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Abstract

The E-Resolution inference principle described
in this paper is a single-inference logic system
for the first-order predicate calculus with equality.
Special axioms for equality (i.e., axioms for sym-
metry, reflexivity, transitivity, and substituti-
vity) are not required to be added to the original
set of clauses. Other advantages of E-Resolution
are the relatively small number of intermediate
clauses which must be retained in a proof and the
distinct possibility that search strategies suit-
able for Resolution will also be suitable for E-
Resolution. Although it is not known whether or
not E-Resolution is complete, this topic is cur-

rently being investigated by the author.
Key terms: automatic theorem-proving, equality
substitution, E-Resolution, first-

order predicate calculus with
equality, theorem-proving.

l. Introduction

E-Resolution Is a technique for automatically
generating proofs of theorems in the first-order
predicate calculus with equality. The mechanism by
which substitution of equals for equals is handled

is automatically part of E-Resolution, or "built-in."

The completeness of E-Resolution has not, as yet,
been proven, and it is therefore not known whether
or not the system is complete. However, the author
is currently investigating this topic.

E-Resolution incorporates and combines some
ideas similar to those used In Paramodulation,
k-modulation,'® and Sibert's thesis,® but is dif-
ferent from all three. Some of the features which
enhance its usefulness are:

(a) It is not necessary to add special axioms for
equality to the original set of clauses, i.e.,
axioms for symmetry, reflexivity, transitivity,
and substitutivity.

(b) The mechanism of equality substitution is not
activated until its success could help produce
a resolvent. This causes the number of inter-
mediate clauses which must be retained in the
proof of a theorem to be held to a minimum.

(c) The system is a direct extension of J. A.
Robinson's Resolution principle, and is de-
signed so that (hopefully) search techniques
developed for Resolution can be used, without
extensive modification, in E-Resolution. At
least this seems to be the case for set of
support strategy, " maximal clash resolution,s 7
and merging. 1
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The system is programmed in LISP and is running
on the CDC 6600 as the main portion of a theorem

proofchecker for Set Theory.2 It has been used

to prove several modest theorems involving equality
substitution.

The following sections serve to formally de-
scribe E-Resolution. Section Il introduces defi-
nitions which will be used later. Section III
develops the E-Resolution system, and Section IV
illustrates E-Resolution through examples. Fi-
nally, Section V discusses search strategies.

Il. Definitions

The following definitions are preparatory to
the matter of defining E-Resolution. It is as-
sumed that the reader Is familiar with the nota-
tion used in [4] and [6]. Such terms as atom,
literal, clause, well-formed expression, substitu-
tion, disagreement set, Herbrand universe, etc.
are defined there.

It is well known that any set of sentences in
the first-order predicate calculus with equality
can be converted to clausal form, i.e., an equiva-
lent set of clauses, each of which is a disjunct
of literals. In the following definitions, we
borrow heavily from [8].

Equality atoms. An equality atom is an atom
whose predicate symbol is the special symbol "=".
Rather than writing an equality atom as "-2ab", we
will use the more readable "a - b". Note that the
predicate symbol "=" is always of degree 2. Analo-
gous to the above, "=ab" is known as an inequality
atom and will be written as "a = b". We will some-
times speak of equality literals and inequality
literals. An equality literal is an equality atom
or a negated inequality atom. An inequality lit-
eral is an inequality atom or a negated equality
atom.

Interpretation. An interpretation | of a
set S of clauses is a set of literals such that
for each atomic formula F that can be formed from
a predicate symbol of degree n occurring in S and
n terms from the Herbrand universe Hg of S, ex-
actly one of the literals F or F is In I. An
interpretation | is said to satisfy a ground clause
C if at least one literal in C is also in I, and
to falsify a ground clause C if the complement of
every literal in C is in |I. An interpretation |
is said to satisfy a non-ground clause C if it
satisfies every ground instance of C over Hg, and
is said to falsify a non-ground clause C if It
falsifies at least one ground Instance of C over
Hg. An interpretation | is said to satisfy a set
S of clauses if it satisfies every clause in S,
and is said to falsify a set of clauses if it fal-
sifies at least one clause in S. Qrepresents the
empty clause, and is not satisfied by any
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interpretation.

E-interpretations. An E-interpretation of a
set § of clauses 1s an interpretation I of E having
the following properties: Let o, B, and y be any
terms in the Herbrand universe Hg of § and let L
be any literal in I. Then

(Iy (@=0a) € I, and

(2) If L' is the result of replacing some one
occurrence of @ din L by P and (a=p) e I,
then L' ¢ I. :

Hote that if T 48 an E-interpretation, then we can
prove the following:

(1) If (=f) € I then (P=c) € 1, and
(2) I1f (o=f) € I and (Pwy) € I, then {(a=y)e I.

General E-propositions. A general E-proposi-
tion states that a set of clauses follows from
some other set of clauses in the sense of the first-
order predicate calculus with egquality. The general
E-proposition which states that the set of clauses
,Ym] follows from the set of clauaes

{YI,YZ,...
{xl.xz,...,xn] is written as

{xl,xz,...,xn} “+ [Yl.Yz,...,Ym]

and is taken to mean that if an E-interpretation 1
satisfies [xl,xz,...,xn} then it also satisfies

{YI,YZ,...,Ym}. We sometimes write S—t;]to mean

that § is an E-ungatiafiable set of clauses, I.e.,
there is no E-interpretation which satisfies 5. If
there i@ an E-interpretation which gatisfies aome
set of clauses S, then § is gaid to be E-satisfiable.

I11. E-«Resolution

E-Resolution is & single-inference principle
from which proofs of theorems in the first-order
predicate calculus, with equality, may be obtained.
Given a set S of E-unsatiafiasble clauses which is
in clausal form, E-Resolution attempts to find a
proof by the application of the following simple
Process:

(1) Initialize tree level bound k to zerxo,

{2) 1s CO1in 87 1f 80, & proof has been found,
Otherwise, add one to k and go to atap 3.

(3) Generate all E-Resolventa of S at tree
level bound k, and add them to 5. Go
back to atep 2.

There are two types of E-Resolvents., As an

axample of the first type, suppose that C and D
are the two clausas

(Pslsz...lnv A)
(~Ptit,...t_V B),

and thare exist cleuses Bl""'Bi' which are

(@ =B Vv E)
(o = Elli v E.).

in 5, where A,B,E ""’Ei are disjunctions, and
none of the C,D,BJ,...,B; have any variables 1in
common. If @ is L aubs:ltution such that

[al- Braerer ™ Bi}e _%{sl' tl,...,an-tn}e,
then
(AV BVE, V

is an E-Resolvent of C‘D’Bl’°"’B
the litarals

Y Ei)e

4 in which case,

and ~Pt.t,....tC

Pa.a veeB 1tz o

172

&re sald to be resolved upon; in general, there
are more than two literals (with the pame predi-
cate symbols) in cleuses C and D which are re-
solved upon,

Az an example of the second type of E-Resol-
vent, suppose that ¢ 1s the clause

(y #5 Vv 4)
and that there exist clauses Bl""'Bi’ which are

(@ =B v Ep)

@ = BV Ep)

in S, where A,E.,...,E, are disjunctiona, and nomne
of the C.Bl,...,Bi haveé any variables in common.
1f @ is a subatitution such that

{al- Braerery= Bila % (y =gle,

then

{AVEVYVY..VE):

1 i
is an E-Resolvent of C’Bl""’ni' in which case
the inequality literal

y #8

18 said to be resolved upon; in general, there are
more than one inequality literals in clause C
which are resolved upon,

Thia may be compared to Rglolution4 in which
the terms in the argument lists of sets of literals
LG C and Mg D muat be unified in order for the
resolvent using I, and M to exist, Equli-unification,
howaver, upon finding that two terms camnct be uni-
fied ponders the question: Are cthe tarms equall
Using & device known as the equallty tree genera-
tor, all posasible ways of satisfying equality of
tha two terms using equality literale from the cur-

rent E-Resolution clause set E“(S) (nth E-Resolu~-
tion), 1a discovered. This discovery process may
or may not introduce new literals as part of the

E-Resolvent.
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The above process is described and formalized
in the definitions appearing below. Readers fa-
miliar with {4} will note a aimilarity between
many of the definitions there and certain defini-
tions below. This 48 done purposely, 8o that
those readers will be able to understand E-Resolu-
tion more easily.

ality tre nerataor . The equal-
ity tree generator is a formal device for specify-
ing all possible ways in which 2 term O may be
transformed into a term P by means of equality
substitutions in some finite universe of equality
relationships. The equality relationships are de-
fined by equality literals in some set of clauses,
CEQ‘ Another input to ETG is an integer k, known
as the tree level bound, which specifies a maximum
node level bound on the equality tree. The reader
is urged to refer to the example {(Figure 1) as an
aid to understanding the definition.

Every node in the equality tree T, generated
by ETG, has a name which 1s an ordered triplet
{¥,C,8} where v is a term, C 18 & clause, and @
is & substitution. The root node of T is named
(@[ ),e). A son node of T 15 formed from node
{vy,C,0) as follows:

If there is a most general unifier o of y and
pe, then the only son node of {y,C,8} is
{poo,Cq,80r. Otherwise, let D be a clause in
CEQ which has no varisbles in common with any
other clause. Let L be an equality literal

L o=mw, or w =5, appearing In D. Select a
term ¢ which occurs in y and such that £ and
% are most generally unifilable with moat gen-
eral unifier g. Let y' be the result of sub-
stitution of wo for a sinple occurrence of v
in yo. (Compare this with Paramodulation in
[8].) Then the gon node of {y,C,8) associated
with D,L, and ¢ ie

{y',(0-{L}Do U Co,80}.

A son node N' formed from node N = (y,C,0} by the
above-described process is sald to have been gen-
erated from N. The clause D which 18 used to gen-
erate N' is said to be the clause associated with
N'. 1If no clause was used from Cpg in generating

N', then there is no clause assoclated with N'.

Two nodes {y',C',8') and {y",C",8"} are called
equivalent if y' 1s identical to ¥'" and C' is a
variant of ¢", The tree T is said to be fully-
formed at node N = {y,C,08) if no two son nodes of
N are equivalent and there is nc way to generate
a new son node from N which 1a not equivalent to
some exigting scn node of N. A node K iz said to
be terminal if (1) N has no son nodes and T is

fully-formed at N, or (2) N = {y,C,8) where {vy,D,x}

is an ancestor node of N, for any D and any X.
Othexwise, it is sald to be non-terminal. An
equaliry tree T is fully-formed if it is fully
formad at every node in T which 18 not a tip node
and every complete branch beginning at the root
either

(a) contazins ktl nodes, where k is the tree
level bound, or

(b) ends in a terminal node (y,(,8),and there
does not exist a % such that Ei is iden-
tical to y, or

(¢) ends in a node {possibly non-terminal)
{Bx,C,8), for some L. Nodes of this type
are termed equality solution nodes., The
get of clauses which are assocciated with
all the nodes on the branch of T down to
and including {BA,C,8} 15 callad the
clause set associlated with the equality
asolution node {B£Xx,C,8).

The equality tree generator produces a full-formed
equalicy tree, given terms (x and B, tree level
bound k and set of clauses CEQ'

Ap an example of the operation of ETG, sup~
poBe 0 = £{a), £ = g¢(h{c)), and CEQ 18 the set of
clauses {{f(x) = g(x),Qx}, {a = ¢, Pz}, [w = h(w)}]
Then a portion of the equality tree resulting from
the a,p and CEQ given appears as Figure 1. The
nodes marked T are terminal; those marked P are
not yet fully-formed; those marked E are equality
solution nodes, and those urmarked are fully-
formed nodes,

Equi-unification aigorithm, The equi-unifica-
tion algorithm is the key to E-Resclution. It 1is
applicable to any finite, nonempty aet A of well~
formed expressions, aet of clauses Cgq containiung
equality literals, and tree level bound k.

Briefly, an explanation of the operation of
the algorithm ie as follows: (For this explana-
tion, we shall assume that the set A consists of
twe literala, Ps Bye- o8 and Pt t ...tn.) Start

1 12
with E = §. For each (si,ti) pair, the algorichm
attempts to find a most general unifier A which

will make sicl = tiuh. where o is a subsecitution
regulting from the unifisble (s ,tj) pairs, for

all j < 1. If this is not possible, however, 1t

adds the inequality aic ¥ t;c fwhere si and ti are

diatinct, correaponding terms occurring in 8, and
ti) to the set E and makes a substitution of tio
for 8,0 in 4, only for that cccurrence of 8,0 in
Pslsz...sno. When the above process is completed
for all pairs (si’ti)’ the set E is examined, If

E = @, then A is most generally unifiable in the
esense of {4]. However, 1f E ¢ @, then the set Eo,

iz processed as described below. HNote the use of

EcrA rather than E, where o, ie the substitution

obtained from the pairs (Bi'ti) which were unifiable

Now, for each x # B 1in EUA, ETG is activated

with a,ﬁ,Ekﬁl(S) and k as inputs. Lf for some
@ #pin Egy, BTG cannot find & way to show that

& = B, at tree level bound k, then the algorithm
fails to find an equi-unifier at tree level bound
k and terminates; otherwlae, A 18 equi-unifiable,

The equi-unification algorithm is defined to

be
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T
{£f(a),(qa),la/x})

E
(g(h(c)),{Qa,Pz),{a/x,a/w})

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

(£(@),[],¢)

{g(a),{Qa),(a/x)

P
{g(e),{Qa,Pz]),(a/x})

(f<c}n{p2}’e)

{£(a),{pPz},e)
{g(h¢a)),{qQa),lafx,a/ul}

4
{g(a),(Pz,qc] ,{c/x}}

(£¢h(a)) [T, {afw])

£(h{c)),(Pz},{c/u])
P
{g(c),(Pz,qc},{c/x]}

E
(g(h(e)),{Pz,qc), (c/x,clw))

:

{£(c),{Pz,qQc},{e/x])

Figure 1

Set 9y = € {1 =0,E=¢, P=¢, and go

to Step 2.

1f Aci is not a singleton, go to Step 3.

Otherwise, set E = Eo, and go to Step 4.

i

Let V; be the earliesc, and Ui the next
earliest, in the lexical ordering of the
disagreement set By of Aoy, If vy is &
variable, and does mot occur in Ui’ set

941 = ci{UifVi], add 1 to i and return to

Step 2. Otherwise, set E = E U {V,# U},
aubstitute u, in Ao, for just that slngle

o)

oceurrence of Vl in the disagreement set
B, and raturn to Step 2.

i
1f E = @, then set gy = 0; and terminate
(equi-unifiable). Otherwise, set L equal

to one of the inequalities, V, # Uj’ in

E, set E = E - {L}, and activate the
equality tree generator with V, and U

as the o and p arguments, k as tree level
bound, and the set Ek'l(s (see below) as
the argument Cp,, where E '1(5) 18 the
current E-Resolution sat, Go to Step 5.

If the fully-formed equality tree T pro-
duced by ETG has no equality solution
nodaa, then terminate (failure rto equi-
unify). Otherwise, select a node {y,p,8}
from tha finite set of all equalicy sclu-
tion nodes in T, set P = P U [{y,P,0)),

gset £ = E@ and return to Step 4,

Partial equi-unifiers. If A& iz a finite,
non-empty et of well-formed expressions for which
the equi-unification algerithm terminatesg in
Step 4, the substitution o5, avallable as output
is called the partial equi-unifier of A, and A is
said to be equi-unifiable. The set P available
as output from the equi-unification alporithm is
texrmed the equality solution node set., The union
of all the clause sets which are associated with
each of the nodes in the equality solution node
set is called the equality solution clause set

aspoclated with P.

Key quintuples. The ordered quintuple
{L,M,N,B,E) is 8aid to be a key guintuple of the
ordered pair of clauses {C,D} 1if the following
conditions are satisfied:

{1) L and M are non-empty sets of literals (which
do not involve elther the "=" or "# predi-
cate symbols), and L g ¢, Mg D where ¢ and
D have no variables in common with sny other
clause.

{(2) N 15 the get of atomic formulas which are
membere, or complements of members, of the
set L U M.

(3) N 18 equi~unifiable, with parcial equi-
unifier oy, P = {(yl,nl,el . (72,32.92), crey
(yn,Bn,Qn)] 18 an equality solution node set
available as output from the equi-unification
algorithm, B = Bl u Bz U-ss U Bn' and
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E= {El,Ez,.

clause get assoclated with P,

..,Em] is the equality solution

(4} If & 1a the substit tion 9192...9n, where the

91 are those mentioned in (3) above, then

either NGNB 1s a singleton, or corresponding
distinct terms occurring in the argument
lists of all the literals in No O are term
components of the node names which are at

the toot node and equality solution node
{ypB,8;} of some branch of some equality tree.
Also, every member of LGNB has the same logi-
cal sign, every member of MGNQ has the same
logical sign and no two members of Lg @ and
MaNQ, respectively, have the same logical sign
The substitution o_= cNQ ie termed the equi-

E
unifier of the set N.

Key guadruples. The ordered quadruple
{M,N,B,E} is said to be a key quadruple of the
clause C if che following conditions are satisfied:

(1) M is a set conslating entirely of inequality
literals occurring in €, where C has no vari-
ables in common with any other clause.

(2) IfM is [cxlsé N 51}. then N is the set
{#(0:1.....ai),#(sl,...,ei)].

(3 N is egqui-unifisble, with partial eqgui-unifier
UN' P = {(\’lsﬁlvel): (Yzﬁnzlgz}»---’(Ynjnn’en)]
ig an equality solution node set available as
output from the equi-unification algorithm,

B = B U B, U... U B, and E = [EI,EZ,...,Em]

is the equality solution clause set associated
with P.

(4 I1f @ is the substitution 8192...9n, where the

Qi are those mentioned in {3) above, then

elther NUNQ iz a singleton, or distinct cor-

responding terms occurring in the argument
lists of the literals in NsNQ are term com-

ponents of the node names which are at the
root node and equality sclution node

(Yi,Bi,ei} of some branch of some equality
The substitution GE
the equi-unifier of the aet N,

tree, - cNO iz termed

E-resolvents, An E-resolvent of the clauses
C‘D’El’Ez""’Em iz any clause of the form
(C-—L)O‘E U (D-M)UE U BUE

where {L,M,N,E,E} 18 a key quintuple of {C,D}, or
an E-repolvent of the clauses C,El,Ez,...,Em ia

any clause of the form

(C-Myoy, U Bog

where {M,N,B,E} is a key quadruple of C,

E-resclvent at tree level bound k. An E-
resolvent at tree level bound k 18 any E-resolvent
produced by restricting the equi-unification algo-
rithm to tree level bound k.

E -resolvent sets. The E -resolvent set of
clauses C,D,El. 2""'Em (or C’EI'EZ""’Em) is
just the set of all possible, digtinct E-resolvent
at tree level bound k of C,D,El,Ez,...,Em {or C,E1

.Em). Note that for any sets of literals

LC C and M D, it is poasible to generate more
than cne E-resolvent at tree level bound k, since
we may call the egui-unification algerithm more
than one time for each aet of literals L and M,
each time selecting different equality sclutien
nodes, as specified in Step 5 of the algorithm,

ta obtain different equality solution node sets.
However, there are only finitely many ways to Be-
lect the nodes and eventually a point will be
reached where, for a given L and M, we cannot
generate any new, unique E-resolvents at tree level
bound k. 1In a practical system, it 1g fairly sim-
ple to organize the program in such a way that the
equi-unification algorithm ies actually called only
once for a given L and M, while still obtaining
all of the possible E-resolvents at tree level
bound k.

E}-resolution. 1f 5 1 any set of clauses,
then the Ekfresolution of § denoted by Ek(S), ie
the union of S with the union of all Ek-resolvent
sets of members of §.

EZ""

Nth E-resolution. The ntP Eeresolution of §,
where S5 18 any set of clauses, is denoted by
E®(3), n= 0, and is defined to be 5, if n = 0,
and En(E“'l(S)) otherwise.

IV, Examples

The first two examples are trivial examples
which 1llustrate intereating points about the
system, and ghe third example is a theorem from
Set Theory.

Example 1. Given the clauses
) (a=p, ox}
@ (p=y)
3) (x=y, Px]
) fno}
(5) [~Ry)
(&) {~0x)

From (4}, (5), (1), and (2) and the key quintuple
{{Ra}, [~Ry), (Re,Ry], {{y,[Ox},e}},{ [omp,Qx), (Bey]}))

where the equality-tree generated is;
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{e,[], e}

(Ys{Px]:G) (ﬁ.{Qx}.E)

v, (ox}, e}
we obtain
(7 f(ax}.

Note that it ig alsc possible to conclude (by
choosing a different key quintuple)

1"y {pxi}.
From (6) and (7) it is obvioua that we conclude
® 0.

The above example illustrates what happens 1if there
is more than one way of proving twe terms aqual.
Note that 1f E-~resolution had been designed so
that it asaumed only one way of proving o and £ in
the above set equal, the resolvent selected might
posslbly by (7'), in which case [ ]| cannot be con-
cluded., Unleas the path @ = p = y 1s recognized,
it 1s impoasible to deduce [].

Example 2, (Thia example appears in a foot-
note in [8]. Suppose we are glven the clauses

(1) (a=1b, qgc)

(2} (g(a) # g(»), @}
37 [e = d, ~Qc)

%) [(g(e) # g(d), ~Qcl.

Thie set of clauses is E-unsatisfiable and 1llus-
trates the necessity of these E-resolvents which
are designed to remove inequality literals from
clauses. MNote that if we apply only thome E-resocl-
vents which are assoclated with key quintuples, we
cannot deduce [} from this set of clauses. We
must aleo utilize those E-resolvents which are
asgoclated with key quadruples. From {1) and (2}
with key quadruple

{[g(a)tg (P>}, (#(g(a)),#g®N}, {b,[qc),e}],

([a=b,Qe}l)
and the equality tree
{a,[,e)
(b,{Qe], e}
we obtain
(5) (gel.

Similarly, from (3) and (4) with key quadruple

({g()de(d) ], {#(g(e)),#@ (N}, [{d,(~0el,e)],
((c=d,~Ge})}

and equality-trae

{e, [1.e)

(a,{~Qc},€)
we obtain
(6) [~Qe).
From (5) and (6) we obtain

(m .

The following example 1s Theorem
The theorem is stated aa:

Example 3.
2.40,3 in [3].

((aebNangaelU) =(achb).
Previously proved theorems In [3] tell us

(a) Theorem 2.24.6
(b) Theorem 2.24.8
(¢) Theorem 2,24.50
(d) Theorem 2.24.51
(e) Theorem 2.12
{f) Theorem 2.34.5

(x N U = x)

(0 Nx=0)

ey (xey) =
(~xey)-{xey) =0
(xey->xel)

(x e U ang x ¢ )

where "ang" is the set operator which converts 1its
one argunent lnto a singleton set, e.g., B0 4 =

{al.

The «<lsuaes mumbered 1-6 below come from
Theoremg (a)-(f) above. Clause 7 comes from the
negation of the theorem, and clauses B-12 denote
the clauses obtained in the proof of the theorem.
For convenience, we denote "x N ¥ by £(x,¥),

"% & y' by the predicate Q(x,¥) or the term g(x,¥y),
"sng x" by h{x) and write the equality predicates
in the more familiar manner. Alseo, U is the con-
stant denoting the univerae, and 0 ig the conatant
denoting the empty set.

1y {£¢x, 1 = x}

(2) {£¢0,x} = 0]

(3 {Q(x:Y)l B(x,y) = 0]

@) ax,y), g(xy) = U)

5) (~aex,y), Qx,m}

(6} {~Q(x,U), Qhix),U)]

(7) {£(s(a,b), g(h(a),)) # g(a,b))

(8) {g(x,y) = 0, Q(x,U)) £rom (3) and (5)

(9) {g(x.y) = 0, Q{h(x),U)) Erom (6) and (8)

(10) (g(x,y) = 0, g(h(x),U) = U) Hom &) md (9
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(1) {gta,y) = 0}
(12) U

from (7}, (1), and (10)
from (7)), (2), and (11).

VI. Search Strategies

As stated earlier, it appears that set of
support strategy, maximal clash resolution, and
merging, as well as other search strategies suit-
able for Resolution may all be used without ex-
tensive modification in obtaining E-Resolution
proofs. For example, maximal clash resolution is
used in the theorem proof-checker discussed in
[2].

The reasoning behind the statements in the
above paragraph is simple. Note that E-Resolution
proceeds exactly as does Resolution until (in Reso-
lution) two terms cannot be unified. At this point,
E-Resolution makes a divergence. It checks to see
if indeed these two terms which could not be uni-
fied, can be equi-unified. |If this is the case,
then a (possibly empty) set of literals, which are
the by-product of equi-unification, will be unioned
with the result of resolving (in the straight Re-
solution sense) the two clauses currently under
investigation. Regardless of whether the two
terms are equi-unifiable or not, E-Resolution be-
gins again at exactly the same point where the di-
vergence was initiated and proceeds from this
point exactly as would Resolution, dependent upon
whether the terms were unifiable or not. The only
real difference is the set of by-product literals,
which accumulate as a result of equi-unification,
in E-Resolution.

Although no proof is given of the assertion,
it seems true that for many of the same reasons
that the above-mentioned strategies do not de-
stroy completeness in Resolution, they do not
destroy completeness in E-Resolution.

Summary

E-Resolution may be compared to other methods
for handling equality substitutions in Resolution,
namely, Demodulation, 10 Paramodulation, and the
system described by Sibert.9

The Demodulation system is the forerunner of
the more general, more powerful Paramodulation
system. In the generating of equality trees by
ETG, a portion of the technique used is very
similar to Paramodulation and Demodulation and in
fact was inspired by the basic techniques of these
two systems. However, in E-Resolution the only
equality substitutions which result in a new clause
are those which will produce an E-resolvent, al-
though many intermediate substitutions may be made
in order to find the E-resolvent. In Paramodula-
tion, by contrast, equality substitutions may re-
sult in new clauses which will not produce resol-
vents. This is the concept in E-Resolution which
results in generation of only a minimum number of
new clauses.

The Sibert system is more similar to E-Resolu-
tion than are Paramodulation and Demodulation.

However, it is felt by the author that E-Resolu-
tion is a more efficient system and, aa such, in
its present form is more practical for use on a
machine. However, many of the concepts intro-
duced by Sibert are basic to the problem of Reso-
lution with equality and were used as a foundation
for E-Resolution.

A disadvantage of E-Resolution and an area
in which further research would no doubt increase
greatly the efficiency of a system utilizing it,
is the time which must be spent by EIG fruitlessly
constructing an equality tree when, in fact, the
a and B terms given it are not equal. In general,
this condition will actually occur more times than
will the condition where they are equal. However,
the following process will rectify this problem:
the tree level bound k may be set to some low
level initially. A bound may also be set on the
number of E-resolvent sets which may be generated,
i.e., a maximum n such that E””(S) is not genera-
ted. Now, in generating E"(S), one saves all
equality trees associated with non-equi-unifiable
literals of level k. If Q is not in E"(S), then
one increases k to k' and restarts the E-Resolution
process, each time extending and saving the equal-
ity trees associated with non-equi-unifiable
literals at level k'. If [J is not in E"(S),
raise the maximum E-resolution level n to n' and
generate E" (S). If Q] is not In E" (S), then
k' is increased to k", etc.
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