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This volume arose out of an international, interdisciplinary academic net-
work on Probabilistic Logic and Probabilistic Networks involving four of us
(Haenni, Romeijn, Wheeler and Williamson), called Progicnet and funded by
the Leverhulme Trust from 2006–8. Many of the papers in this volume were pre-
sented at an associated conference, the Third Workshop on Combining Proba-
bility and Logic (Progic 2007), held at the University of Kent on 5–7 September
2007. The papers in this volume concern either the special focus on the connec-
tion between probabilistic logic and probabilistic networks or the more general
question of the links between probability and logic. Here we introduce prob-
abilistic logic, probabilistic networks, current and future directions of research
and also the themes of the papers that follow.

1 What is Probabilistic Logic?

Probabilistic logic, or progic for short, can be understood in a broad sense as
referring to any formalism that combines aspects of both probability theory
and logic, or in a narrow sense as a particular kind of logic, namely one that
incorporates probabilities in the language or metalanguage.

In the latter case, if the probabilities are incorporated directly into the log-
ical language we have what might be called an internal progic. An example
is a first-order language where one or more of the function symbols are in-
tended to refer to probability functions. Thus one can form expressions like
(P1(Fa) = 0.2 ∧ P2(Rab)≥0.5)→ Gb. This kind of language is suitable for rea-
soning about probabilities and is explored by Halpern [5], for instance. If, on the
other hand, the probabilities are incorporated into the metalanguage we have
an external progic. For example, one might attach probabilities to sentences of
a propositional language: (p ∧ q)→ r0.95. This kind of language is suitable for
reasoning under uncertainty, and maintains a stricter distinction between the
level of logic and the level of probability [see, e.g., 10]. A logic that incorporates
probabilities both within the language and the metalanguage is a mixed progic.

The central question facing a progic is which conclusions to draw from given
premisses. For an internal progic the question is which ψ to conclude from
given premisses ϕ1, . . . ,ϕn, where these are sentences of a language involving
probabilities. This is analogous to the question facing classical logic. But for
an external (or mixed) progic, the question is rather different. Instead of asking
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what ψY to conclude from given premisses ϕ1
X1 , . . . ,ϕn

Xn one would normally
ask what Y to attach to a given ψ, when also given premisses ϕ1

X1 , . . . ,ϕn
Xn .

Note that, depending on the semantics in question, the X1, . . . , Xn, Y might be
probabilities or sets of probabilities.

Since the fundamental question of an external probabilistic logic differs from
that of a non-probabilistic logic, different techniques may be required to answer
this question. In non-probabilistic logics one typically appeals to a proof theory
to determine which ψ to conclude from given ϕ1, . . . ,ϕn. This is not always
appropriate in the case of a probabilistic logic. An external progic requires
machinery for manipulating probabilities, not just tools for handling sentences.
In Haenni et al. [4] it is suggested that the machinery of probabilistic networks
can fruitfully be applied here.

2 What are Probabilistic Networks?

Probabilistic networks (or probabilistic graphical models) is a general term for
various mathematical models in which probabilistic information is linked to
network-based structural information. The network structure is usually formal-
ized by a directed graph with nodes and arrows, where an arrow between two
nodes is meant to represent some sort of influence or dependency between the
variables associated with those nodes. This in turn means that the absence
of an arrow between two nodes implies some sort of independence among the
associated variables. As an example, we could represent our knowledge about
the positive correlation between smoking and lung cancer by two network nodes
S and L and an arrow from S towards L. And we could then enhance the net-
work by nodes and corresponding arrows for other (possibly independent) causes
of lung cancer, for further smoking-related diseases, or for possible symptoms
of lung cancer. To avoid circular dependencies, directed graphs are normally
assumed to be acyclic.

Depending on the available probabilistic information, it is common to distin-
guish different types of probabilistic network. In the simplest case of so-called
Bayesian (or belief ) networks [11], it is assumed that the conditional probability
of each network variable given its parents is fully known. In the example above,
we could meet this requirement by specifying P (L=yes|S=yes) = 0.05 and
P (L=yes|S=no) = 0.01 for the network variable L (which indicates that smok-
ing increases the risk of lung cancer by a factor of 5) and by assuming a prior
probability P (S=yes) = 0.3 for the network variable S (by which we express
the assumption that about 30% of the population smokes). What makes Bayes-
ian networks particularly attractive is the fact that the included structural and
probabilistic information is sufficient to induce a unique joint probability func-
tion over all involved variables, which in turn can be used to answer all sorts of
probabilistic queries. A non-trivial query in the example would be to compute
the probability P (S=yes|L=yes), which can easily be derived from the joint
probability function. Note that the explicit specification of a joint probability
function would require exponentially many parameters, which is not feasible
for practical applications. Bayesian networks are thus useful to specify large
joint probability functions efficiently and to reduce the complexity of respective
computations. The simplicity and efficiency of Bayesian networks explains their
vast success in the last two decades in many different areas.
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A second type of probabilistic network arises when the uniqueness assump-
tion for the given probability values is relaxed. The resulting credal networks
[1] are thus similar to Bayesian networks, except that they expect sets of prob-
abilities instead of point-valued probabilities for each network variable. In the
lung cancer example above, we could for example express our lack of knowing
the percentage of smokers precisely by 0.27 ≤ P (S=yes) ≤ 0.32. In the sim-
plest case of binary variables with two possible outcomes, the required sets of
probabilities are always intervals, like [0.27, 0.32], but in general it is assumed
that they are closed convex sets of probabilities, so-called credal sets. The ad-
vantage of credal networks over Bayesian networks is their increased generality
and flexibility, but the price for this is added computational complexity. Credal
networks have been around for about 10 years now, but a remarkable increase
of attention has only been observed in the last few years.

Another type of probabilistic network results from relaxing the restriction to
directed graphs. One class of such undirected probabilistic networks is known as
Markov networks (or Markov random fields) [8, 12]. They are similar to Bayes-
ian networks in their representation of dependencies, but they can represent
certain dependencies that a Bayesian network cannot (such as cyclic dependen-
cies), and they can’t represent certain dependencies that a Bayesian network
can. The probabilistic information of a Markov network comes in form of so-
called potential functions φk, where k is a clique (set of pairwise connected
nodes) of the undirected graph. The collection of potential functions represents
a factorization of the joint probability function of all involved variables and can
thus be used to answer arbitrary probabilistic queries. Both Bayesian networks
and Markov networks are special cases of valuation systems [7] (or factor graphs
[6]), a more general type of (probabilistic or non-probabilistic) graphical model.

3 Current Directions

Research on probabilistic logic has, since its beginnings, explored trade-offs
between expressivity and complexity in various kinds of internal and external
progics. Generally these progics attach probabilities to logical constructs in
a very flexible manner, possibly letting many measures satisfy a given set of
probabilistic assessments (this “single-measure vs multiple-measure” debate is
further discussed in Section 5). The current literature continues to investigate
the merits and the applications of progics that do not impose any special struc-
ture on probabilistic assessments. Take for instance, the recent work by [9], and
several papers on philosophical and psychological topics in this special issue—by
Howson, by Leuridan, by Pfeifer and Kleiter, and by Sprenger.

The last fifteen years have witnessed the arrival of many progics where graphs
are used to structure sentences and assessments, so as to lower the complexity
of inference. Until a decade ago the work on “progics + graphs” focused on
a few narrow strands; a noticeable change took place around 2000, and since
then the literature has been growing at a staggering pace. Most of this recent
literature employs the technology of Bayesian and Markov networks to produce
progics where any set of well-formed formulas is satisfied by a single measure.
The paper by Ng and Lloyd in this special issue gives examples where Bayesian
networks are encoded through logic.

A key reason for the dramatic growth of interest in single-model progics
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based on graphs, particularly in the artificial intelligence literature, is the ma-
turity of inference algorithms for Bayesian and Markov networks. Today one
can employ graphs so as to produce a progic with the power to handle problems
of practical significance in reasonable computing time. Relatively little atten-
tion has been given to progics that are based on graphs and yet depart from the
single-measure assumption (however see the papers by de Campos et al. and by
Haenni in this issue).

Two further characteristics of the current work on “progics + graphs” de-
serve to be mentioned. First, research on progics based on probabilistic net-
works is heavily oriented towards applications—for instance, applications in
data mining, because data are relational or structured (an example is textual
data), or because it is advisable to use existing domain knowledge expressed
as logical sentences [2]. Second, the research often focuses on learning logical
and probabilistic sentences from data. Indeed, a key reason for the surge of
such progics around 2000 is that, at that point, researchers began to combine
Bayesian networks and logic so as to process relational data [3]. The empha-
sis on single-model progics is particularly strong when learning from data is
considered.

4 This Volume

In the first paper of this volume, Assembling a consistent set of sentences in rela-
tional probabilistic logic with stochastic independence, Cassio Polpo de Campos,
Fabio G. Cozman, and José E. Ochoa Luna examine network-based representa-
tions for independence relations in probabilistic logics. The paper starts with a
comprehensive survey of the literature on probabilistic logic and thus provides
an ideal entry point for the topic of this volume. Next, it discusses independence
relations in probabilistic logics with a focus on networks for relational proba-
bilistic logic, and then it explores a possible application. The paper ends by
pointing out some methodological care that should be taken when assembling
knowledge bases.

In the second paper, on Probabilistic argumentation, Rolf Haenni assumes
that the available knowledge is partly encoded as a set of logical premisses
and partly as a fully specified probability space. This setting gets particularly
interesting when some of the logical premisses include variables that are not
part of the probability space. The two classical questions of the probability and
the logical deducibility of a hypothesis can then be replaced by the more general
question of the probability of a hypothesis being logically deducible from the
premisses. The theory is thus an example of an external progic, which does
not explicitly deal with sets of probabilities, but still allows a hypothesis to be
judged by a pair of probability values.

In Can logic be combined with probability? Some observations, Colin Howson
addresses one of the most fundamental questions underlying this special issue
and more generally the Progicnet project. As Howson says, a positive answer to
this question is of course possible, but could turn out to be trivial, as “logic can
be combined with anything”. A slightly more sophisticated answer would be
that logic and probability can indeed be combined because of their both being
formal languages: logic and probability have a common set of concept and
methods, and some of their semantic aspects also turn out to be significantly
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similar. But the interesting question becomes whether such a formal similarity
is simply formal, or whether there is a deeper degree of conceptual affinity.
This is exactly the challenge that Howson takes up in the paper. In the first
part of the paper, the author closely investigates the extent to which Gaifman,
Scott and Krauss succeeded in combining probability and logic. This attempt
consisted in adapting the concepts, tools and procedures of model theory in
modern logic—in particular, the notions of consistency and of consequence—to
provide a corresponding model theory for the probability language. Howson
shows that this account isn’t fully successful because expressiveness—i.e., the
consideration of language systems whose expressive power is closer to the σ-
algebra of mathematical probability—and effectiveness—i.e., the possibility of
developing a proof theory—eventually pull in opposite directions. The pars
construens of the paper develops along the line of Scott’s and Krauss’ ideas,
but it differs in that it develops a formalism of epistemic probability, based on
set theoretic algebras, that is a generalisation of the classical logical concepts
of model, consistency, and consequence. In particular, for assignments of real-
valued probabilities to elements of a field or σ-field F of sets, Howson shows
that three theorems, which have their analogue (meta)results in first order logic,
follow: (i) Absoluteness of consistency, (ii) Non-ampliativity of consequence, and
(iii) Compactness.

The paper by Bert Leuridan, Causal discovery and the problem of ignorance,
deals with the use of logic in determining the structure of a Bayesian network
on the basis of a probability assignment. It discusses the problem that Pearl’s
IC algorithm, which determines a causal graph on the basis of a probability
assignment over variables, requires us to have full knowledge of the probability
assignment, in particular of all the conditional (in)dependence relations among
variables. Clearly, in many applications we do not have a full frequency table
over all variables available, and hence we cannot take a unique probability as-
signment over all the variables as starting point. The paper proposes a solution
to this problem: it defines a so-called adaptive logic, which allows us to work
with default settings for variables whose relation is unknown, and indeed to re-
vise the default settings once more information is obtained. The paper provides
a proof theory, a semantics, and finally a soundness proof for this logic.

In the next paper, Framing human inference by coherence based probability
logic, Niki Pfeifer and Gernot Kleiter establish a link from inference in prob-
abilistic logic to psychological aspects of human deductive reasoning. The ap-
proach they adopt is to take probability logic based on the coherence approach
of subjective probability as the basic reference theory. The paper first gives a
brief overview of the recent developments of combining logic and probability
to build models of human deductive reasoning. It then proposes the coherence
approach and highlights its advantages for psychological model building. The
main claims of the paper are supported by results of experimental studies, which
seem to be most consistent with coherence based probability logic.

The paper by Kee Siong Ng and John Lloyd, Probabilistic reasoning in a
classical logic, explores the combination of logical and probabilistic reasoning
through higher-order logics. The paper argues against the view that one must
add “special” features to classical logic so as to obtain a probabilistic logic—
they contend that one can handle probabilistic reasoning within classical logic
through higher-order machinery. Ng and Lloyd indeed present a language that
does so, by allowing functions to return whole densities over domains of types.
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Ng and Lloyd comment extensively on expressivity and computational complex-
ity of higher-order progics, and make connections with recent developments in
logic and artificial intelligence research. The paper also discusses several exam-
ples, and in particular an extended example that mixes individuals, relations,
and Bayesian networks.

Finally, the paper by Jan Sprenger, Statistics between inductive logic and
empirical science, is concerned with the logical status of statistical inference.
More specifically, it poses the question of whether we can isolate a distinctly
logical part to statistical inference that is universal to all statistical inferences,
as separate from the rather more application-dependent choices of a model and,
in the case of Bayesian inference, certain prior probabilities. By means of two
examples, one on parameter estimation and one on model selection, Sprenger
argues that statistical practice provides no grounds for any such separation be-
tween a unifying logical and a diverse application-oriented part of statistical
inference. Rather the image emerges of statistics as closely tied up with the
empirical sciences, requiring case-by-case optimisation instead of blanket solu-
tions. Inductive logic may be interesting in its own right; portraying statistical
inference as inductive logic misses out on the juiciest parts of the latter.

5 Future Directions

Progic 2007 was the third in a series of workshops on combining probability
and logic. The special focus of the Kent workshop was the relationship between
probabilistic logic and probabilistic networks, and a number of proposals to
use network structures to simplify probabilistic calculation were discussed. The
sheer variety of approaches naturally raises the question of which to choose, and
why. In addressing this question at the workshop three themes emerged, which
suggests future directions of research.

The first issue, touched upon in §1, concerns the type of uncertainty to be
managed. There is a natural distinction between reasoning about uncertainty
and reasoning under conditions of uncertainty, which have formal analogues to
internal progics and external progics. As we observed, each asks very different
things from a probability logic and some disagreements over approach trace to
different types of representation and reasoning problems to solve.

Second, there is a familiar trade-off in logic between expressive capacity
of the representational language and inferential power of a logic: an increase
in expressive capacity nearly always accompanies a decrease in capacities for
the logic to effectively draw out consequences. One place this tension appears
within probability logic is when discussing the relative advantages of sharp prob-
abilities versus interval-valued probabilities. A single distribution is an easier
object to compute with than a set of distributions, so there is little surprise
that point-valued approaches are favored from a computational point of view.
But deferring purely to computational considerations without check would yield
ditching probability for propositional logic. The second issue concerns an in-
ventory of advantages and disadvantages for adopting sharp probabilities, and
comparing those to the advantages and disadvantages to using interval-valued
probabilities.

In addition to practical and philosophical reasons for favoring imprecise or
interval-valued probabilities to sharp values (e.g., sometimes you don’t have
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enough information to construct a full joint distribution; then what?), there
are also strong theoretical reasons for paying attention to results and meth-
ods developed within interval-valued frameworks. One theme of the workshop
was to demonstrate that an interval-valued framework that has as a special
case one or another sharp-valued approach often gives a vivid picture of what
is happening within this representation, and why it does so. The upshot is
that even those who are unmoved by the philosophical reasons for favoring
interval-valued probabilities over sharp probabilities may nevertheless benefit
from several mathematical insights that are gained from the shift.

A third theme concerns how to judge the correctness of a representation
of uncertainty within a probabilistic logic. For many who take de Finetti as
a starting point, the criteria for the representation of uncertain opinion derive
from the behavioral consequences of opinion, such as buying a bet. One of the
motivations for imprecise probability is that the lowest selling price for a bet
may be and often is higher than the highest buying price, suggesting that the
associated probability can be determined up to an interval. However, this invites
the question of whether a probabilistic logic should perhaps be supplemented
with a decision theory, or even designed in conjunction with a decision theory
from scratch. It may be that as a normative theory, a stand-alone probabilistic
logic is without a firm foundation.
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