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Abstract 

In a recent paper F. Chapoton and J. Zeng studied polynomials which are related to the  q
ballot numbers of Carlitz and Riordan and rediscovered some results of my 1996 paper on 
q  Gould polynomials. Since those results apparently are unknown I recall some of them 

from a slightly different point of view. 

0. Introduction 

F. Chapoton and J. Zeng [1] studied polynomials which are related to the q ballot numbers 

of Carlitz and Riordan. Similar polynomials had also been introduced in [3] and [5], but it 
seems that nobody has taken note of them. Perhaps this is due to the fact that they were 
written in German and appeared in a journal with low dissemination.  This note gives a survey  
of some of my old results in English from a slightly different point of view. In order to save 
space I shall freely use notations and results of my recent paper [7]. 

 

1. Background material 

Let me first sketch some background material.  

Consider the special class of Fibonacci polynomials 
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They satisfy  ( , ) ( 1, 1) ( 1, 1)c n k c n k c n k       and are explicitly given by 
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  is a Catalan number.  

The matrix   , 0
( , )

n k
c n k




 is often called Catalan triangle (cf. OEIS [9], A053121). 

Recall the well-known combinatorial interpretation of the numbers ( , )c n k   as the number of  

non-negative lattice paths (Dyck paths) in 2  which start in (0,0)  and end in ( , )n k  with up-

steps (1,1)  and down-steps (1, 1).   
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Let ( )nG x  be the number of such paths with n  down-steps which end at height 1x   for some 

1.x   Then  
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  (1.1) 

These and related polynomials have been extensively studied by Henry W. Gould (cf. e.g. [8]) 
and have therefore been called Gould polynomials by Gian-Carlo Rota [10]. 

These Gould polynomials are uniquely determined by the recurrence  

 2
1 1( ) ( 1) ( ) ( 2) ( )n n n n nG x G x G x G x E G x          (1.2) 

and the initial values (0) [ 0].nG n   Here   denotes the difference operator and E  the shift 

operator defined by ( ) ( 1).Ef x f x    

The polynomials ( )nf x  are the special case 2m   of the polynomials (cf. [7])
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  for 1,m   which satisfy the recursion 

( ) ( ) ( )
1( ) ( ) ( ).m m m

n n n mf x xf x f x    This implies that the coefficients ( , , )c n k m  of the expansion  
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   satisfy ( , , ) ( 1, 1, ) ( 1, 1, )c n k m c n k m c n k m m        and 

can be interpreted as the numbers of  all non-negative lattice paths with up-steps (1,1)  and 

down-steps (1,1 )m  from (0,0)  to ( , ).n k    

Let ( , )nG x m  be the number of such paths with n  down-steps which end at height 1x   for 

some 1.x   Then  

1 1
( , ) ( 1, 1, ) ( 1) .

1n

mn x mn x mn xx
G x m c mn x x m m

n n nmn x

         
                  

  (1.3) 

For 1x   we get the generalized Catalan numbers  
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  (1.4) 

Note that  ( ) ,m mn
nC x   if we define the linear functional   on the polynomials by 

 ( ) [ 0].m
nf n     

The Gould polynomials  ( , )nG x m  could independently of the above interpretation also be 

defined as the uniquely determined polynomials satisfying 1( , ) ( , )m
n nE G x m G x m

   with 

initial values (0, ) [ 0].nG m n   With this definition also 0m   is possible and gives 
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This follows from 
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with initial values (0, ) [ 0].nG m n    

For 1m   we get 
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Let us note the well-known Rothe-Hagen identities 
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and the generating function 
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The generating function of the generalized Catalan numbers   
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2. q-Gould polynomials 

Some q   analogues of these Gould polynomials have been found in [3] and [5]. 

As already stated the notations are the same as in [7]. Moreover I use the symbols  
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Let qE  be the q shift operator  which satisfies ( ) ( 1)qE f x f qx  or equivalently 

([ ]) ([ 1])qE f x f x    and q  the q  difference operator 
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These operators are q  commuting 

 ,q q q qE qE     (2.1) 
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Let us also recall the q  binomial theorem 
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ba qab  (cf. e.g. [2]).  
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These polynomials satisfy (cf. [7]) 
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If we define the linear functional   by  ( ) ( , ) [ 0]m
nf x q n    we get 

   ( ) ( ) ( ,0, , ).mn m
nx C q c mn m q     (2.3) 

 

The numbers ( , , , )c n k m q   have the following combinatorial interpretation. 

Consider paths in 2  which start at (0,0)  with up-steps (1,1)  and down-steps  1,1 m  for 

some 1.m   To each path we associate a weight w  such that each up-step has weight 1 and 

each down-step with endpoint on height k   has weight .kq  To each path of length n   we 

associate the word 
1 2 ni i iy y y  where 0y  corresponds to an up-step and 1y  to a down-step. 

Now suppose that 0 1 1 0y y qy y  holds. Then each word v  has a representation 

1 2 1 0( )
n

d u
i i iv y y y v y y   where d  denotes the number of down-steps 1y  and u  denotes the 

number of up-steps 0.y   For example let 3m   and consider the path 

(0,0) (1, 2) (2, 1) (3,0) (4,1) (5,2) (6,3) (7,1)          with weight 2 1.q q q     

The corresponding word is 1 0 0 0 0 0 1y y y y y y y   which can be reduced to 5 5 2 5
1 0 1 1 0 .y y y q y y   

We show that  
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Identity (2.4) holds for words of length 1 since 0 0( ) ( ) 1y w y     and 
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    Now we use induction on the length of the word. 

(2.4) holds for 0vy  since 
1 1

( 1) ( 1)
2 2

0 0( ) ( ) ( ) ( ).
d d

m m

vy v q w v q w vy 
    

    
        

For 1vy  we have ( 1)( 1)
1( ) ( )u m dw vy q w v     and 1( ) ( )uvy q v   because 

1
1 1 0 1 1 0( ) ( ) .d u u d uvy v y y y q v y y       

Thus 
1 1 2

( 1) ( 1) ( 1)( 1) ( 1)
2 2 2

1 1 1( ) ( ) ( ) ( ) ( ).
d d d

u m m m d m
uvy q v q w v q w vy q w vy 

       
           

           

 

 

 

 



6 
 

Let now ( , , , )c n k m q  be the weight of all non-negative paths from (0,0)  to ( , ).n k  Then we 

get ( ,0, , ) ( 1, 1, , )c n m q c n m m q    and 

( , , , ) ( 1, 1, , ) ( 1, 1, , ).kc n k m q c n k m q q c n k m m q        

In general there is no closed formula for ( , , , )c n k m q  and for the q   analogues of the Gould 

polynomials. Therefore we must characterize them by other properties.   

Consider for some 1x    the weight ( 1, 1, , )c mn x x m q    of all non-negative paths from 

(0,0)  to ( 1, 1)mn x x    with precisely n  down-steps. Each such path contains a point of 

the form ( 1, 1)mn mk   for some 0.k   Each path to ( 1, 1)mn mk   has n k down-steps 

and ( 1) 1m n k    up-steps. The remaining path from ( 1, 1)mn mk   to ( 1, 1)mn x x    

has length x  and  k  down-steps. Each word 
1 2 xi i iy y y  corresponds to such a path since it 

can never go beneath the x  axis. Since 0 1 1 0y y qy y  the q  binomial theorem gives 
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Therefore  to each non-negative path from (0,0)  to ( 1, 1)mn x x    corresponds a code of 
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Thus by (2.4) the weight of these paths is for each positive integer x   
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Let us now introduce the polynomials 
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These polynomials have been called q Gould polynomials in [3]. 
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Then (2.5) reduces to  

  [ ], , ( 1, 1, , )nG x m q c mn x x m q      (2.7) 

For 1x   we get a q   analogue of the generalized Catalan numbers 

 ( )(1, , ) ( ,0, , ) ( ).m
n nG m q c mn m q C q    (2.8) 

The identity (2.6) gives 
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Thus if we consider 1x   instead of x  in (2.10) we get 

     1 1[ ], , [ ], , [ ], , .m
q n n q nG x m q G x m m q E G x m q      

 

Since ( , , )nG x m q  is a polynomial we get the following  

Theorem 1 
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Then ( , , )nG x m q  is the uniquely determined polynomial which satisfies 

    1, , , ,m
q n q nG x m q E G x m q    (2.12) 
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Corollary 1 

For 1m   we get 
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Now we prove a q   analogue of (1.5): 
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Proof 

 [ ], , ( 1, 1, )nG x y m q c mn x y x y q        is the weight of all non-negative paths from 

(0,0)  to ( 1, 1)mn x y x y      with n  down-steps.  Consider the largest path starting from 

(0,0)  which ends at height 1.y   Let n k  be the number of down-steps of this path. The 

next step is an up-step. The remaining path is a non-negative path with k  down-steps whose 
weight is the same as the weight of a path from (0,0)  to (*, 1)x   where each down-step 

which ends at height   has weight .yq   This gives (2.16). 

Note that this argument could also be applied for 0m   and gives then a version of the q   

Vandermonde identity. 
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Let us give also another proof . Let    
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The last method of proof gives also a q   analogue of (1.6) 
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For 2m    no simple closed formulae are known. But a simple inverse of (2.11) follows by 
setting y mn    in (2.17). 
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Since ( ,1, )nG x q  has a closed formula it is also interesting to expand ( , , )nG x m q  in terms of 

( ,1, ).nG x q   We get   
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Theorem 2 implies 

Theorem 6 

For positive integers ,x y  the generating function  
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Let ( , , )C z m q  denote the generating function of the ( , )m q   Catalan numbers 
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n nC q G m q   Then we get as q  analogue of (1.7) 
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This follows from 
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where  1 2, , , nc c c   is the set of all n   tuples with 10 c k    and 10 1.i ic c m      

Proof 

Let 1c  be the height of the endpoint of last down-step and if  ic  is the height of the down-step 

id  then  let 1ic  be the height of  the endpoint of the last down-step  before .id  Then clearly 

10 c k    and 10 1.i ic c m     The path is uniquely determined by these numbers. 
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3. Remarks 

As already mentioned the paper [1] also studies the case 2m   with somewhat different 
concepts.  

They define polynomials ( | )nC x q   which satisfy 1( | ) 1C x q   and  

 2
1( | ) |q n q nC x q qE C x q   with 

1
| 0.nC q

q

 
  
 

  

Since ( 1,2, ) ( ,2, )n q nG qx q E G x q   satisfies 
2 2

1 1( 1, 2, ) ( , 2, ) ( , 2, ) ( , 2, ) ( 1, 2, )q n q q n q q n q q n q nG qx q E G x q qE G x q qE E G x q qE G qx q            

and 1( 1,2, ) 0nG qx q    for 
1

x
q

   this implies that 

    1 | 1, 2,n nC x q G qx q     (3.1) 

or equivalently 

     1[ 1], 2, [ ] | .n nG x q C x q    (3.2) 

They also study expansions analogous to (2.11) where the coefficients are expressed in terms 
of the q  ballot numbers ( , | )f n k q  introduced by Carlitz and Riordan. Comparing with 

formula [1], (2.4) we see that these numbers are connected with the numbers ( , , 2, )c n k q  by  

 21
( , | ) , , 2, .

k
kn

f n k q c n k n k q
q

 
 
  

   
 

  (3.3) 

 

Finally I want to mention the analogues of the Gould polynomials for the monic q   

Chebyshev polynomials of the second kind. 

The monic q   Chebyshev polynomials of the second kind (cf. [7]) 
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 satisfy the recurrence relation 
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with initial values 0 ( , ) 1u x q    and 1( , ) .u x q x   
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This leads (cf. [5]) to paths with up-step (1,1)  and down-step (1, 1)  where the weight of the 

down-steps with endpoint k  is 
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Let the analogue of the Gould polynomials be 

 ([ ], ) (2 1, 1, ).ng x q c n x x q      (3.6) 

This means that  

    
  

1

11 2
([ 1], ) ([ ], ) ([ 2], )

1 1

x

n n nx x

q
g x q g x q g x q

q q



 
   

 
       (3.7) 

The identity (cf. [7]) 
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22 2
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1
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n

n
n kn k
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u x q x

q q q q

 
  

 


   
       

 
  

 implies the closed formula 

 
   1

2[ ]
([ ], ) .

[2 ] ; ;

n

n x

n n

n xx q
g x q

nn x q q q q

 
     

  (3.8) 

Note that these functions are no longer polynomials. 
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