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0. Summary

The transformation or
treated by most

derivation problem
"problem-solving" programs is
expressed in a formal notation, and various methods
for "problem-solving" are reviewed. The conventio-
nal search tree is generalized into a search
lattice which can accomodate multiple-input
tors, e.g. resolution. The paper argues that
descriptions of heuristic methods can be signi-
ficantly compacted if a higher degree of formaliza-
tion is used. This point is illustrated with two
practical examples.

opera-

1. Introduction

This paper is an attempt at a survey and
synthesis of past work on heuristic search methods.
Following Feigenbaum and Feldman (1963), we define
a heuristic method as a device which drastically
limits search for solutions in large problem
spaces. As can be seen from the list of references,
much work on heuristic methods has been performed
during the last few years.

Two approaches have been competing in this
work. In his report on SIN , Moses characterizes
them as emphasizing generality and expertise,
respectively. In the generality approach, one
tries to write a general program which can solve
all kinds of problems, provided only that
(adequately phrased) information about the
particular "problem environment" of each problem
is provided. The "General Problem Solver" (sic!),
DEDUCOM, and the Graph Traverser are examples of
this approach.

In the approach that stresses expertise, one
concentrates instead on writing a good program for
solving problems in one given problem environment.
SIN itself is a typical example of that approach,
as are game-playing programs (Samuel' s,
and some programs which, according to rumour,
being used for industrial purposes.
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The advantages and disadvantages of each
approach are obvious: generality has to be paid
for by a decrease in program efficiency. An
advantage with the generality approach is that
one single heuristic method can quickly be put to
use in a variety of problem domains.

It would seem, however, that methods which
have been developed in one "expertise" program
can be carried over to another problem environment
and another program. The only problem is to pull
out the abstract heuristic methods from the program
descriptions, which are often quite technical and
detailed.

One example of this will suffice. The SIN
program contains an important heuristic, which
Moses describes as follows: "The Edge heuristic
is based on the Liouville theory of integration.
In this theory it is shown that if a function is
integrable in closed form, then the form of the
integral can be deduced up to certain coefficients.
A program which employs the Edge heuristic, called
Edge, uses a simple analysis to guess at the form
of the integral and then it attempts to obtain
coefficients." (page 8). The Edge heuristic is
further described on seventeen pages in chapter 5-

Unfortunately, the author fails to formulate
this important heuristic method in abstract terms.
Such an abstract formulation could e.g. run as
follows: The purpose of the integration program
is to start from a given, initial object, and to
apply the right operators (from a given set of
operators) in the right order, until the given
object has been transformed into a given target
set (i.e. the set of all expressions where the
integral sign(s) have been eliminated). The Edge
heuristic relies on information which is local to
this particular problem environment, and which
makes it possible to say, during the search of
the solution tree, where in the target set we will
eventually land. The Edge program utilizes this
information to get a better estimate of the
remaining "distance" to the target set from each
node. - With such a description, it becomes clear
that the same heuristic may well be applicable to
other problem environments, in other expertise-
oriented programs.

Abstract method descriptions, as outlined
here, can of course not serve as substitutes for
conventional ones. A concrete description, like
the one Moses has given for SIN, will always be
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needed by the user of the program, or the
researche who attempts to improve on previous
work. By contrast, the abstract description is
useful for the man who wants to carry over
methods to other problem environments, and (of
course) for the theoretician who, some time in
the future, will attempt to build a mathematical
theory of heuristics.

The morale is, therefore, that we need an
abstract frame of reference, a set of concepts
for describing and analysing heuristic methods.
Such concepts would help in the dissemination of
know-how; they would also make it possible to
compare the efficiency of various methods and
programs, expertise-oriented as well as generality-
oriented.

In this report, we shall attempt to set up
such a "frame of reference". In section 2, we
formulate a general "transformation problem", and
discuss some of its cases. In sections 3-4,
various commonly used heuristic techniques are
formulated and discussed. Since we argued, in
section 2, that one-input and multiple-input
operators must be carefully distinguished, we use
section 5 to extend the conventional search tree
into a search lattice. Our stock of concepts is
tested in sections 6-7, where abstract descriptions
of some well-known programs and heuristic methods
are given.

2. Heuristic search: rules of the game

The problem environments for heuristic search
methods always include a set P of objects and a
set Q of operators on these objects. The following
problem has often been studied, (see e.g. {Newell
1960c} and {Doran 1967a}), and has sometimes been
referred to as the problem-solving problem:

Basic transformation problem.

Given an initial set R€ P,
Mg P, determine r in R and
Q such that

e target set
q,,92,---9 ‘in

aplay 10 o qplq ()} oo )}

exists and is a member of the target set M. We
call this a transformation problem from R to M.

A method for solving basic transformation

problems is called a heuristic search method if

it searches the tree(s) of all possible operator
applications, and the order in which the nodes of
this tree are inspected, is governed in some ways
by properties of the nodes which have already been
created. Heuristic methods require, therefor, that
the objects in P are known as symbolic expressions
or otherwise have a non-trivial
They cannot simply be non-informative tokens of the
form "p.". The following variations to the basic
transformation problem occur frequently:

Operators with several outputs.

The problem specification is changed as
follows. Application of an operator can return a

information content.

set of objects, rather than a single object. In
the transformation process, each output of the
operator must then be transformed into the target
set.

Example: In analytic integration, the target set M
consists of the set of all formulae where the
integration sign does not occur. The rule

-~ -
\A+Bat = 5Adt+§3dt

can be used as an operator q defined by

q(fﬂ + B at) = gA at, f}s dt}

In other words, q tells us to integrate A + B
by integrating A and B separately. (The final
task of joining together the solutions to those
two integration problems with a + sign is a
trivial matter).

Operators with several input.

The problem specification is changed as follows.
Initially, each member of R is considered /
available. At each cycle of.the solution process,
one selects one operator qli which requires i
arguments, and i available objects

i
I—"l, PE’ e Pi . If q.j(Pls pea e Pi}

is defined, it is included among the available
objects. Problem: find some available object which
is also a member of M

Exemple: This variation frequently occurs in
"forward" logical inference, e.g. in the resulu-
tion logic environment. It has been common practice
in heuristic research to consider the cases of
several inputs or several outputs as trivial
extensions of the one-input/one-output case. For
example, the General Problem Solver is formulated
in terms of one input operators, and then
immediately applied to a problem environment where
a two-input operator (Modus Ponens in forward proof)
is essential. Similarly, Slagle's group have
attempted to use their MULTIPLE program (which is
designed for one-input, multiple-output operators)
to the resolution logic environment, where the most
important operator has two inputs and one output.

The fact that an operator requires several
inputs can be "hidden" in various ways. In the case
of Modus Ponens, which takes A and A ™>B as

inputs, one can say that the operator "essentially"
takes A =B as input, so that the merit of an
A>3B formula determines whether the operator -

shall be applied or not. If the system decides to
apply Modus Ponens to a formula A B, it checks
whether the formula A is available. If it is not,
the output is "failure", - Another, and more general
way of hiding multiple inputs is to consider the set
of all available objects as a "higher level" object.
Similarly, the operators are redefined to accept one
higher level object as input, and to emit an
incremented object as output. The disadvantage of
all such tricks is that important information gets
lost to the system. For example, with the

200-



introduction of "higher level" objects and
operators, one will have

ala'{p)) = q'{n{p})}

( except when q'{p) = p is essential for the
application of q, or q(p) - p is essential for
the application of q' ). It is hard to make
traditional tree-search routines "aware" of such
commutativity. In our opinion, one should instead
face the fact that some operators take multiple
inputs, and study then separately.

Thus the failure to recognize multiple-input
operators has led to inefficient programs. It has
also led to a regrettable lack of communication:
techniques which have been designed for handling
multiple-input operators (e.g. the various
"strategies" for the resolution method) have not
been recognized as heuristic methods. People seem
to think that they are technical details for
handling resolution, whereas in fact they are
examples of quite general heuristic principles.
One can make a parallell with the "Edge" heuristic
discussed in section 1: general principles have
gone unnoticed for lack of abstract concepts to
phrase them in.

As a first step to remedy this situation, let
us introduce separate names for the various kinds
of operators. The following terms are believed to
be illustrative:

number of inputs number of outputs name
one one perporator
one multiple diporator
multiple one conporator
multiple multiple fociporator

Our second step is to introduce a formalism and a
vocabulary which enables us to deal with these
different kinds of operators. The formalism is
based on lattice theory, and requires a section
(section 5) of its own.

Our third step will be to illustrate these
general concepts and principles by re-interpreting
some current heuristic methods (including the unit
preference strategy in resolution). This is done
in sections 6 and 7.

Some other complications which may occur in
the basic transformation problem,are:

Operators with or-connected outputs.

One often encounters operators which, like
diporators, yield a set of objects of outputs, but

which merely require that one of the outputs is to
be transformed to the target set. Such or-
connections may occur

(a) intrinsicale.g."‘in order to prove aw b,
prove a, or prove b™"’

(b) because the operator is ambigous, e.g. in

resolution logic, where the resolution operator
takes two clauses as input and gives one clause as
output. Each of the two clauses is a set of

literals, and the operator "annihilates" (in a
certain sense) two literals, one from each input.
The operator has one output for each combination
of literals in the two inputs, and is therefore
ambiguous.

(c) because the operator requires a parameter,
which may or may not be in the set of objects.

For example, in order to prove B in conventional
predicate calculus, it is sufficient to prove A
and A B , where A s arbitrary.

We shall refer to all operators which yield or-
oonnected outputs, as ambiguous. Thus (a)
exemplifies an ambigous perporator, (b) an
ambiguous conporator, and (c) an ambiguous
diporator.
Still another complication is
Operators with restricted domain, i.e. a domain
which is a proper subset of the set P. Some
possible ways of dealing with this complication
are discussed in section 3.

Example: In integration, the partial integration
operator is not always applicable.

A final complication is

No back-up.

In typical problem-solving, application of an
operator is never irrevocable: we are always
permitted to back up in the solution tree and try
some other operator on a previously used object.
In some situations (e.g. the Edinburgh studies of
heuristic automata), one encounters similar
problems where back-up is not permitted. The
transformation problem the* boils down to the
problem of selecting the best operator in each
step.

Sometimes, e.g. in planning, a back-up problem
can be transformed to a no-back-up problem, or vice
versa. We therefore consider both kinds as variants
of the same basic problem.

Summing up, transformation problems can be
characterized by a couple of features, i.e.

(1) what kinds of operators? (per-, con-, di-,

foci-porators)
(2) are operators ambiguous?

(3) are there restrictions to the domain of
operators?

(4) is back-up permitted?

3. Approaches to heuristic search

In this section, we shall attempt to classify
and name some methods of heuristic search. Our
classification will be put to use in the next few
sections, where some previously published methods
for heuristic search are reviewed.

In example (b), we assume forward proof, and
in (a) and (c) backward proof.
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In each cycle of the heuristic search process,
the program should select one operator to use, and
one object (viz. set of objects) to use it on.
Object selection seems to be performed in most
cases by either of the following two methods:

(Al) Labyrinthic methods proceed doan the search
tree, and have an explicit mechanism for
deciding direction in the tree.* This
mechanism tells the program "this is a good
branch, go on the same direction", or "this
is a bad branch, back up — steps and select
another branch".

(A2) Best bud methods use an evaluation function
which assigns a priority or merit to each
growth direction (bud) in the tree. At each
cycle, the program takes a global look at
all the buds, selects the best one, sprouts
it, and iterates the cycle. In the new cycle,
the best bud from last cycle is no longer a
candidate, but it has yielded several new
buds. All other buds from last cycle are
candidates anew. Back-up occurs automatically
if the new buds are unable to compete with
the stand-by buds from last cycle.

Methods (Al) and (A2) have been formulated
for perporators. It is easy to extend them to
diporators. For conporators, it is sometimes a
good idea to select one input to the operator
according to a labyrinthic or best-bud method,
and then to select "best companions" to the
selected first input. We consider this the
generalization of (Al) and (A2) to multiple-input
operators. A third method cathegory for them would
be

(A3) Best bud bundle methods, which use an
evaluation function which assigns a priority
to each combination ("bundle") of "buds",
and selects the best one in each step.

GPS and SIN use labyrinthic methods, whereas
SAINT, the Graph traverser, MULTIPLE, and PPS use
best-bud methods. The unit preference heuristics
(strategy) in resolution is an example of a best
bud bundle method.

Another (and at least in principle,
independent) basis of classification is how the
program selects the operator in; each cycle. The
following methods have often been used in practice:

(Bl) Object(s) first, one operator afterwards
method; First select the most promising
object(s) to work upon, according to a
labyrinthic or best-bud method. After that,
find a good operator to apply to it (them).

(B2) Exhaustive method: Select object(s) like in
(Bl) and apply all operators to it.

(B3) Object(s) first, a few operators afterwards
method: A compromise between (Bl) and (B2):

As we shall see later, we sometimes have a
lattice rather than a simple tree.

a few (but not all) operators are selected
and applied to the object(s).

(Bk) Object and operator together method: Consider
all possible object-operator combinations and
select one of them, using a priority function.
(This is in other words a best-bud method,
where each object-operator combination is
considered as a "bud".)

The MULTIPLE program is an example of (B2),
GPS and SAINT are examples of (B3), whereas unit
preference and PPS are examples of (B4). The
version of the Graph Traverser described in { Doran
1966a} is an example of (B2), whereas the later
version described in {Michie 1967a} is of type (BI).

In methods (B2) and (B3), object selection in
one cycle is effectively a choice of operator in
the previous cycle. Therefore, they can be
considered as special cases of (Bl), with a very
careful and timeconsuming method for operator
selection.

The four cases above are clearly not
exhaustive, as it is in principle quite possible
to run an operator first, object afterward method.
Also, labyrinthic instead of best-bud selection of
operators is possible (one would keep using the
same operator until a "back-up" or "change operator"
criterion is satisfied). However, these possibilities
are probably useless for practical problems.

If the number of operators is very large, or
if some operators are ambiguous with a large number
of alternatives, then it is not possible to search
through all possible cases. This excludes (B2) and
(B4) methods. One must first select the proper
object(s), and then use a function which selects
one or a few operators (and ways of applying them,
if ambiguous). Usually, this function recognizes
features in the given object, features which
determine what operators may be suitable.

In many practical problem environments, one
encounters operators which are only defined on a
subset of the set P of objects. This restriction
has been dealt with in at least two ways, which
provides us with a classification in still another
dimension:

(Cl) Consider as failure. If we have heuristically
selected an object and an operator, and it
turns out that the object is not in the domain
of the operator, then give up this branch and
try something else.

(C2) Solve sub-problem. Let M" be the domain of the
operator. Solve the transformation problem
from the given object to M', and apply the
given operator to the result. Formally, we
extend the definition of our operators, so
that q(p) = Q.(Pi) > vhere p; is the
(possibly ambiguous|) solution to the trans-
formation problem from p to the domain of
0.
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SAINT uses a type (Cl) method, whereas GPS and
PPS use type (C2) methods.

In conclusion, we have pointed out three
features in heuristic methods. These features can
be used to classify and characterize the methods.
They are:

(A) Mode of object selection

(B) Mode of operator selection

(C) Way of handling restricted domains for
operators.

k. Some frequent techniques in heuristics.

In this section, we shall discuss the use of
"merit orderings", plans, and feature vectors
("images") in heuristic methods.

Use of merit orderings.

Definitionwise, best-bud methods require that
there exists a way of selecting the "best" one
from a set of buds. In all best-bud-type methods
known to the author, this selection is based on an
(explicit or implicit) partial ordering > on the
set P of objects. Some maximal bud according to >
(i.e. some bud b such that no other bud
satisfies b > b*) is then selected as "best bud",
and is sprouted.

In some, but not in all cases, the merit
ordering > is implemented as an explicit merit
assignment function e , i.e. a mapping from P
to the set of real numbers. > is then defined in
an obvious manner through

P, > Pp = elp) > elpn)

The problem of finding a suitable merit
ordering for a given problem environment is of
course crucial. Often, it is thought about as an
estimate of distance. One attempts to define a
function d , where 4a{p ,92J is a rough estimate
of the work (the number “of ‘operator applications)
required to transform @ int Py Similarly,

one attempts to compute

D{p,B) = min d{p,b)
beB

for reasonable sets B . The merit function e is
then defined e.g. as e{p) = - b{p,M) .

The use of merit orderings is not restricted
to best-bud methods. In labyrinthic methods, the
criterion for abandoning a path and trying another
may be that gq{p) < p by some merit ordering.
The GPS utilizes exactly this heuristics.

The name "General Problem Solver" has some-
times been criticized as being too uninformative.
It is natural to call a heuristic method goal-
directed if its merit function is defined through
D. The variant of GPS described in {Newell 196la}
can then be characterized as a Goal-directed
Perporator Search method.

At first sight, the idea of using a merit
ordering has much appeal. On closer scrutiny, it
turns out to be less than obvious. It all depends
on what kind of economy we desire.

Suppose we are solving a transformation
problem for perporators, and that we have already
searched part of the tree. Then which of the
following quantities do we want to minimize in our
next step:

(Dl) The number of steps (i.e. operator applications)
in the "solution path" from the initial set R
to the target set M ?

(D2) The remaining number of steps in the "solution
path" from the selected bud to a member of the
target set M ?

(D3) The (remaining) number of steps, including
steps that are performed in blind alleys (i.e.
the total number of arcs in the solution tree
the way it looks when we have reached M)?

(DM The quantity mentioned in (D3), except that
if a path is trodden, abandoned through back-
up, and then resumed, the steps which are
trodden several times shall be counted aB
multiple steps?

If the path to the solution of the transforma-
tion problem is to be used as a plan for a more
expensive activity in another environment, then
(Dl) is of course the correct criterion. On the
other hand, if we are interested in a member of M,
rather than in the path to this member (e.g. if we
are searching for a solution to an integration
problem), then (D3) or (D4) would be the correct
quantity to minimize. (D3) should be used if the
entire search tree is stored in memory, and (D4)
should be used if the search tree is stored
implicitly on the push-down-list, so that abandoned
paths are garbage-collected and all work there has
to be re-performed. (D2) is sound in no-back-up
situations, like Doran's heuristic automaton.

If criterion (DI), (D3), or (D4) is to be used,
then the "merit" of a bud is not simply a function
of that bud and the target set, but instead a
function of the srhole "stump" of the solution tree
that has been searched up to now. For example, if
the criterion (D3) is used, then the remaining
work from a bud is affected if there exists some
other bud which has almost as much merit, and which
in the future may attract the problem-solver's
attention for blind-alley work. It follows that the
idea of a merit ordering is sound only if we want
to use criterion (D2).

Although theoretically shaky, the use of merit
orderings seems to be the only available technique
today. If criteria (D3) or {D4) are relevant (which
is usually the case), then the use of a distance
estimate as a merit function is even more question-
able. We shall treat this question in a later paper.
But again, the distance estimate seems to be the
only technique we have.
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Use of plans.

Let P, 1 Q, R, and M define a transformation
problem for which a solution is known, and let P',
Q' = Q, R'", and M' define a transformation problem
which is to be solved. Assume also that there
exists some mapping h which maps P' onto P, R
onto R, etc. in such a way that if p and q(p)
are steps in the known solution, and if p = h(p'),
then q(p) = h(q(p')). In other words, the function
h maps solutions in P' onto solutions in P. Then
we can clearly find a solution in P' by just re-
tracing the solution in P *. The solution in P
will be referred to as a plan for the solution in
P'.

This ideal situation probably never exists,
except when h is the identity function. However,
it may be the case that the requirement q(p') =
h(q(p)) often (though not always) holds. Then it
can still be a good strategy to try to follow the
plan. If it does not work, we have to take resort
in another plan, or in the object-operator
selection methods mentioned above, (in other words,
use of plans may be considered as yet another
method, (B5), of operator selection).

Plans can be generated in several ways, e.g.
by memorization of previous, successful solutions
(Doran's heuristic automaton), by human advice,
or by "look-ahead": solution of an analogous
problem in an auxiliary problem space (e.g. in
the Planner system and the PPS).

When the problem environment is predicate
calculus, the "abstraction function" h can e.g.
be selected so as to throw away everything except
the variables in the formulas (planning GPS) or
to throw away everyting except the boolean
connectives (Planner).

A third technique is

Use of images.

By an image, we mean an item which expresses
some, but not all the information of an object in
the set P. The image may be for example, a vector
of features in the object, or (in the case of a
LISP-type formula), the top-levei structure of
the object, with lowerlevel sub-expressions being
replaced by asterisks. Although they rarely talk
about it in abstract terms, many creators of
heuristic programs do in fact use such images.
Images are used for several purposes, including:

(I) as a basis for merit functions (a numerical
value is assigned to each feature, and merit
is computed as a weighted average of the
feature values) or distance functions
computed as a wighted average of distance"

To insure that we have a solution, we must
assume that only members of M' are mapped into M,
i.e.

n(p') (Mop' £M

Moreover, it is essential that R’
(rather than into) R,
M.

is mapped onto
and that M' is mapped onto

between features);

(2) as objects in an auxiliary problem space used
for planning;

(3) in methods of type (B3), for the selection of
operators that should be applied to a given
object.

Examples: (lI) game-playing programs and (with
certain modifications) Doran's heuristic automaton;
(2) planning GPS, Planner, PPS; (3) GPS.

In this section, we have described and
classified general heuristic techniques, and
given references from each technique to actual
programs which utilizes it. In sections 6-7, we
shall build an inverse system of references. Each
section will review one heuristic program in terms
of the classification and concepts above.

5. Lattice instead of trees.

Heuristic search is often referred to as tree
search. However, the tree model is only applicable
to cases where all operators are perporators or
(with some extra conventions) diporators. With
conporators, the need for a more general structure
arises. In this section, we shall suggest one
possible way of performing the generalization.

Instead of a solution tree, we shall introduce
a solution lattice. For perporators, but not for
diporators, the solution lattice degenerates into
a tree as usually drawn. - For a good introduction
to lattice theory, see {Rutherford 1965a}.

First some general notation. Let q be an
unambiquous operator which is defined with one
set P C P as inputs, and which yields P"C P
as outputs. We then write P" ° q(P') For the
moment, we forget about ambiguous operators.

The ordered k-tuple whose elements are

a, a, ... a, will be written <ay, aj;, ... a.>.
a and < a> are considered as distinct items*.
If b is a k-tuple, the last element of b is
written a)b) .If B is a set of tuples, the set

of last elements of members of B is written ft(B)
We now define the set S

as follows:

(the solution lattice)

(1) if p is an object, then <p> is a member of S;
(2) if s and t are members of S then sv t
and s At are also members of S;

(3) see below.

Following Rutherford, we define xcy to

mean x m XAy . Also, we assume commutative,
associative, and absorptive laws for VJ and o .
Distributive and idempotent ( x X m x etc.)
laws for ~ and r\ follow easily. Also, we find
that the C relation is transitive, and that

x Cy AyCx X =y

Instead, we shall frequently write a when

we mean {a} -
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In diagrams, we shall illustrate members of
5 a8 nodes, and relations <& as arce. Arrowheads
will usually not be indicated; instesd, we always
position the left-hand argument of < below the
right-hand ergument. For example, x«<y is
illustreted as

X

Pigure 1.

If g' = t;l, 5,
we write nS '

- sk} is a subset of S,

for s. ™ 8, «u. .24 B and

1 2 k

similerly for L}S' .

The lasl part of the recursive definition of
& can now be given:

{3} Let 8" be a subset of 8 for which
P' = (5') and P" = g{P') for some
operator g are defined. Then the triple
< {8',q,p"> is a member of S for each
p“ ln P“

The members of § &re defined as operators
on S as follows: If P" = q(P'}, P' = Q(8'),
S“ = {< US'.q,p"> l p"e P" } , then
Ns" = al{ysti .

We now bmve the formal apparatus needed to
express Lhe given transformation problem in lattice

terms. First, we define the initial set R and the
target set M in 8;
§={<r5lr€R]‘

{ s |

2|
1

8 €8 Awls) ¢M )

Thereafter, we make it sn axiom that
{Vsgs)

when gqis} is defined, The given transformation
problem then is equivelent to

gl{s) C s

Lattice transformation problem,
Prove that nﬁ < U_ .

The general method to solve this problem is
to inspect nodes in the [usually infinite) set S,
until one hes identified e finite set S5'€ 5
which forms & "bridge" between {|M and UR .
Successive nodes on this bridge are to satiafw'a
C reletionship according to the above axiom, &nd
the desired result |“|M < LR then followe by the

transitivity of & .

At each step in the search for this "bridge",
g finite subset of S has been inspected. This
subset is not e lattice, since it does not satisfy
assumption (2) on page 1. As it is still a

partially ordered get (under ¢ ), we call it the

search (solution) poset.

We shall not attempt to prove the formal
equivalence between the genersl transformetion
problem and the lattice representmtion, but conly
illustrate the idea through a couple of examples.

Exsmple 1. Only perporators considered. The initiael
solution is illustrated in figure 2. Let us now
select a node r iIin R and eh operator g , and
extend the graph with gq(r) . The node r has the
form <p» , and the single new node has the form
<r,q,q{p)> , where q{p} is of course another
member of P . This situetion is illustrated in
figure 3. After a few more operators have been
applied to various ncdes, we mey obtain the
situation in figure 4. Clearly, as scon as some
node s in the growing tree has s member of M

as its last component, it is & member of M | , and
then it has been estsblished that [ﬂ Mo LJR ,
which was our goal. For the pure perporator case,
the search poset provided by the lattice formula-
tions 1s clearly identical to the conventional
search tree,

Example 2. A diporator q Y¥ields two outputs. Let
alp) = {p sPp } , and essume that a nede 5 Buch
that w(s} #°p , is already in the lettice. By ocur
assumptlons, the two nodes = {8,q,p.,> and

= {s5,3,p,» ere alsc members of the Iattice,
and we have

s, N s, = als}

as well as

als) € s

It is easily proved thet
fcs, Afltzs, :ﬂm;slnsz

The right-hend side of the equivaelence implies that
M s . In other words, transforming both s

and & to M is sufficient for transforming

s to ° M . For en illustration, s=e Tigure 5.

Example 3. & conporator g +tekes two inputs, when
applied to members of P . Let q(rl wr,)=s,
where r and r are members of R . The graph
is given™in figur€ 6. To prove

# 2 UR
it is clearly sufficient to prove

Mzalrjur, )

A similer exemple, where the arguments of g
are not members of R , is illustrated in figure T.
The relation
B S, =T =T,

1% %="

(indicating by alternating dots end lines) hes been
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inferred from the others, and is crucial.

Let us finally turn to the case of ambiguous
operators. Suppose, in example 2 (figure 5) that
q is an ambiguous perporator, and that it is
sufficient to transform either p, or p, to target
set M. We then simply redefine q(ET B8 S, B,,
with unchanged notation otherwise. See figure 8,"
and compare figure 5.

If desired, the notation can of course be
further extended to arbitrarily complex and/or
structures:

Example 4. After applying operator q to object
p , we find that it is sufficient to transform

P, or (p3 end p, and (p5 or pGJ} or Py
as before, we then

to the target set M. With s.
simply define

a(s) = sy v (sBr\ g, N {35 wagl) 8,

Using the obvious distributive etc. laws,
this expression can be reduced to the canonical
form of an ambiguous diporator.

In summary of this section, we have suggested
a formal and pictorial representation of the search
"trees" for arbitrary operators. Our search lattice
S is the set of all possible nodes in search space.
In the search for a solution, we gradually extend
the searched poset, which is a subset of S, until
it has been proved that

M = Ur

6. Heuristics in the SAINT program

In sections 1-5, some aspects of heuristic
programs have been discussed. As an exercise in
the use of these concepts, we shall now give a
description of Slagle's program SAINT. We wish
to demonstrate that, with the concepts that have
been introduced, the description can be more
abstract and involve less programming details
than before.

Problem environment.

The set P of objects consists of all formulas
built from real numbers, variables, various
arithmetic functions , and one functional: the
integration operator. The target set M consists
of all objects which do not use the integration
operator. The initial set R consists of one single
object, which is given to the program on each
occasion of use.

The set Q consists of 44 operators. All are
perporators, except for one diporator, the formula

addition, subtraction, multiplication, power
function, logarithmic, trigonometric, and inverse
trigonometric functions.

for the integral of a sum. Some of the perporators
(e.g. the substitution operator) are ambiguous and
governed by a parameter. Most operators have a
restricted domain.

Discussion of heuristic method.

It is natural to sort up the operators in Q
into the following disjoint cathegories:

a. Standard forms (26 operators). These are
perporators whose output is always in the
target set M (if the input contains only one
occurrence of the integral operator). An example
of such a perporator is

chd\r=cv/lnc

Remark: the possibility to single out those
operators which land in the target set is
particular for this problem environment, and
does not occur in e.g. logical inference.

b. Algorithm-like transformations (8 operators).
These are operators which, if applicable, are
usually appropriate. The diporator is one of
them.

c. Heuristic transformations (10 operators). These
are operators which may or may not be appropriate.
Substitution is one of them.

Let us call these sets @i, @2,
and define:

ang@3gspectively,

Pl the set of all objects in P which are in the

domain of some operator in Ql;

P2 the set of all objects in P-Pl which are in the
domain of some operator in g2;

P3 =P - Pl - P2,

Objects in Pl have a solution just around the
corner, and should of course be given top priority.
For objects in P2, we know which operator should
be applied (it turns out that there is never more
than one), so such objects are given higher priority
than objects in P3. For objects in P3, several
operators may be applicable, so a heuristic search
has to be performed.

Each object p stands for an expression built
with functions. The "maximum depth" of this
expression is significant for the following reasons:
(1) the members of Pl (usually) have small maximum
depth; (2) operators often perform only a small
change (one or a few units) in the maximum depth
of their input. Under such conditions, it is
reasonable to use the depth of an expression as a
gross measure of its "distance" to the target set,
and (therefore 7) to use it as a merit function.

With this background, the heuristic method
used by SAINT can be outlined.
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Images.

The SAINT program uses images = feature
vectors with eleven components. Maximum depth of
expression is one of them. Images are used for
three purposes:

(a) selection of best bud
component used);

(only maximum depth
(b) selection of appropriate operators for a
given object in P3;

(c) selection of parameters for ambiguous
operators.

Handling of restricted domain.

If a selected operator is not applicable to
a selected object, SAINT just gives up. It does
not try to solve a sub-problem.

Object and operator selection.

Abstractly speaking, the SAINT program uses
an "object first, a few operators afterwards"
selection system, where objects are selected with
a best bud method based on a merit ordering.
However, there are certain complications to this
simple scheme.

The following merit ordering is used:
p »p' iff p is a member of Pl and p' is not,

or p is a member
member of P3,

opz, ndp'is a

or both p and p' are members of P3, but
p has less maximum depth than p' has.

In each step, SAINT selects some maximal bud
in the search tree according to this partial order,
and applies suitable operators to it. The operators
are selected according to the following table:

if object is in | ther select operator(s) from

Fl QL
p2 Q2
F3 Q3
In P2, only one operator is usually applicable;

in P3, the object's image determines which operators
shall be selected. Notice in particular that if
object is in P2, then an operator from Q3 is never
selected, even if the object is in its domain. The
reason is that an object in P2 can be transformed
one or more steps by operators in Q2, and then the
desired operator in Q3 can be applied to the result.
This is sufficient (and is in fact a good pruning
technique), since operators in Q2 only effect
trivial modifications on the objects.

Programming

Since only one operator is applied to objects
in Pl and P2, these objects and operators can be
given a separate and "algorithmic" treatment. The
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heuristic search need only span objects in P3 and
operators in Q3.

Like most heuristic programs, SAINT maintains
a bud list, i.e. a list of objects to which no
operator has yet been applied. This list contains
members of P3 ordered according to (the merit
order) >

Somewhat idealized, the cycle in the SAINT
program runs as follows:

(1) Take the first object on the bud list.
is a maximum bud in P3).

(This

(2) Select suitable operators for this object.
Apply them. The set or results is called P".

(3) For each member of P", check if some member
of Ql or Q2 is applicable. If so, apply it.
If it was a member of QI, terminate. Other-
wise, include the result in P" and reperform
(3) on it.

(k) Let P" be the modified P" after all QI or Q2
operators have been applied. By hypothesis,
P* is a subset of P3. Merge P* into the bud
list according to >

The cycling starts in step 3 with the bud
list empty, and with P" = the given, initial object
("the given integration problem").

The occurrence of a diporator in the problem
environment is a complication. To handle this, the
program maintains a "goal tree", which is
equivalent to the search poset of last section,
but utilizes a slightly different notation. On
discovery of a member of QI (step (3) in the
routine) SAINT does not actually terminate, but
utilizes instead the "goal tree" to remove from
the bud list those buds that need no longer be
transformed to the target set. In lattice terms,
if SAINT has proved for a node t is the search
poset that f|M_t, then it removes from the bud

]

list all nodes t' such that t!g:_‘b . Also, and
for the same reason, such members of P" (P ) are
thrown away. SAINT then continues the above cycle
(starting in step (I1)) as long as there is anything
left on the bud list.

Remarks

This terminates our description of the SAINT
program. It is based on a rather short summary of
the work on SAINT, {Slagle 1963a}, rather than the
full thesis. There may therefore be mistakes in
details of our description. However, let us repeat
that the intention with this section was to
demonstrate how exactly the same material may be
described in completely different terms when it is
to be used for another purpose.

To facilitate comparison, let us finally give
a short dictionary that translates between Slagle's
terminology and ours:



Blagle here
heuristic goml list bud list
. +
(temporary) goal list | P", P
character image
characteristic feature

T> The unit preference heuristics in resolution

The purpose of this section is the same as
that of section 6, i.e. to demonstrate the
usefulness of abstract heuristic concepts. In
addition, we shall try to show that the so-called
strategies used in resolution are in fact
heuristic methods, and amenable to the same
treatment as other such methods . Therefore, we
have selected to make a description of the unit
preference strategy for resolution.

Problem environment

Each object in the set P is a set of literals,
a literal being a symbolic expression
NOT (Ri. . . . . ) or (. .. . . ) . The
target set M has one member: the null set (i.e.
the set of no literals). The initial set R
consists of a relatively small number of objects
and is given to the program on each occasion of
its use.

Notice that in this case, R is given as input
to the program, and M is fixed. In the case of
SAINT, ve had the opposite situation.

The set Q consists of a two-input conporator
("resolution") and a perporator ("factoring").
Both have a restricted domain, and both are
ambiguous. The ambiguities are moderate: the
number of alternatives is finite and so small
that all can be tried.

Images

Unit preference uses images for object-
operator selection. The image of an object is an
integer, viz. the number of literals in the object.
Operators can be extended to images in the
following manner: if the inputs to the resolution
operator have images j and k. , then the output
(if it exists) has image j+k—& . Similarly, if
the input to the factoring operator has image § ,
then the output, if it exists, has j-1 as
image**.

Discussion of heuristic method.

Since the target object has image zero, and
the operators effect a relatively small change on

Feigenbaum, in his IFIP 68 paper { Feigenbaum
1968a}, argues a similar standpoint.

It may accidentally happen that the image of
the output is less than (but never greater than)
jtk-2  viz. =1 Such accidents are rare and do
not affect the heuristics.

images, it is reasonable to take the image of an
object as a crude estimate of its merit in the
search towards the target, with small images having
a higher merit. Therefore, operations which decrease
the image can be expected to bring us closer to a
solution. This gives us a preference for factoring,
and for resolution when one input has image 1.

A trivial strategy would be to reduce the
image to zero through successive factorings.
However, we run into problems with the restricted
domains of the operators: factoring when the image

of the input is 1 (i.e. the last step) is never
possible, and in all reasonable problems we would
fail far before that.

Resolution when the partner's image is 1
("unit resolution") seems to be a better strategy,
adn is what our heuristics prefers as first
choice. When it cannot be had, we perform other
resolutions or factoring a couple of steps, in the
hope of achieving unit resolution later.

Handling of restricted domain.

If a desired operator is not applicable, the
unit preference method just gives up.

Object and operator selection.

Unit preference utilizes a best bud bundle
method, where a suitable operator and its input(s)
are selected together. The system makes implicit
use of a merit ordering > defined as follows on
I A 12

merit
( >

numerical relationship
(< means "less than")

ordering
means "better than")

+ (1,51 > {1,m}

J( m “aa (l)
ktl,m$1l + {1,5} » k,m} .., {2)
k%1 + {1,j} » k ces {3)

ir i,j,k,m all are % 1, we have:

i+je<k+m op

i+j = kem, {i,j) »{k,m} ... (L}
min{i,j)} < min(k,m)
e (52

.. (6)

+ {i,j} > k

+ k> {i,5}

For exesmple, we have
{1,2} » (1,4} > 2 » 3> {2,2} » b> {3,2} » ...

eve > T > 46,2} > {5,3} > (4,4} > 8> ...

The relation > is extended to Pw P in the

obvious way.
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In each cycle, unit preference uses > to
select one maximal object or object-pair and
applies the correct operator (factoring in the
case of an object, resolution in the case of an
object-pair) to it. In case of ambiguity, all
alternatives are treated with the same priority.
If operator application in some alternative is
successful, and the output has higher priority
than the input (and therefore, higher priority
than the other alternatives processed together
with this one), then the higher priority is
honored immediately.

Programming.

Although our reference says little about the
actual program that performs the unit preference
heuristics, the following are some suggestions
for such a program.

The program utilizes lists L , Lq, ... L.,
. , where L. contains all generated object
with image j, together with the following
information for each object:

(1) has factoring been attempted on this object?
for which cases

(2) if factoring is ambiguous,
has it been attempted?

(3) with what other objects has resolution been
attempted?

(U) if resolution is ambiguous, for which cases

has it been attempted?

The answers to these questions can be
represented as follows:

(1) for each list L- where j » 2, a pointer
indicate how far down the list factoring has
proceeded;

(2) for the pointed-at element of each list L-,
the attempted alternatives are listed.
(For all other alternatives of Lj, either
none or all alternatives have been attempted);

and similarly, for each object p. on each list

(3) for each list L where k _< j, a pointer
indicates how far down Ly resolution with
p. has been attempted;

{h) for the pointed-at element of each list Ly,
the attempted alternatives are listed.

With these conventions,
forward.

programming is straight-

Remark.

The images used by the unit preference method
have a noteworthy property: the image of the output
of an operator is a function of the image(s) of the
input(s), if the operator is applicable; but the
image does not contain enough information to

determine applicability. This "semi-deterministic"
property has otherwise been characteristic of
planning methods, notably planning GPS, and PLANNER.
As a result of some present work, we believe that
semi-deterministic images have interesting theoretic
properties.

Pruning criteria.

The unit preference heuristics should only be
used in combination with various pruning criteria,
such as:

(1) Restriction_on_.-Search Pth' T"® depth of an
object is the number of resolutions that was
required to construct it. Objects of depth
> K, (where Kkqo is a fixed parameter) are
rejected;

(2) Set _of sjijyoort strategy.. A subset T of R is
singled out as "essential initial objects",
and nodes p in the search poset which satisfy

p«= ut'~¥

are given zero merit;

(3) Rejection:1 by Pattern.. Objects p which conform
to certain patterns (e.g. contain two literals
of the form A viz. (NOT A) ) are rejected.

We have then made a distinction between
heuristics (i.e. rules which govern the order in
which the solution lattice is searched) and
pruning criteria (which are extreme cases of
heuristic rules since they cut off some "branches"
altogether). In the resolution literature, both
heuristics and pruning criteria are called

strategies.

Pruning criteria can formally be treated as 4
further restriction on the domains of operators.
The first two pruning criteria above can
(alternatively) be implemented by using images
<.j,d,s> , defined as follows:

is a member of the initial set R ,
Aj,d,s> where

If p
p's image is

j is the number of literals in p
d is zero;

s is the truth-value of p £ T

If p was derived through resolution, and
the images of the inputs were <Ji di1s1 and
“J2  dy » then the'image of p is <j,d,s> ,
where

j =] *1ij -2 (the number of literals in p)

[oX
1]

max(d.,d,) + 1

Finally, if
and the image of the input was

p was derived through factoring,
<j,d,s> , then the
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image of the output is <j=2.d.s8>

When the partial order > is extended to

triples <j,d,8» and pairs of such triples, the
following items are considered as zeroes (i.e.
< all other items) and therefore rejected:
<j,d,8> when (d > ko} ¥ s
{(‘]l’dl‘sf . <_]2,d2,52>_} when
d. > k k -
(4, > k) V (3, > k) ¥ - (s, V5,)
With these exceptions, the order > treats

<j,d,8> like j, and {<j1,dl,sl> s <Jpsdn o>}
like {,}l,;,te} .

Notice that if we ignore the accidents
mentioned in the footnote on page 28, both
operators are semi-deterministic on these extended
images.

Modification:
heuristics.

the fewest-component preference

Slagle has proposed to streamline the unit
preference heuristics into a fewest-component

preference method. The idea is to change the
definition of the merit order so that the
special preference for pairs (r1j) is dropped.
The details are: in the above definition of > |
drop rules (I) through (3), and use rules (4)
through (6) even if some of i,j,k or m equals

one. For the redefined > we have e.g.

{1,1} » 2 » {1,2} > 3 > {1,3} » {2,2} »

> b o> ,,,

8. Conclusion

We have defined a number of concepts which
are useful for the compact and abstract definition
or heuristic methods. For illustration, these
concepts have been applied to two well-known
methods. Examples of their compactness can be
found on pages 9 (Slagle's AND/OR tree pruning),
11 (set of support strategy) and 12 (fewest-
component preference heuristics). We have argued
that abstract descriptions of similar kind will
be useful as complements to conventional
descriptions of heuristic programs and methods.

Index of heuristic methods and programs.

Arrow method

{Hart 1967a}, {Nilsson 1968a}
DEDUCOM
{Slagle 1965a}

Fewest-component
{Slagle 1965b}

preference heuristic

GPS (General Problem Solver)
{Newell 1960c}, {Newell 196la}
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Graph traverser

{Doran 1966a}, {Doran 1967a}, {Michie 1967a}
Heuristic automaton

{Doran 1968a}

Logic theory machine
{Stefferud 1963a}, {Millstein ?a}

MULTIPLE
{Slagle 1968a}
Planner
{Hewitt 1967a}

Planning GPS

{Newell 1960c}, {Newell 1964a}
PPS (Planning Problem Solver)

{Sandewall 1968b}

SAINT
{Slagle 1963a)}
SIN

{Moses 1967a)

Unit preference heuristics
{Wos 1964a}
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Figure U,
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Figure 5.
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