feet per second
Q : Find how high the bal l w i l l go
A : V = 31

G= 31.5
Find (V ** 2) / (2 * G)
That gives the height reached by the

bal l
Sq = { the bal l }
S c a= { 31, G, 31.5, the bal l }
S v = { 31. G, 31.5 }
Sf = { 00001, 00002, 00003 }
S c f = " 00001, 00002, 00003, the bal l }

2. If it is otherwise permissible to map
Yj onto either Zj or Zk, j < k,
Yi should be mapped onto Zj .

3. If Yj is mapped onto Z ; , no mapping of
the form Yk - Z1 is permitted if
k> i while 1 < j.

4. Pursuant to the conditions stated above,
Yj may be mapped onto Z: if Yj and
Z J are identical.

5. Pursuant to the f i r s t three conditions,
Y^ may be mapped onto Z: i r respe­
ctive of their being identical, if they
are both numbers, neither being a
formal var iable.

The mapping w i l l not be complete after
the exhaustive application of the five rules l i s t ­
ed above. Considering the example referred to
in Section 6. 1, the part of the mapping per for­
med according to these rules is shown here:

Schema

Q

00002 is 00003 feet per second
squared

The bal l is thrown ver t ica l ly upward
at 00001 feet per second

Find how high the bal l w i l l go
V= 00001

00002 = 00003
Find (V ** 2) / (2 * 00002)
That gives the height reached by the

bal l

6. 2 Extrapolation f rom Schemata

Given a st imulus, S, one may compare
it with the input component of a schema K [Sq ,
Scf , C1 , Q, A'] . The comparison per fo rm­
ed by the processor consists of two steps: (a)
l inear mapping of S onto Q, and (b) evaluation
of the match. Consider two strings of words
and symbols

Yn onto The l inear mapping of Y1 Y2 Y3 . . .
Z1Z2 Z3 ...Zm is performed as fol lows:

1. The mapping should proceed f rom
Y 1 t o Y n .

However, it is possible at this stage to
estimate the degree to which Q resembles S.
A useful index of the match is found as fol lows:

1. Assign to every element in Q, but not in
SQ , the weight 1.

2. Assign to every element in Sq the weight
0.25.

3. Make a weighted count of a l l elements of
S successfully mapped onto some
elements of Q at this stage. Let this
be R1 .

4. Let a weighted count of a l l elements in Q
be R 2 .

5. R 1 /R 2 is the match index.

By using this match c r i te r ion , the
schemata most suitable to the task at hand are
selected and t r ied one by one for appl icabi l i ty.
For instance, if the task is to create a response
to

'Find how high the stone w i l l go'
the paradigm l isted in Section 6.1 could be
selected.

How does one use the paradigm in the
new situation? The l inear mapping of S onto Q
creates a one-to-one correspondence between
elements which occur in S with thei r substitute

Session No. 10 Computer Understanding I (Communication) 469

elements in Q. The mapping can now be comp­
leted by an interpolation process (see (17) for
a f low-chart of this process, as wel l as for
details in general. In certain places, however,
(17) differs in formulation).

On completion of the mapping, a one-
to-one correspondence can be set up between
strings in Sq which occur in Q and their substi­
tutes, S' , which occur in S. For instance, in
the above example, the single member of Sq ,
'the bal l1 , can be put in correspondence with
'the stone' in S. Uniformly substituting mem­
bers of Sq occurr ing in C of the schema by
corresponding members of Sq' , a modified
context C" is created. In the above example,
T" consists of two str ings:

00002 is 00003 feet per second squared
The stone is thrown vert ical ly upward at

00001 feet per second squared

The modified context C" shows the
structure of sentences to be identified in the
sentential store, if the chosen schema is to be
useful in creating a response. The processor
searches this store to locate sentences which
match the strings of C " , using the linear mapp­
ing technique described above. If matching
sentences are not found, the processor attempts
to use another paradigm. If matching sentences
are found, the mapping technique described
identifies substrings which occur in the place
of the formal variables S f . A one-to-one cor­
respondence is created between elements of Sf
and their substitutes, which constitute the set

At this stage, the processor creates
th-e response by uniformly substituting elements
of Sf occurring in X' by the corresponding
elements of the set Su .

If no suitable schema is found for a
given stimulus S, it is treated as informative
input to be direct ly sent to the sentential store.
On the other hand, if a schema is found, the
computed response is output string by st r ing.
After each str ing is output in this manner, it
is re-presented to the processor, as an inter­
nal st imulus. For instance, if the computed
response has the str ing 'V*41 ' in i t , it w i l l be
re-presented as an internal st imulus. Fail ing
to find a suitable schematized paradigm to gui­
de the response to this new stimulus, the pro­
cessor w i l l f i le away , V * 4 1 ' in the sentential

store for later use.

If the command

•Find (V ** 2) / (2 * G)1

becomes an internal st imulus, the processor
could find a suitable schema to guide it in per­
forming this sub-task.

7. Design and Implementation of the Problem-
solver

The simple examples presented in
Section 6 show how the paradigmatic creation
of a direct, simple response is possible at a
very lew level of operation. A stimulus of any
complexity results in internal s t imul i , and a
whole hierarchy of schemata is brought into
play. This is true not only in numerical prob­
lem-solving, but also in the interpretation of
complex sentences, which is a kind of 'problem-
solving' in itself.

F ig . 2 shows the problem-solver which
consists of the rudimentary processor shown in
F ig . 1 along with push-down stores necessary

470 Session No. 10 Computer Understanding I (Communication)

for the recursive application of schemata. The
interpreter is a simple speedup device which
responds to frequent forms of internal s t imu l i .
Though whatever it does can, in pr incip le, be
performed in the paradigmatic mode, it increa­
ses efficiency and reduces storage requiremerts
by interpreting a set of simple s t imul i very
economically. Some of the forms it handles,
using a finite state grammar, a re *

Step numbers may be incorporated in
the strings constituting a paradigmatic response.
The 'goto' statements of the interpreter 's lan­
guage essentially allow jumping and looping
within a sequence of internal s t imul i essentially
constituting a program.

The stimulus !what is A' would be
responded to by locating a 'Sentence' of the
form 'A = -- ' in the sentential store and keep­
ing the value ready for further use. The inter­
preter provides for the use of ' that ' , 'the
resul t ' , ' i t ' and ' result1 to refer to any such
quantity ar is ing f rom the preceding operation.
The interpreter used incorporates many sophi­
stications, and descriptions of these may be

*Following standard l inguistic convention, a l t ­
ernatives appear within braces, while optional
fragments appear within brackets.

found in (17). For instance, the terms in the
interpreted statements could be numbers such
as 3.61 or 4, or a str ing of words such as 'the
weight of the stone'. In the last case, the num­
er ical value associated with the str ing would be
searched for in the sentential store. Units may
follow te rms .

The sentential store and the store for
schemata along with necessary indexes are
accommodated in nearly 500,000 words of a
d isc- f i le memory. A description of indexing
and retr ieval techniques specially developed for
this work may be found in (18).

A number of problems solved by this
system, along with the guiding paradigms may
be found in (17). An example is l isted here,
(deletions, employed to save space here, are
marked by ' . . . ') .

PROBLEM SOLVED
C - 5 GRAM S OF SAND ARE AT 80 DEGREE S

CENTIGRADE
60 GRAM S OF KEROSENE ARE AT 10

DEGREE S CENTIGRADE
THE SPECIFIC HEAT OF SAND IS 0. 2
THE SPECIFIC HEAT OF KEROSENE IS

0.4
THE SAND AND THE KEROSENE ARE

BROUGHT TOGETHER

Q - WHAT IS THE FINAL TEMPERATURE
ATTAINED

Final
Output - . . .

FIND THE HEAT IN THE KEROSENE ,
MULTIPLY 60 BY 0.4
MULTIPLY THE RESULT BY 10
THAT IS THE HEAT IN THE KEROSENE
THE HEAT IN THE KEROSENE= 240. 000
FIND THE HEAT IN THE SAND

• • •
THE HEAT IN THE SAND = 80. 000
ADD IT TO THE HEAT IN THE KEROSENE
THAT IS THE TOTAL HEAT
THE TOTAL HEAT = 320.000
FIND THE THERMAL CAPACITY OF THE

KEROSENE
MULTIPLY 60 BY 0.4
THAT IS THE THERMAL CAPACITY OF

KEROSENE
THE THERMAL CAPACITY OF KEROSE­

NE = 24.000
IGNORE THE TEMPERATURE - 10 DEG­

REE S CENTIGRADE
FIND THE THERMAL CAPACITY OF THE

Session No. 10 Computer Understanding I (Communication)

SAND

IGNORE THE TEMPERATURE - 80 DEGRE-
E S CENTIGRADE

ADD IT TO THE THERMAL CAPACITY OF
THE KEROSENE

THAT IS THE TOTAL THERMAL CAPAC­
ITY

THE TOTAL THERMAL CAPACITY *
25.000

DIVIDE THE TOTAL HEAT BY THE TOT­
AL THERMAL CAPACITY

THE RESULT IS THE ANSWER, IN DEG­
REE S CENTIGRADE

THE ANSWER, IN DEGREE S CENTIGRA­
DE = 12,800

PARADIGMS USED
C - 75 GRAM S OF CLAY ARE AT 20 DEGREE

S CENTIGRADE
THE SPECIFIC HEAT OF CLAY IS 0. 5

Q - FIND THE HEAT IN THE CLAY

A - 1. MULTIPLY 75 BY 0.5
2. MULTIPLY THE RESULT BY 20
3. THAT IS THE HEAT IN THE CLAY

C - 75 GRAM S OF METAL ARE AT 20 DEG­
REE S CENTIGRADE

THE SPECIFIC HEAT OF METAL IS 0. 5

Q - FIND THE THERMAL CAPACITY OF THE
METAL

A - 1. MULTIPLY 75 BY 0.5
2. THAT IS THE THERMAL CAPACITY

OF THE METAL
3. IGNORE THE TEMPERATURE - 20

DEGREE S CENTIGRADE

C - THE IRON FILING S AND WATER ARE
BROUGHT TOGETHER

Q - WHAT IS THE FINAL TEMPERATURE
ATTAINED

A - 1. FIND THE HEAT IN THE WATER
2. FIND THE HEAT IN THE IRON FILINGS
3. ADD IT TO THE HEAT IN THE WATER
4. THAT IS THE TOTAL HEAT
5. FIND THE THERMAL CAPACITY OF

THE WATER
6. FIND THE THERMAL CAPACITY OF

THE IRON FILING S
7. ADD IT TO THE THERMAL CAPACITY

OF THE WATER

471

8. THAT IS THE TOTAL THERMAL
CAPACITY

9. DIVIDE THE TOTAL HEAT BY THE
TOTAL THERMAL CAPACITY

10. THAT IS THE ANSWER, IN DEGREE S
CENTIGRADE

8. Discussion

A number of questions can be raised
about this approach. Some of these questions
are answered here and certain lines for possi­
ble developments in consonance with this appro­
ach are discussed.

8. 1 Nature of the Language Provided for

Does the system at least provide for
the use of phrase structure languages?

It w i l l be apparent that we are not wor­
king with a s lot-and-f i l ler model, where the
f i l le rs are single words. Since a variable
could be any string of words and symbols,
there exists the possibi l i ty that such f i l lers
themselves w i l l have a complex structure.
F i l le rs usually get transferred f rom the s t im­
ulus to the internal responses. Incorporation
of a f i l l e r with a complex structure modifies
the internal response and increases the proce­
ssing it w i l l go through. But eventually, any
necessary breaking up of phrases does get
carr ied out.

Further, it can be seen that there is
provision for handling surface transformations.
If the system can handle a question of the form
'Does N divide M?' , we can provide a new
paradigm that w i l l t ransform an equivalent
question to this fo rm:

C : -
Q : Is M divisible by N?
A : Does N divide M?

8. 2. Completeness and Contradictions

It is reasonable to ask of a problem-
solving system if it guarantees the solution of
any given problem belonging to some class of
problems. Can it give answers which contra­
dict each other? Can the problem-solver go
into an endless loop in response to any given
problem?

The system described here can exec­
ute an algorithmic process and in that t r i v i a l

472

sense, it can guarantee solutions to any problem
in a class which is algor i thmical ly solvable.
Operating in areas which cannot be wrapped up
in formal systems, it can give contradictory
solutions. It can go into an endless loop unless
the paradigms provided indicate methods of
avoiding such a possibi l i ty.

8. 3 Possible Developments

Useful minor additions would include
a random number generator accessible in the
interpreter 's language and a name generator
for creating arb i t ra ry names for local variables.
'Let that be X1, 'Let that be Y' etc. are suf f ic i ­
ent for handling smal l problems, but one needs
a name generator for larger problems.

The system presently handles words
as units and cannot separate a word into its
root and word-ending. A provision to handle
this would be useful. It would also be useful
to have a good evaluator for ari thmetic expre­
ssions, instead of depending on the crude prog­
ramming language of the interpreter . A very
sophisticated addition would be a provision
which w i l l enable the system to wr i te a few
lines in a programming language such as
FORTRAN and have them executed.

It would be very useful to provide for
on-line interaction between the system and a
communicant. This ought to be implemented
easily by incorporating two new pr imit ives in
the interpreter 's repertoi re, for on-line input
and output.

Typical symbol manipulation by a stud­
ent (for example, that involved in symbolic
integration or algebraic factorization) is often
performed using an external aid such as a
blackboard, or pencil and paper. It would be
useful to provide a two dimensional ar ray on
which the system could wr i te , sense, and mani­
pulate alphanumeric expressions. With a num­
ber of manipulation pr imi t ives bui l t into the
interpreter 's reperto i re, this ar ray could be
used as an internal blackboard.

Such a 'blackboard' w i l l also enable
the wr i t ing , examination and 'ed i tor ia l ' mani ­
pulation oi long sentences. This might, to some
extent, bridge the difference in complexity
between the sentences used by the system and
those found in wr i t ten human communication.

Many of the faci l i t ies mentioned here

Session No. 10 Computer Understanding I (Communication)

are available in standard programming langu­
ages, but it would be interesting to see them
used by a paradigmatic problem-solver.

A more basic advance would be the
development of paradigms which would lead the
system to use t r i a l and er ror as a learning
device in solving a variety of problems. T r i a l
episodes which end in success should be auto­
matical ly culled out as useful paradigms for
schematization and stor ing. This w i l l involve
considerable addition to the system described.

Acknowledgment

This work owes much by way of guid­
ance to Professor R. Narasimhan, and without
his collaboration it would not have been possibles

Professor J. R. Isaac provided const­
ant encouragement and his c r i t i ca l interest put
many ideas into perspective.

Comments of the referees on the o r ig ­
inal draft are gratefully acknowledged.

References

1. Newell, A , , Shaw, J. C. , and Simon, H. A . ,
Empi r ica l Explorations of the Logic Theory
Machine Proc. WJCC, 1957

2. Minsky, M . ,
A Selected Descriptor-Indexed Bibliography
to the Li terature on A r t i f i c i a l Intell igence,
IRE Transactions on Human Factors in
Electronics, March 61

3. GPS, A Program that Simulates Human
Thought, in 'Computers and Thought',
Feigenbaum, E. and Feldman, J . , Eds . ,
McGraw-Hi l l , 1963

4. Newell, A . , Shaw, J . C . , and Simon, H. A . ,
A Variety of Intelligent Learning in a Gener­
al Problem Solver, Self-Organizing Systems
(Yovitts, M . , and Cameron, S. Eds.)
Pergamon, 1960

5. Bobrow, D. G . ,
'Natural Language Input for a Computer
Problem-Solving Syst e m ' t Ph. D. Thesis.
M . I . T . , 1964

6. Newell, A . ,
The Search for Generality, Proceedings of
the IF IP Congress 65, Spartan Books, 1965

7. McCarthy, J . ,
Programs with Common Sense,
Proceedings of the Symposium on the Mech­
anization of Thought Processes (Blake, D. V.,

Session No. 10 Computer Understanding I (Communication)

and Utt ley, A . M . , Eds.) , H. M. Stationary
Office, 1959

8. Thompson, F. B . , English for the Computer,
Proc. FJCC, 1966

9 . Zwicky, A . M . , Fr iedman, J . , Ha l l , B . C . ,
and Walker, D. E . , The Mi t re Syntactic
Analysis Procedure for Transformational
Grammars, AFIPS Conference Proceedings,
Vol . 27, Part 1, 1965

10.Coles, L.S. ,
An On-line Question Answering System with
Natural Language and Pic tor ia l Input, Proc­
eedings of ACM, Spartan Press, 1968

11.See the Chapters by Chomsky, N. in Hand­
book of Mathematical Psychology, Luce,
R .D . , et a l , Eds . , John Wiley, 1963

1 2. Narasimhan, R.,
Intelligence and Ar t i f i c i a l Intell igence,
Computer Studies in the Humanities and
Verbal Behavior, Vol.11, Nr. 1, March 1969

13.Hockett, C . F . , The State of the A r t ,
Mouton, 1968.

1^ Weizenbaum J. ,
El iza - A Computer Program for the Study
of Natural Language Communication Between
Man and Machine,
CACM, Vol . 9, No. 1, Jan. 1966.

1 5.Leavenworth, B. M . , Syntax Macros and
Extended Translat ion, CACM, Vol . 9, No. 11,
Nov. 1966

16. Woods, W . A . , Transit ion Network Grammare
for Natural Language Analysis, CACM, Vol.
13, No. 10, Oct. 70

17. Ramani, S. ,
Language Based Problem-Solving, Ph.D.
Thesis, Computer Group, Tata Institute of
Fundamental Research, 1969

1 8.Ramani, S. , Indexing and Retrieval of Sent­
ences in a Natural Language Data-Base,
Tech. Report No. 89, Computer Group, Tata
Institute of Fundamental Research, Jan. 1970.

473

