Misspecified financial models in a data-rich environment
Thesis or Dissertation
2024-03 (degree granted: 2024-06-19)
Author(s)
Advisor(s)
Level
DoctoralDiscipline
Sciences économiquesKeywords
- Econométrie financière
- Financial Econometrics
- Modèles d’évaluation des actifs
- Asset Pricing models
- Modèles de grande dimension
- High-dimensional models
- Distance de Hansen-Jagannathan
- Hansen-Jagannathan distance
- Sélection de modèles
- Model selection
- Méthodes de régularisation.
- Regularization methods
- Economics / Économie (UMI : 0501)
Abstract(s)
En finance, les modèles d’évaluation des actifs tentent de comprendre les différences de rendements observées entre divers actifs. Hansen and Richard (1987) ont montré que ces modèles sont des représentations fonctionnelles du facteur d’actualisation stochastique que les investisseurs utilisent pour déterminer le prix des actifs sur le marché financier. La littérature compte de nombreuses études économétriques qui s’intéressent à leurs estimations et à la comparaison de leurs performances, c’est-à-dire de leur capa- cité à expliquer les différences de rendement observées. Cette thèse, composée de trois articles, contribue à cette littérature.
Le premier article examine l’estimation et la comparaison des modèles d’évaluation des actifs dans un environnement riche en données. Nous mettons en œuvre deux méthodes de régularisation interprétables de la distance de Hansen and Jagannathan (1997, HJ ci-après) dans un contexte où les actifs sont nombreux. Plus précisément, nous introduisons la régularisation de Tikhonov et de Ridge pour stabiliser l’inverse de la matrice de covariance de la distance de HJ. La nouvelle mesure, qui en résulte, peut être interprétée comme la distance entre le facteur d’actualisation d’un modèle et le facteur d’actualisation stochastique valide le plus proche qui évalue les actifs avec des erreurs contrôlées. Ainsi, ces méthodes de régularisation relâchent l’équation fondamentale de l’évaluation des actifs financiers. Aussi, elles incorporent un paramètre de régularisation régissant l’ampleur des erreurs d’évaluation. Par la suite, nous présentons une procédure pour estimer et faire des tests sur les paramètres d’un modèle d’évaluation des actifs financiers avec un facteur d’actualisation linéaire en minimisant la distance de HJ régularisée. De plus, nous obtenons la distribution asymptotique des estimateurs lorsque le nombre d’actifs devient grand. Enfin, nous déterminons la distribution de la distance régularisée pour comparer différents modèles d’évaluation des actifs. Empiriquement, nous estimons et comparons quatre modèles à l’aide d’un ensemble de données comportant 252 portefeuilles.
Le deuxième article estime et compare dix modèles d’évaluation des actifs, à la fois inconditionnels et conditionnels, en utilisant la distance de HJ régularisée et 3 198 portefeuilles s’étendant de juillet 1973 à juin 2018. Ces portefeuilles combinent les portefeuilles bien connus triés par caractéristiques avec des micro-portefeuilles. Les micro-portefeuilles sont formés à l’aide de variables financières mais contiennent peu d’actions (5 à 10), comme indiqué dans Barras (2019). Par conséquent, ils sont analogues aux actions individuelles, offrent une grande variabilité de rendements et améliorent le pouvoir discriminant des portefeuilles classiques triés par caractéristiques. Parmi les modèles considérés, quatre sont des modèles macroéconomiques ou théoriques, dont le modèle de CAPM avec consommation (CCAPM), le modèle de CAPM avec consommation durable (DCAPM) de Yogo (2006), le modèle de CAPM avec capital humain (HCAPM) de Jagannathan and Wang (1996), et le modèle d’évaluation des actifs avec intermédiaires financiers (IAPM) de He, Kelly, and Manela (2017). Cinq modèles basés sur les anomalies sont considérés, tels que les modèles à trois (FF3) et à cinq facteurs (FF5) proposés par Fama and French, 1993 et 2015, le modèle de Carhart (1997) intégrant le facteur Momentum dans FF3, le modèle de liquidité de Pástor and Stambaugh (2003) et le modèle q5 de Hou et al. (2021). Le modèle de consommation de Lettau and Ludvigson (2001) utilisant des données trimestrielles est également estimé. Cependant, il n’est pas inclus dans les comparaisons en raison de la puissance de test réduite. Par rapport aux modèles inconditionnels, les modèles conditionnels tiennent compte des cycles économiques et des fluctuations des marchés financiers en utilisant les indices d’incertitude macroéconomique et financière de Ludvigson, Ma, and Ng (2021). Ces modèles conditionnels ont des erreurs de spécification considérablement réduites. Les analyses comparatives des modèles inconditionnels indiquent que les modèles macroéconomiques présentent globalement les mêmes pouvoirs explicatifs. De plus, ils ont un pouvoir explicatif global inférieur à celui des modèles basés sur les anomalies, à l’exception de FF3. L’augmentation de FF3 avec le facteur Momentum et de liquidité améliore sa capacité explicative. Cependant ce nouveau modèle est inférieur à FF5 et q5. Pour les modèles conditionnels, les modèles macroéconomiques DCAPM et HCAPM surpassent CCAPM et IAPM. En outre, ils ont des erreurs de spécification similaires à celles des modèles conditionnels de Carhart et de liquidité, mais restent en deçà des modèles FF5 et q5. Ce dernier domine tous les autres modèles.
Le troisième article présente une nouvelle approche pour estimer les paramètres du facteur d’actualisation linéaire des modèles d’évaluation d’actifs linéaires mal spécifiés avec de nombreux actifs. Contrairement au premier article de Carrasco and Nokho (2022), cette approche s’applique à la fois aux rendements bruts et excédentaires. La méthode proposée régularise toujours la distance HJ : l’inverse de la matrice de second moment est la matrice de pondération pour les rendements bruts, tandis que pour les rendements excédentaires, c’est l’inverse de la matrice de covariance. Plus précisément, nous dérivons la distribution asymptotique des estimateurs des paramètres du facteur d’actualisation stochastique lorsque le nombre d’actifs augmente. Nous discutons également des considérations pertinentes pour chaque type de rendements et documentons les propriétés d’échantillon fini des estimateurs. Nous constatons qu’à mesure que le nombre d’actifs augmente, l’estimation des paramètres par la régularisation de l’inverse de la matrice de covariance des rendements excédentaires présente un contrôle de taille supérieur par rapport à la régularisation de l’inverse de la matrice de second moment des rendements bruts. Cette supériorité découle de l’instabilité inhérente à la matrice de second moment des rendements bruts. De plus, le rendement brut de l’actif sans risque présente une variabilité minime, ce qui entraîne une colinéarité significative avec d’autres actifs que la régularisation ne parvient pas à atténuer. In finance, asset pricing models try to understand the differences in expected returns observed among various assets. Hansen and Richard (1987) showed that these models are functional representations of the discount factor investors use to price assets in the financial market. The literature counts many econometric studies that deal with their estimation and the comparison of their performance, i.e., how well they explain the differences in expected returns. This thesis, divided into three chapters, contributes to this literature.
The first paper examines the estimation and comparison of asset pricing models in a data-rich environment. We implement two interpretable regularization schemes to extend the renowned Hansen and Jagannathan (1997, HJ hereafter) distance to a setting with many test assets. Specifically, we introduce Tikhonov and Ridge regularizations to stabilize the inverse of the covariance matrix in the HJ distance. The resulting misspecification measure can be interpreted as the distance between a proposed pricing kernel and the nearest valid stochastic discount factor (SDF) pricing the test assets with controlled errors, relaxing the Fundamental Equation of Asset Pricing. So, these methods incorporate a regularization parameter governing the extent of the pricing errors. Subsequently, we present a procedure to estimate the SDF parameters of a linear asset pricing model by minimizing the regularized distance. The SDF parameters completely define the asset pricing model and determine if a particular observed factor is a priced source of risk in the test assets. In addition, we derive the asymptotic distribution of the estimators when the number of assets and time periods increases. Finally, we derive the distribution of the regularized distance to compare comprehensively different asset pricing models. Empirically, we estimate and compare four empirical asset pricing models using a dataset of 252 portfolios.
The second paper estimates and compares ten asset pricing models, both unconditional and conditional, utilizing the regularized HJ distance and 3198 portfolios spanning July 1973 to June 2018. These portfolios combine the well-known characteristic-sorted portfolios with micro portfolios. The micro portfolios are formed using firms' observed financial characteristics (e.g. size and book-to-market) but contain few stocks (5 to 10), as discussed in Barras (2019). Consequently, they are analogous to individual stocks, offer significant return spread, and improve the discriminatory power of the characteristics-sorted portfolios. Among the models, four are macroeconomic or theoretical models, including the Consumption Capital Asset Pricing Model (CCAPM), Durable Consumption Capital Asset Pricing Model (DCAPM) by Yogo (2006), Human Capital Capital Asset Pricing Model (HCAPM) by Jagannathan and Wang (1996), and Intermediary Asset pricing model (IAPM) by He, Kelly, and Manela (2017). Five anomaly-driven models are considered, such as the three (FF3) and Five-factor (FF5) Models proposed by Fama and French, 1993 and 2015, the Carhart (1997) model incorporating momentum into FF3, the Liquidity Model by Pástor and Stambaugh (2003), and the Augmented q-Factor Model (q5) by Hou et al. (2021). The Consumption model of Lettau and Ludvigson (2001) using quarterly data is also estimated but not included in the comparisons due to the reduced power of the tests. Compared to the unconditional models, the conditional ones account for the economic business cycles and financial market fluctuations by utilizing the macroeconomic and financial uncertainty indices of Ludvigson, Ma, and Ng (2021). These conditional models show significantly reduced pricing errors. Comparative analyses of the unconditional models indicate that the macroeconomic models exhibit similar pricing performances of the returns. In addition, they display lower overall explanatory power than anomaly-driven models, except for FF3. Augmenting FF3 with momentum and liquidity factors enhances its explanatory capability. However, the new model is inferior to FF5 and q5. For the conditional models, the macroeconomic models DCAPM and HCAPM outperform CCAPM and IAPM. Furthermore, they have similar pricing errors as the conditional Carhart and liquidity models but still fall short of the FF5 and q5. The latter dominates all the other models.
This third paper introduces a novel approach for estimating the SDF parameters in misspecified linear asset pricing models with many assets. Unlike the first paper, Carrasco and Nokho (2022), this approach is applicable to both gross and excess returns as test assets. The proposed method still regularizes the HJ distance: the inverse of the second-moment matrix is the weighting matrix for the gross returns, while for excess returns, it is the inverse of the covariance matrix. Specifically, we derive the asymptotic distribution of the SDF estimators under a double asymptotic condition where the number of test assets and time periods go to infinity. We also discuss relevant considerations for each type of return and document the finite sample properties of the SDF estimators with gross and excess returns. We find that as the number of test assets increases, the estimation of the SDF parameters through the regularization of the inverse of the excess returns covariance matrix exhibits superior size control compared to the regularization of the inverse of the gross returns second-moment matrix. This superiority arises from the inherent instability of the second-moment matrix of gross returns. Additionally, the gross return of the risk-free asset shows minimal variability, resulting in significant collinearity with other test assets that the regularization fails to mitigate.
This document disseminated on Papyrus is the exclusive property of the copyright holders and is protected by the Copyright Act (R.S.C. 1985, c. C-42). It may be used for fair dealing and non-commercial purposes, for private study or research, criticism and review as provided by law. For any other use, written authorization from the copyright holders is required.