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Chapter 1

Introduction

Image and video recognition is a fundamental and challenging problem in com-
puter vision, which has progressed tremendously fast recently. In the real world,
a realistic setting for image or video recognition is that we have some classes
containing lots of training data and many classes that contain only a small
amount of training data. Therefore, how to use the frequent classes to help
learning the rare classes is an open question. Learning with shared informa-

tion is an emerging topic which can solve this problem. There are different
components that can be shared during concept modelling and machine learn-
ing procedure, such as sharing generic object parts, sharing attributes, sharing
transformations, sharing regularization parameters and sharing training exam-
ples, etc. For example, representations based on attributes define a finite vocab-
ulary that is common to all categories, with each category using a subset of the
attributes. Therefore, sharing some common attributes for multiple classes will
benefit the final recognition system.

In this thesis, we investigate some challenging image and video recognition
problems under the framework of learning with shared information. My Ph.D
research comprised of two parts. The first part focuses on the two domains
(source and target) problems where the emphasis is to boost the recognition
performance on the target domain by utilizing useful knowledge from source
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Figure 1.1: The overview of this thesis.

domain. The second part focuses on multi-domains problems where all domains
are considered equally important. This means we want to improve performance
for all domains by exploring the useful information across domains. Fig.1.1
shows the overview of this thesis. These two parts can be summarized as learn-

ing with shared information. In particular, we investigate three topics to achieve
this goal in the thesis, which are active domain adaptation, multi-task learning,
and dictionary learning, respectively.
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1.1 Contribution of the Thesis

To sum up, this thesis makes the following contributions towards learning with

shared information:

• For two domains (source and target) image recognition problem, an ac-
tive domain adaptation framework is proposed to illustrate the power of
learning with shared information.

• For multiple domains (parallel tasks), we introduce the idea of learning
style-specific dictionaries. A novel multi-task dictionary learning is pro-
posed for automatic analysis of painting image recognition.

• For multiple domains (parallel tasks), we also propose an unsupervised
approach, a multi-task clustering framework, for the first-person vision
activity video recognition.

1.2 Overview of the Thesis

In Chapter 2, we begin our research from image recognition problem using
domain adaptation which involves transferring useful information from source
domain to the target domain to boost recognition performance. Moreover, we
integrate domain adaptation (DA) with active leaning (AL) which helps to min-
imize the effort for the acquisition of labelled data. We perform extensive ex-
periments on different datasets to evaluate our strategy.

Multi-task learning is another approach for learning with shared information.
Multi-task learning is an approach to inductive transfer that improves general-
ization by using the domain information contained in the training signals of
related tasks as an inductive bias. It does this by learning tasks in parallel while
using a shared representation. What is learned for each task can help other tasks
be learned better. In Chapter 3, we propose a new multi-task dictionary learning
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approach by uncovering a shared subspace of different datasets. We also investi-
gate a multi-task dictionary learning approach for inferring painting styles. The
results show that multi-task dictionary learning achieve better performance for
image recognition.

To step further, we move on our research on discovering and extracting rele-
vant patterns from videos. In Chapter 4, we consider the videos collected from
wearable cameras of several people performing daily activities. We notice that,
videos continuously record several hours of human life. The data is hetero-
geneous and labelling them is an intensive and boring task requiring extensive
human labour. In order to tackle the problem, an unsupervised multi-task clus-
tering framework is proposed for video activity analysis in Chapter 4.

In summary, Chapters 2, 3, 4 present three different strategies to perform
learning with shared information. Chapter 5 presents the conclusions and the
future research directions.

4



Chapter 2

Active Domain Adaption1

Supervised learning methods require sufficient labelled examples to learn a
good model for classification or regression. However, available labelled data
are insufficient in many applications. Active learning (AL) and domain adapta-
tion (DA) are two strategies to minimize the required amount of labelled data
for model training. AL requires the domain expert to label a small number of
highly informative examples to facilitate classification, while DA involves tun-
ing the source domain knowledge for classification on the target domain. In this
chapter, we demonstrate how AL can efficiently minimize the required amount
of labelled data for DA. Since the source and target domains usually have dif-
ferent distributions, it is possible that the domain expert may not have sufficient
knowledge to answer each query correctly. We exploit our active DA framework
to handle incorrect labels provided by domain experts. Experiments with mul-
timedia data demonstrate the efficiency of our proposed framework for active
DA with noisy labels.

1Gaowen Liu, Yan Yan, Ramanathan Subramanian, Jingkuan Song, Guoyu Lu, Nicu Sebe: Active Domain
Adaptation with Noisy Labels for Multimedia Analysis. World Wide Web 19(2): 199-215, 2016
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2.1 Introduction

In machine learning, supervised methods require sufficient labelled examples
in order to learn a good model. However, it is difficult to acquire sufficient
labelled data in many real world applications. Moreover, labelling is an inten-
sive task requiring extensive human labor. In order to tackle this problem, sev-
eral approaches have been proposed. Semi-supervised learning aims to exploit
the consistency between labelled and unlabelled data for classification. Active

learning (AL) focuses on selecting a small set of essential examples for query-
ing labels from domain experts. Domain adaptation (DA, also called Transfer

learning) facilitates classification when the training (source) and test (target)
data are from different domains. Domain adaptation uses the knowledge ac-
quired from a large number of labelled source examples and a few labelled
target examples for classification in the target domain.

DA algorithms (see [76] for a survey) seek to combine limited target data
with the source data in order to adapt to the target domain. However, they
typically tend to choose target examples randomly without considering which
samples are most informative for classification in the target domain. Therefore,
one question that needs to be examined is whether and how we can efficiently
label target data for DA? Considering that the goal of both domain adaptation
and active learning is to minimize labor-intensive data labelling, it would be
worthwhile to integrate DA and AL in a single framework.

To our knowledge, very few works studied how to minimize the amount of
labelled target data, especially under noisy labelling. A theoretical study on the
number of labelled examples required to learn all targets to achieve an arbitrar-
ily specified accuracy is presented in [118]. Two active transfer learning algo-
rithms that allow for changes in all marginal and conditional distributions with
the additional assumption that these changes are smooth are proposed in [100].
However, they do not consider noisy labels which are likely to occur in active
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DA scenarios. [88] propose active transfer learning, but their approach is lim-
ited by the unlikely assumption that identical prediction labels are generated for
a target example by the out-of-domain (source) and in-domain (target) classi-
fiers. Additionally, the error rate of the transfer classifier is not bounded, and
only binary classification is considered here. Extending active transfer learn-
ing to multi-class classification as in this work, the upper-bound error rate in-
creases considerably and consequently, the domain-adaptive classifier cannot
classify correctly anymore. In this chapter, we investigate an adaptive DA al-
gorithm within an AL framework able to cope with label noise. We also extend
the binary classification to a multi-class classification problem through error-
correcting output coding. We investigate how AL helps to minimize the num-
bers of labelled data for DA even under noisy labelling. Experiments on real-
world datasets for head-pose estimation and image classification demonstrate
the efficacy of our proposed framework. To sum up, this chapter makes the
following contributions:

• An active domain adaptation framework under noisy labelling is proposed,
and is shown to be effective for multimedia analysis;

• We integrate active learning with domain adaptation for a multi-class set-
ting through error correcting output coding;

• The proposed framework is general, and potentially applicable to many
multimedia problems.

The chapter is organized as follows. Section 2.2 reviews related work from
the perspective of active learning, domain adaptation and learning with noisy la-
bels. Section 2.3 details active domain adaptation with noisy labels. Section 2.4
presents experimental results on head pose estimation and image classification,
while Section 2.5 concludes the chapter.
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2.2 Related Work

In this section, we review related work in the areas of active learning, domain
adaptation and learning with noisy labels.

2.2.1 Active Learning

Active learning (AL) involves asking the domain expert to label a small number
of most-informative examples to facilitate classification. Based on query sce-
narios, AL can be divided into three types of settings: (i) Membership query
synthesis, (ii) stream-based selective sampling and (iii) pool-based sampling.
The pool-based scenario has been studied for many real-world problems in ma-
chine learning and computer vision. Uncertainty sampling is a common ap-
proach in AL. Distance from hyperplane for margin-based classifiers has been
used as a measure of uncertainty in previous works. [96] provided a theoretical
motivation for SVM-based AL using the notion of a version space. [103] pro-
posed a unified multi-class AL approach through error-correcting output coding
based on the ’best worst case’, which approximates the expected loss function
with the smallest loss function among all the possible labels.

[44] extended the Fisher information framework to the batch-mode setting
for binary logistic regression. [87] studied the problem of using several heuris-
tics that take into account estimates of both oracle and model-uncertainty, and
showed that data can be improved by selective repeated labelling. However,
their analysis assumed both were equally and consistently noisy and annotation
was a noisy process over some underlying true label. [59] introduced a novel
criterion that requested a partial ordering for a set of examples that minimized
the total rank margin in attribute space, subject to a visual diversity constraint.

Existing AL strategies can have uneven performance, being efficient on some
datasets but ineffective on others, or inconsistent just between runs on the same
dataset. [3] proposed perplexity-based graph construction and a new hierar-
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chical sub-query evaluation algorithm to combat this variability and to use the
potential of expected error reduction. [32] developed an efficient active learn-
ing framework based on convex programming, which can select multiple sam-
ples at a time for annotation. Unlike the state-of-the-art, their algorithm can be
used in conjunction with any classifier type, including sparsity-based classifiers
(SRC). [45] presented a collaborative computational model for AL with multi-
ple human oracles. This approach leads not only to an ensemble kernel machine
robust to noisy labels, but also to a principled label-quality measure detecting
irresponsible labellers online.

[58] presented a novel multi-level AL approach to reduce the human an-
notation effort for training robust scene classification models. Different from
most existing AL methods that can only query labels for selected instances
at the class level, their approach established a semantic framework that pre-
dicted scene labels based on a latent object-based image representation, and
was capable of querying labels at two different levels– the scene-class level
and the latent object-class level. [120] proposed a semi-supervised batch mode
multi-class AL algorithm for visual concept recognition. [18] proposed a novel
convex, semi-supervised multi-label feature selection algorithm applicable to
large-scale datasets.

2.2.2 Domain Adaptation

Traditional machine learning algorithms are based on the assumption that train-
ing and test data share the same distribution in feature space. When the train-
ing and test distributions are different, the classification accuracy drops signif-
icantly. In such cases, domain adaptation (DA) between the two domains is
desirable. DA assumes that the training and testing data could be from different
domains and distributions. It is motivated by the fact that people can intelli-
gently apply knowledge learned previously to solve new problems efficiently.
The target of DA is to find some common property which is shared between
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the training (or source) and test (or target) domains. [76] identified three main
research issues in DA: (i) what to transfer, (ii) how to transfer, and (iii) when
to transfer. ‘What to transfer’ examines which knowledge can be transferred
across domains or tasks. After discovering which knowledge can be transferred,
learning algorithms are developed to describe the process of ‘how to transfer’.
‘When to transfer’ studies the situations where the knowledge could be trans-
ferred, in order to guard against negative knowledge transfer that could hurt
classification performance on the target domain.

There are several DA approaches. Instance-transfer involves re-weighting
some source data for use in the target domain under the assumption that source
data can be reused in the target domain ([24, 46, 124]). Feature-representation-

transfer attempts to find a ‘good’ feature representation that reduces the differ-
ence between the source and target domains as well as the classification/regression
error ([6, 26]). Parameter-transfer involves discovery of shared parameters or
priors between the source and target models which can benefit from transfer
learning ([10, 33, 79]). Relational-knowledge-transfer builds a mapping of re-
lational knowledge between the source and target domains ([72]).

In essence, transfer learning adapts useful source information to efficiently
classify in the target domain whose attributes vary with respect to the source.
[26] proposed a feature replication method to augment features for transfer
learning. [84] and [53] proposed a method for domain adaption using metric
learning by generating cross-domain constraints. [24] used a boosting frame-
work ([37]) to re-weight the importance of source and target samples for DA.
[124] extended the transfer boosting framework to include information from
multiple sources. [116] adapted DA by learning a delta function between the
source and target domains based on SVMs. This method seeks the target de-
cision boundary which is close to the source decision boundary. [29] extended
this method via multiple kernel learning by learning kernels that minimize the
mismatch between source and target domains. [43] proposed a framework for
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image attribute adaptation. [128] proposed a DA framework for still-to-motion
Adaptation (SMA) for human action recognition. [41] proposed finding a low-
dimensional optimal consensus representation from multiple heterogeneous fea-
tures for multi-view transfer learning. [42] proposed a sparse multi-label learn-
ing method to circumvent the visually polysemous barrier of multiple tags.

2.2.3 Learning with Noisy Labels

Nowadays, with the exponential growth of user-generated web images and videos,
there has been an increasing interest in learning models that can handle noisy la-
bels for supervised learning. This is a practical problem due to the uncontrolled
environments in which humans label data. Given the importance of learning
from noisy labels, a great deal of progress has been made in this regard. [73]
addressed the problem of risk minimization in the presence of random noise,
and obtained generalizable results using unbiased estimators and weighted loss
functions. Efficient algorithms were proposed with both methods with prov-
able guarantees for learning under label noise. [121] proposed a multimedia
retrieval framework based on semi-supervised ranking and relevance feedback.
[115] proposed event-oriented dictionary learning for multimedia event detec-
tion. [9] investigated the robustness of SVMs under adversarial label noise and
proposed an improved method based on kernel matrix correction.

In active learning, it is highly probable that the expert may have no informa-
tion concerning some queries and cannot provide accurate labels. [28] stud-
ied AL under noisy labelling with a human-like oracle by introducing non-
uniformly distributed noise. They made a realistic assumption that the less
confident the oracle is in labelling the example, the larger is the effect of the
noise. [89] proposed a pool-based active learning framework through robust
measures based on density power divergence. By minimizing β-divergence and
γ-divergence, one can estimate the model accurately even with noisy labels.
[38] tackled the fundamental problem of Bayesian active learning with noise,
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where they needed to adaptively select from a number of expensive tests in or-
der to identify an unknown hypothesis sampled from a known prior distribution.
Learning with noisy labels is especially important in DA scenarios. To the best
of our knowledge, there is no work focusing on active transfer learning with
noisy labels.

2.3 Active Domain Adaptation with Noisy Labels

Domain adaptation uses a small number of labelled samples from the target do-
main. However, taking into account that not all samples from the target domain
are equally informative, an efficient sample selection strategy is preferable. To
minimize the amount of labelled data in the target domain, we attempt AL using
different sample selection strategies.

2.3.1 SVM-based Domain Adaptation

Recently, several adaptation methods for the support vector machine classifier
(SVM) were proposed for video retrieval in [29]. In order to make the SVM
classifier adaptive to a new domain, the target decision function f T (x) is formu-
lated as:

f T (x) = f S (x) + ∆ f (x) (2.1)

where x is the specific feature vector and f S (x) is the source decision function.
∆ f (x) is the function of the mismatch between source and target domains.

[29] extended this method via multiple kernel learning. In this case, the
target decision function is formulated as:

f T (x) =

P∑
p=1

γp fp(x) +

M∑
m=1

dmwT
mφm(x) + b (2.2)

where fp(x) is the p-th pre-learned classifier trained using labelled data from
both domains. P is the number of pre-learned classifiers. γp are the coeffi-
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cients of the p-th pre-learned classifier. A linear combination of multiple ker-

nels
M∑

m=1
dmwT

mφm(x) + b is used to model ∆ f (x) in this setting with a bias term

b. M is the number of kernels and dm are the coefficients of the m-th kernel. wT
m

is the transpose of the weight vector wm and φm(x) is the nonlinear feature map-
ping function where base kernels can be calculated as km(xi, x j) = φT

m(xi)φm(x j).

There are two objectives to minimize. The first objective is to reduce the
mismatch between the source and target domains. [39] proposed a similarity
measure for two different distributions. The mismatch is measured by Maxi-
mum Mean Discrepancy (MMD) as in [46] based on the distance between the
sample means from the source and target domains in the Reproducing Kernel
Hilbert Space (RKHS) namely:

DIS T (DS ,DT ) = Ω(d) =

∥∥∥∥∥∥∥ 1
nS

nS∑
i=1

φ(xS
i ) −

1
nT

nT∑
i=1

φ(xT
i )

∥∥∥∥∥∥∥
H

(2.3)

where xS
i and xT

i are the samples from the source and target domains, respec-
tively. nS and nT are the number of samples in the source and target domains.
The second objective is to minimize the structural risk functional J(d) in the
target domain. If we combine these two objectives, the optimization problem is
given by

min
d

G(d) =
1
2

Ω2(d) + θJ(d) (2.4)

where d is coefficient vector for the multiple kernels. Ω2(d) is the distance
between the source and target distributions. By introducing Lagrangian multi-
pliers α, the dual form of the optimization is:

J(d) = max
α
αT −

1
2

(αy)T (
M∑

m=1

dmK̃m)(αy) (2.5)

This is equivalent to the dual form of SVM with kernel matrix
M∑

m=1
dmK̃m, where
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K̃m are the domain-adaptive rectified kernels. The optimization problem can be
solved by an existing SVM solver, such as LIBSVM ([17]).

2.3.2 Multiclass Active Learning

Margin-based learning algorithms minimize the loss function L(·) with respect
to the margin.

min
1
m

m∑
i=1

L(yi f (xi)) (2.6)

[2] proposed a unifying framework for studying the solution of multi-class
categorization problems by reducing them to multiple binary problems. Firstly,
we define a coding matrix M ∈ {−1, 0,+1}k×l. k is the number of classes and l is
the number of binary classification problems. Let M(r) denote the row r of M
and f (x) be the vector of predictions on an instance x, f (x) = ( f1(x), ..., fl(x)).
The basic idea is to predict with the label r, which row in M(r) is the clos-
est to the prediction f (x), i.e., predict label r that minimizes the distance
d(M(r), f (x)). Taking advantage of the confidence of binary predictions, [2]
proposed a loss-based decoding scheme. The idea is to choose the label r that is
the most consistent with the predictions fs(x) in the sense that, if the example x

was labelled r, the total loss on example (x, r) would be minimized over choices
of r ∈ Y . The distance measure is the total loss on a proposed example (x, r).

dL(M(r), f (x)) =

l∑
s=1

L(M(r, s) fs(x)) (2.7)

The predicted label
∧
y ∈ {1, ..., k} is:

∧
y = arg min

r
dL(M(r), f (x)) (2.8)

[103] proposed an approximated sample selection strategy which uses the
best worst case model to approximate the expected loss function with the small-
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est loss function among all the possible labels.

arg max
x

min
y∈Y

l∑
s=1

L(M(y, s) fs(x)) (2.9)

If yx is the predicted label for example x, Eqn.(2.9) becomes:

arg max
x

l∑
s=1

L(M(yx, s) fs(x)) (2.10)

Here, we choose the most ambigous examples with the maximum expected loss
for the predicted label.

2.3.3 Modeling with Noisy Labels

Information-theoretic methods can be used to model expert labelling knowl-
edge. In the traditional AL scenario, the expert is able to provide a label for
each queried instance. Then, the objective of uncertainty sampling based AL
is to query the instance with the highest entropy. We model the domain ex-
pert as either knowledgeable to label an instance or not knowledgeable. The
Knowledge Base (N) is defined as the union of instances (N+) which have been
labelled by the domain expert, and those instances (N−) which the domain ex-
pert is unable to label.

The expected entropy of an unlabelled instance xi with respect to sets N+ and
N− is given by:

E = P(xi ∈ N+)E(yi|xi ∈ N+) + P(xi ∈ N−)E(yi|xi ∈ N−)

where E(·) is the entropy of samples xi with respect to the predicted classifier
label. Moreover, in the above equation E(yi|xi ∈ N−) = 0 due to the definition
of conditional entropy. The diverse density concept proposed in [69] is adopted
to estimate P(xi) ∈ N+.
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Figure 2.1: Framework for Active Domain Adaptation with Noisy Labels: labelled source,
labelled and unlabelled target data are used to train the transfer classifier. Active learning is
performed to select unlabelled target data to be labelled by the expert.

2.3.4 Framework

Considering that the goal of both DA and AL is to minimize intensive data
labelling, it is reasonable to investigate how combining them can further mini-
mize data labelling on the target. We propose an active DA under noisy labelling
framework as shown in Fig.2.1. We use labelled source, labelled and unlabelled
target data to train the transfer classifier. Then, we use AL to select unlabelled
target data to be labelled by the expert, and add the same to labelled target data
to update the transfer classifiers.

Algorithm 1 presents the active DA under noisy labelling algorithm. We
initially randomly select one sample per category. Steps (4-8) represent the
DA procedure. We combine labelled target samples Ds

l with labelled source
samples Dt

l to train an adaptive SVM classifier f T m
(x) on the target domain Dt.

To this end, we employ alternative coordinate descent to optimize variables α
and d in Eqn.(2.5). ηt is the learning rate and gt denotes the update direction.
We iterate this procedure Tmax times. Steps (9-12) represent the AL procedure.
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In step (9), we calculate loss values for all the unlabelled target samples. We
choose those unlabelled target samples that produce the least loss to be labelled
by experts, and then add these samples to the labelled target domain. Steps
(13-19) represent the procedure adopted to deal with noisy labels. If the expert
does not know the label for xi, the algorithm will include xi in the negative
knowledge base (N−). Step (19) is to update the knowledge base N. We iterate
this procedure K times.

Algorithm 1: Active Domain Adaptation under Noisy Labelling.

1 Input: Labelled source data Ds and unlabelled target data Dt. Let Dt = Dt
l ∪ Dt

u. Randomly label
one target sample per class and add them to Dt

l.
2 Output: Target sample label.

3 for k = 1, ...,K do
4 Perform domain adaptation on Dt using samples from Ds

l ∪ Dt
l to obtain f T m

(x).
5 • for t = 1, ...,Tmax do

6 • Solve dual SVM variable αt using LIBSVM with kernel matrix
M∑

m=1
dmK̃m.

7 • Update the base kernel coefficients dt by dt+1 = dt − ηtgt.
8 • end for

9 For all the samples xi ∈ Dt
u, calculate loss function arg max

x

l∑
s=1

L(M(yx, s) fs(x)).

10 For all the samples xi ∈ Dt
u, estimate P(xi) ∈ N+, then calculate expected entropy of xi.

11 Select samples s∗ according to the sum of least loss and expected entropy.
12 Get label ys∗ .
13 if the expert knows the label then
14 Add sample s∗ = (xs∗ , ys∗) to Dt

l.
15 N+ ← N+ ∪ xi.
16 else
17 N− ← N− ∪ xi.
18 end if
19 N ← N− ∪ N+ and update knowledge N.
20 Classification using f T m

(x) on target domain test data.
21 end for
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2.4 Experiments

In this section, we test the proposed active DA method for cross-domain head-
pose estimation (proposed earlier in [106]) and cross-domain web image clas-
sification (proposed in [84]).

2.4.1 Cross-domain Headpose Dataset

In video surveillance, knowing where a person is looking at is important. How-
ever, headpose estimation or classification from surveillance videos can be very
hard, due to the low resolution and noise characterizing the sensor data. We fo-
cus on headpose estimation from low-resolution images acquired using a multi-
camera system.

The CLEAR 2007 dataset ([93]) illustrated in Fig.2.2(a) provides multi-view
images, output from four cameras placed in the room’s corners. This dataset in-
cludes 15 persons rotating in-place, and exhibiting all possible head orientations
while wearing a magnetic motion sensor (flock-of-birds) to measure their head
pose. The task is to estimate the person’s 3D head orientation with respect to
the room’s coordinate system, and to obtain a robust, joint pose estimate from
all four views instead of employing only a single camera view for analysis.

In order to evaluate cross-domain headpose classification, we used the
DPOSE dataset (described in [79]) shown in Fig.2.2(b). DPOSE is recorded
under the same settings as CLEAR, with both static and moving persons (only
data corresponding to static persons are used in our experiments). As evident
from Fig.2.2, the illumination and recording environments are very different in
the CLEAR and DPOSE datasets.

We firstly localize the head in each of the four views using the procedure de-
scribed in [79]. The localized head regions are then resized to 20×20 resolution.
We then concatenate the head crops from the four views on which visual fea-
tures are extracted. Head pan is divided into eight classes, each denoting a 45◦
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(a) (b)

Figure 2.2: 4-view exemplar from the (a) CLEAR and (b) DPOSE datasets. Automatically
extracted face crops are shown on the bottom right inset.

pan range, and for each head pan range, the tilt is quantized into three classes–
namely frontal [-20◦, 20◦], upward (20◦, 90◦] and downward (-20◦, -90◦]. This
leads to a total of 24 headpose classes (e.g. pan range (-22.5,22.5) with frontal,
upward and downward tilts denote headpose classes 1–3). We divide the 4-view
head image into 25 patches (every patch is 4 × 4). For the visual features com-
puted over each view, we use HOG (81 dimensions) and skin pixel histograms
(25 dimensions denoting the number of skin pixels in each patch). Then, we
concatenate these features to derive a 106-dimensional vector per view, and a
424-dimension vector over the 4-view image.

We use several baseline methods to evaluate and compare our transfer learn-
ing results. S ATB means we train on source domain A and test on target domain
B. S BTB means we train on target domain B and test on B. S (A+B)TB means we
train on both A and B and test on B. TrAdaboost means we use the Adaboost
algorithm ([37]) trained on labelled source and target data. AMKL random
means we use adaptive multiple kernel learning and randomly label target sam-
ples. AMKL active (our method) means we use AMKL and actively label the
target samples. For all the experiments, we report the mean accuracy on 5 ran-
domly selected train/test sets. SVM parameter C = 1 in all the experiments. We
use 100 images per class in the source domain and query 24 samples (one sam-
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Figure 2.3: Classification accuracies with (left) single view and (right) 4 views.

ple/class) to label every round. To begin with, there are 100 unlabelled images
per class in the target domain.

Fig.2.3 compares classification accuracies achieved using various ap-
proaches over 30 rounds of active learning. Evidently, we can see that our active
transfer learning algorithm outperforms all the considered baselines. Clearly,
our method efficiently learns about the target domain upon incorporating knowl-
edge from a few target examples. Also, employing information from all four
camera views achieves superior performance as compared to monocular anal-
ysis. Comparing AMKL active with AMKL random, we see that in both the
monocular and multi-view cases, our approach outperforms AMKL random af-
ter 10 rounds of AL, and the benefit of learning from the most informative
samples is reflected in the fact that AMKL active outperforms AMKL random
by more than 10% after 30 rounds while classifying with 4-view information.

Fig.2.4 shows the confusion matrix over 24 headpose classes using active
transfer learning after 30 rounds. We can conclude that most of the target sam-
ples are correctly classified. Moreover, most of the misclassified samples belong
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Figure 2.4: Confusion matrix over 24 classes for active DA after 30 rounds.

to nearby classes, which means the samples are only misclassified with respect
to head tilt, while the head pan is classified correctly. This again demonstrates
the robustness of our active DA framework for headpose estimation.

We also evaluate the effects of using five different types of loss function in the
AL module– (i) Logistic loss 1/(1 + e2y f (x)), (2) Exponential loss e−x, (3) Hinge
loss (1 − y)+, (4) Minimum margin loss e−100x and (5) log loss log(1/(1 + x)).
Fig.2.5 presents the active transfer learning classification error obtained on these
different loss function. We observe that hinge loss achieves the better perfor-
mance among all loss functions, which implies that active transfer learning
works optimally if identical loss functions are employed in the DA and AL
modules.

Since querying sample labels for AL can also be done in a batch mode,
we examine the extent of reduction in classification error for varying number
of queried samples at every round. Fig.2.6 shows the progressive reduction
in classification error with differing number of queried samples (4, 8 and 12
samples/class/round) for AL. From Fig.2.6, we can see that the classification
accuracy is not influenced much by varying the number of queried samples per
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Figure 2.5: Evaluating active DA classification error with different loss functions.
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round. However, choosing a moderate number of queried samples per round
appears to be optimal since the error is minimal when 8 samples per round are
queried as compared to querying 4 or 12 samples per round. Finally, we evaluate
the robustness of our active DA framework to noisy labels. Fig.2.7 compares
classification accuracies achieved with and without modeling for noisy labels
in the AL module (steps 13–19 in Algorithm 1). Note that about 3% higher
accuracy is achieved by accounting for noisy labels when using both monocular
and 4-view image features.

Figure 2.7: Evaluating active domain adaptation with noisy labels modeling strategy.

2.4.2 Cross-domain Berkeley Web Image Dataset

The Berkeley image dataset consists of three types of images: web images (from
amazon), images from a digital SLR camera (high resolution image), and low-
resolution webcam images, as shown in Fig.2.8. Each domain has 31 categories
of images. While the digital SLR camera and webcam images capture the same
objects, the viewpoint and image resolutions are different.

Our objective on the Berkeley dataset is to perform object recognition across
image domains. For all the experiments, we report mean accuracy obtained on
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Figure 2.8: Exemplars from the Berkeley web image dataset. (from top to bottom) Web (ama-
zon), digital SLR camera (high resolution image) and webcam (low resolution image).

5 randomly selected train/test sets. SVM parameter C = 1 in all the experi-
ments. For each object category, there are a small number of labelled samples
in the target domain (3 in our experiment). For the source domain, we use 8
labels per category for webcam/dslr and 20 for amazon. As low-level visual
descriptors, we use the pre-compute SURF features. A codebook of size 800
is constructed by k-means clustering. We firstly normalize the feature vector
and then repeat the experiment as in [84]. Descriptions of the several baseline
methods compared are as follows:

• S ATB - We train on source domain A and test on target domain B.

• S BTB - We train on target domain B and test on B.

• S (A+B)TB - We train on both A and B, and test on B.

• [84] - A metric learning-based DA approach.

• TrAdaboost ([23]) - DA based on the Adaboost algorithm.

• DA - DA with adaptive multiple kernel learning (AMKL) and randomly
label target samples.
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• ADA - DA and actively label target samples.

• ADAN - Proposed DA method accounting for noisy labels.

Tables 2.1, 2.2, 2.3 compare classification accuracies achieved with the dif-
ferent approaches when trained on images from the webcam, dslr and amazon
domains respectively. We make the following observations from these tables: (i)
Superior performance is always achieved using S B as compared to S A, which
proves the need for DA for object recognition on the Berkeley dataset. (ii)
While the inductive TrAdaboost and metric learning-based DA approaches per-
form favorably with respect to S (A+B)TB, they are generally outperformed by
the AMKL-based DA approaches studied in this work. (iii) ADA outperforms
DA considerably, implying that AL greatly benefits DA for object recognition.
(iv) ADAN outperforms ADA by up to 5% on an average, implying that our ap-
proach which explicitly accounts for label noise greatly benefits AL. (iv) ADAN
consistently produces the best recognition performance demonstrating the effi-
ciency of the proposed active DA framework.

Commenting on the computational time required for our proposed algorithm,
model training for cross-domain multi-view headpose estimation and object
recognition required 20 minutes with cross-validation on a workstation with
Intel(R) Xeon(R) CPU E5-2620 v2 @ 2.10GHz × 17 processors implying that
our algorithm can be applied on large-scale datasets.

2.5 Conclusion

In this chapter, we propose an active transfer learning framework which ex-
plicitly accounts for ambiguous labels provided by the domain expert. We also
extend traditional active learning for binary classification to a multi-class setting
through error-correcting output coding. Extensive experiments on cross-domain
multi-view head-pose estimation and object recognition demonstrate the effec-
tiveness of our proposed method. In particular, the ability to select the most
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Table 2.1: Source domain - webcam images.
webcam→dslr webcam→amazon

S ATB 0.19 ± 0.02 0.09 ± 0.01
S BTB 0.37 ± 0.01 0.18 ± 0.02

S (A+B)TB 0.28 ± 0.02 0.15 ± 0.01
[84] 0.27 ± 0.02 0.19 ± 0.01

TrAdaboost ([23]) 0.25 ± 0.02 0.17 ± 0.02
DA 0.35 ± 0.02 0.20 ± 0.01

ADA 0.61 ± 0.02 0.23 ± 0.01
ADAN 0.65 ± 0.02 0.27 ± 0.02

Table 2.2: Source domain - dslr images.
dslr→webcam dslr→amazon

S ATB 0.15 ± 0.01 0.04 ± 0.01
S BTB 0.40 ± 0.03 0.18 ± 0.02

S (A+B)TB 0.20 ± 0.02 0.08 ± 0.01
[84] 0.31 ± 0.03 0.15 ± 0.02

TrAdaboost ([23]) 0.44 ± 0.03 0.10 ± 0.02
DA 0.49 ± 0.02 0.15 ± 0.02

ADA 0.59 ± 0.02 0.22 ± 0.02
ADAN 0.63 ± 0.02 0.31 ± 0.02

Table 2.3: Source domain - amazon images.
amazon→dslr amazon→webcam

S ATB 0.04 ± 0.02 0.08 ± 0.01
S BTB 0.36 ± 0.03 0.38 ± 0.02

S (A+B)TB 0.10 ± 0.03 0.14 ± 0.02
[84] 0.32 ± 0.02 0.48 ± 0.03

TrAdaboost ([23]) 0.22 ± 0.03 0.38± 0.01
DA 0.28 ± 0.01 0.39 ± 0.02

ADA 0.36 ± 0.03 0.45 ± 0.01
ADAN 0.40 ± 0.01 0.49 ± 0.03
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informative samples for active learning and handle label noise improves classi-
fication performance with respect to random sample selection.
In the next chapter, we will introduce another learning with shared information
strategy, multi-task learning.
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Chapter 3

Multi-task Dictionary Learning

In this chapter, we first propose a novel multi-task dictionary learning frame-
work for the painting style recognition task. Then a novel supervised version of
multi-task dictionary learning is proposed for image recognition.

3.1 Inferring Painting Style with Multi-Task Dictionary
Learning1

Recent advances in imaging and multimedia technologies have paved the way
for automatic analysis of visual art. Despite notable attempts, extracting rele-
vant patterns from paintings is still a challenging task. Different painters, born
in different periods and places, have been influenced by different schools of
arts. However, each individual artist also has a unique signature, which is hard
to detect with algorithms and objective features. In this chapter we propose a
novel dictionary learning approach to automatically uncover the artistic style
from paintings. Specifically, we present a multi-task learning algorithm to learn
a style-specific dictionary representation. Intuitively, our approach, by auto-
matically decoupling style-specific and artist-specific patterns, is expected to
be more accurate for retrieval and recognition tasks than generic methods. To

1Gaowen Liu, Yan Yan, Elisa Ricci, Yi Yang, Yahong Han, Stefan Winkler, Nicu Sebe:Inferring Painting Style
with Multi-Task Dictionary Learning. International Joint Conference on Artificial Intelligence (IJCAI): 2162-2168,
2015
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demonstrate the effectiveness of our approach, we introduce the DART dataset,
containing more than 1.5K images of paintings representative of different styles.
Our extensive experimental evaluation shows that our approach significantly
outperforms state-of-the-art methods.

3.1.1 Introduction

With the continuously growing amount of digitized art available on the web,
classifying paintings into different categories, according to style, artist or based
on the semantic contents, has become essential to properly manage huge col-
lections. In addition, the widespread diffusion of mobile devices has led to an
increased interest in the tourism industry for developing applications that auto-
matically recognize the genre, the art movement, the artist, and the identity of
paintings and provide relevant information to the visitors of museums.

Imaging and multimedia technologies have progressed substantially during
the past decades, encouraging research on automatic analysis of visual art.
Nowadays, art historians have even started to analyse art based on statistical
techniques, e.g. for distinguishing authentic drawings from imitations [47].
However, despite notable attempts [14, 51, 57, 101], the automatic analysis
of paintings is still a complex unsolved task, as it is influenced by many as-
pects, i.e. low-level features, such as color, texture, shading and stroke patterns,
mid-level features, such as line styles, geometry and perspective, and high-level

features, such as objects presence or scene composition.

In section 3.1 we investigate how to automatically infer the artistic style, i.e.

Baroque, Renaissance, Impressionism, Cubism, Postimpressionism and Mod-

ernism, from paintings. According to Wikipedia, an artistic style is a “tendency
with a specific common philosophy or goal, followed by a group of artists dur-
ing a restricted period of time or, at least, with the heyday of the style defined
within a number of years”. Referring to paintings, the notion of style is more
difficult to define than to perceive. Looking at Fig. 3.1, where images represen-
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(1) (2) (3) (4)

(9)

(8)(7)

(10)

(5)

(11)

(6)

(12)

Figure 3.1: Given the images belonging to the Baroque, Renaissance, Impressionism, Cubism,
Postimpressionism, Modern art movements, can you detect which ones correspond to the same
style1?

tative of six art movements are shown, can you guess which ones belong to the
same style? At the first glance, it may not be hard to group these images into
different styles, i.e. (1) and (9), (4) and (8), even if you have never seen these
paintings before. Indeed, human observers can easily match artworks from the
same style and discriminate those originated from different art movements, even
if no a-priori information is provided. That is because humans recognize the

style by implicitly using both low-level cues such as lines or colors and more
subtle compositional patterns.

1Answers: Cubism (1,9), Impressionism (2,7), Postimpressionism (3,10), Renaissance (4,8), Baroque
(6,11), Modern (7,12).

Names and authors of paintings: 1) Bottle and Fishes, Braque; 2) Bouquet of Sunflowers, Monet; 3)
Portrait of the Postman Joseph Roulin, van Gogh; 4) Christ Falling on the Way to Calvary, Raphael; 5)
The Disintegration of the Persistence of Memory, Dali; 6) The Adoration of the Golden Calf, Poussin; 7)
Portrait of Claude Renoir Painting, Renoir; 8) Death of Actaeon, Titian; 9) Bananas, Gris; 10) Vegetation
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Recently, statistical methods have shown potential for supporting traditional
approaches in the analysis of visual art by providing new, objective and quan-
tifiable measures that assess the artistic style [14, 51, 101]. In this section we
propose a dictionary learning approach for recognizing styles. Dictionary learn-
ing, which has proved to be highly effective in different computer vision and
pattern recognition problems [31, 117], is a class of unsupervised methods for
learning sets of over-complete bases to represent data efficiently. The aim of
dictionary learning is to find a set of basis vectors such that an input vector can
be represented as a linear combination of the basis vectors. In this section we
propose a novel framework unifying multi-task and dictionary learning in order
to simultaneously infer artist-specific and style-specific representations from a
collection of paintings. Our intuition is that if we can build a style-specific
dictionary representation by exploiting common patterns between artists of the
same style with multi-task learning, more accurate results can be obtained for
painting retrieval or recognition. For example, by automatically learning a dic-
tionary for Cubism which captures the features associated to straight lines, we
expect to easily detect that the paintings (1) and (9) in Fig.3.1 belong to the same
category. Our experiments, conducted on the new DART (Dictionary ART)
dataset, confirm our intuition and demonstrate that the learned dictionaries can
be successfully used to recognize the artistic styles.

To summarize, the main contributions of section 3.1 are: (i) We are the first
to introduce the idea of learning style-specific dictionaries for automatic analy-
sis of paintings. (ii) A novel multi-task dictionary learning approach is proposed
through embedding all tasks into an optimal learned subspace. Our multi-task
learning strategy permits to effectively separate artist-specific and style-specific
patterns, improving recognition performances. The proposed machine learn-
ing framework is a generic one and can be easily applied to other problems.
(iii) We collected the DART dataset which contains paintings from different art

Tropicale, Martinique, Gauguin; 11) The Night Watch, Rembrandt; 12) Living Still Life, Dali.
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movements and different artists.

3.1.2 Related Work

3.1.2.1 Automatic Analysis of Paintings

In literature, [22] were the first to borrow ideas from classification systems for
automatic analysis of visual art and studied the differences between paintings
and photographs. Image features such as edges, spatial variation of colors, num-
ber of unique colors, and pixel saturation were used for classification. [57]
compared van Gogh with his contemporaries by statistical analysis of a mas-
sive set of automatically extracted brushstrokes. [14] introduced the problem
of artistic image annotation and retrieval and proposed several solutions us-
ing graph-based learning techniques. [101] proposed a SOM-based model for
studying and visualizing the relationships among painting collections of differ-
ent painters. [123] presented an analysis of the affective cues extracted from
abstract paintings by looking at low-level features and employing a bag-of-
visual-words approach. Few works focused specifically on inferring style from
paintings [51, 86]. However, none of these works have studied the problem of
decoupling artist-specific and style-specific patterns as we do with our multi-
task dictionary learning framework.

3.1.2.2 Dictionary and Multi-task Learning

Dictionary learning has been shown to be able to find succinct representations
of stimuli. Recently, it has been successfully applied to a variety of problems
in computer vision, pattern recognition and image processing, e.g. image clas-
sification [117], denoising [31]. Different optimization algorithms [1, 55] have
also been proposed to solve dictionary learning problems. However, as far as
we know, there is no research work on learning dictionary representations for
recognizing artistic styles.
Multi-task learning [6, 113, 114] methods aim to simultaneously learn clas-
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sification and regression models for a set of related tasks. This is typically
advantageous as compared to considering single tasks separately and not ex-
ploiting their relationships. The goal of multi-task learning is to improve the
performance by learning models for multiple tasks jointly. This works particu-
larly well if these tasks have some commonality while are all slightly under-
sampled. However, there is hardly any work on combining multi-task and
dictionary learning problems. [82] developed an efficient online algorithm for
dictionary learning from multiple consecutive tasks based on the K-SVD algo-
rithm. Another notable exception is [70] where theoretical bounds are provided
to study the generalization error of multi-task dictionary learning algorithms.
[19, 20, 122] proposed different convex formulations for feature selection prob-
lems. These works are very different from ours, since we focus on a specific
applicative scenario and propose a novel multi-task dictionary learning algo-
rithm.

3.1.3 Learning Style-specific Dictionaries

In this section we present our multi-task dictionary learning approach for in-
ferring style-specific representations from paintings. In the following we first
describe the chosen feature descriptors and then the proposed learning algo-
rithm.

3.1.3.1 Feature Extraction from Paintings

Color, composition and brushstrokes are considered to be the three most impor-
tant components in paintings. Therefore, to represent each painting, we con-
struct a 37-dimensional feature vector as proposed in [101], including color,
composition and lines informations (Fig.3.2).

Color. Following [101], the color features are computed as a function of lumi-
nance and hue. They are: (i) The visual temperature of color (the feel of warmth
or coldness of color), as the wavelengths of the visible color light waves are con-
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Figure 3.2: Extracted features: color (light blue), composition (red) and lines (blue).

sidered to be related to the human perception of color temperatures. Different
emotions can be expressed by using cold or warm color temperatures. (ii) The
visual weight of color (the feel of heaviness of color). From the perspective of
psychology, people usually feel that a darker color is heavier and a lighter color
is lighter. (iii) The expressiveness of color (the degree of contrast including
the contrast between luminance, saturation, hue, color temperature, and color
weight). Global and local contrast features are both used to measure the differ-
ences between pixel and image regions.
Composition. The composition represents the spatial organization of visual el-
ements in a painting. For each image we compute a saliency map. The saliency
map is divided into three parts both horizontally and vertically and we con-
sider the mean salience for each of the nine sections to compute the “rule of
thirds”. Additionally, properties of the most salient region such as size, elonga-
tion, rectangularity and the most salient point are used to represent properties
of ‘golden section’ composition principles. In details, elongation measures the
symmetricity along the principal axes, rectangularity measures how close it is to
its minimum bounding rectangle, the most salient point is the global maximum
of the saliency map.

Lines. Lines in paintings are generally perceived as edges. Different styles of
paintings or different painters may favour a certain type of line. To interpret the
concepts of lines, the Hough Transform is adopted to find straight lines that are
above a certain threshold (longer than 10 pixels). The mean slope, mean length,
and standard deviation of slopes of all the detected straight lines are calculated.
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Algorithm 2: Learning artist-specific and style-specific dictionaries.
Input:

Samples X1, ...,Xk from K tasks
Subspace dimensionality s, dictionary size l, regularization parameters λ1, λ2.

Output:
Optimized P ∈ Rd×s, Ck ∈ R

nk×l, Dk ∈ R
l×d, D ∈ Rl×s.

1: Initialize P using any orthonormal matrix
2: Initialize Ck with l2 normalized columns
3: repeat

Compute D using Algorithm 2 in [66]
for k = 1 : K

Compute Dk using Algorithm 2 in [66]
Compute Ck using FISTA [8]

end for
Compute P by eigendecomposition of B = X′(I − C(C′C)−1C′)X;
until Convergence;

3.1.3.2 Multi-task Dictionary Learning

Intuitively, in this and in many other applications [52, 67], it is reasonable to
expect that more accurate recognition results are achieved if class specific dic-
tionaries are adopted rather than generic ones. To this end, in this section we
demonstrate that better classification performance are obtained when we con-
sider a style-specific dictionary for each artistic style. In details, we propose
to jointly learn a set of artist-specific dictionaries and discover the underlying
style-specific dictionary projecting data in a low dimensional subspace.

More formally, for each painting style we consider K tasks and the k-th task
corresponds to the k-th artist. Each task consists of data samples denoted by
Xk = [x1

k, x
2
k, ..., x

nk
k ], Xk ∈ IRnk×d, k = 1, ...,K, where xi

k ∈ IRd is a d-dimensional
feature vector and nk is the number of samples in the k-th task. We propose
to learn a shared subspace across all tasks, obtained by an orthonormal projec-
tion P ∈ IRd×s, where s is the dimensionality of the subspace. In this learned
subspace, the data distribution from all tasks should be similar to each other.
Therefore, we can code all tasks together in the shared subspace and achieve
better coding quality. The benefits of this strategy are: (i) We can improve each
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individual coding quality by transferring knowledge across all tasks. (ii) We can
discover the relationship among different tasks (artists) via coding analysis. (iii)
The common dictionary among tasks, i.e. the style-specific dictionary, can be
learned by embedding all tasks into a good sharing subspace. These objectives
can be realized solving the optimization problem:

min
Dk,Ck,P,D

K∑
k=1
‖Xk − CkDk‖

2
F + λ1

K∑
k=1
‖Ck‖1

+λ2
K∑

k=1
‖XkP − CkD‖2F

s.t.


P′P = I
(Dk) j·(Dk)′j· ≤ 1, ∀ j = 1, ..., l

D j·D′j· ≤ 1, ∀ j = 1, ..., l

(3.1)

where Dk ∈ IRl×d is an over-complete (artist-specific) dictionary (l > d) with l

prototypes of the k-th task, (Dk) j· in the constraints denotes the j-th row of Dk,
and Ck ∈ IRnk×l corresponds to the sparse representation coefficients of Xk. In
the third term of Eq.3.1, Xk is projected by P into the subspace to explore the
relationship among different tasks. D ∈ IRl×s is the (style-specific) dictionary
learned in the tasks-shared subspace and D j· in the constraints denotes the j-th
row of D. Moreover, I is the identity matrix, (·)′ denotes the transpose operator
and λ1 and λ2 are regularization parameters. The first constraint guarantees the
learned P to be orthonormal, and the second and third constraints prevent the
learned dictionary to be arbitrarily large. In our objective function, we learn
a dictionary Dk for each task k and one shared dictionary D among k tasks.
When λ2 = 0, Eq.3.1 reduces to the traditional dictionary learning on separated
tasks. It is fundamental to underline the difference between D and Dk: D is
the learned style-specific dictionary and Dk is the dictionary associated the k-th
artist in each style. In Eq.3.1, we share the same coefficient Ck in the global and
in the task-specific reconstruction error terms. This is actually meant to enforce
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the coherence between artist-specific and style-specific dictionaries found in the
low dimensional subspace.

3.1.3.3 Optimization

To solve the problem in Eq.3.1, we adopt an alternating optimization algorithm.
The proposed algorithm is summarized in Algorithm 2. The source code for the
optimization will be made available online. In details, we optimize with respect
to D, Dk, Ck and P respectively in four steps as follows:

Step 1: Fixing Dk, Ck, P, compute D. Considering the matrices X =

[X′1, ...,X
′
k]
′, C = [C′1, ...,C

′
k]
′, we obtain

∑K
k=1 ‖XkP − CkD‖2F = ‖XP − CD‖2F .

Therefore Eq.3.1 is equivalent to:

min
D
‖XP − CD‖2F

s.t. D j·D′j· ≤ 1, ∀ j = 1, ..., l

This is equivalent to the dictionary update stage in traditional dictionary learn-
ing algorithms. We adopt the dictionary update strategy of Algorithm 2 in [66]
to efficiently solve it.

Step 2: Fixing D, Ck, P, compute Dk. To compute Dk we solve:

min
Dk

‖Xk − CkDk‖
2
F

s.t. (Dk) j·(Dk)′j· ≤ 1, ∀ j = 1, ..., l
(3.2)

Similarly to Step 1, solving (3.2) corresponds to the update stage for dictionary
learning in case of k tasks. Then, to compute Dk we also use the approach
described in Algorithm 2 in [66].

Step 3: Fixing Dk, P, D, compute Ck. Eq.3.1 is equivalent to:

min
Ck

K∑
k=1
‖Xk − CkDk‖

2
F + λ1

K∑
k=1
‖Ck‖1

+λ2
K∑

k=1
‖XkP − CkD‖2F
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This problem can be decoupled into n′ = n1 + n2 + ... + nk distinct problems:

min
ci

k

‖xi
k − ci

kDk‖
2
2 + λ1‖ci

k‖1 + λ2‖xi
kP − ci

kD‖
2
2 (3.3)

We adopt the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) [8]
to solve the problems in Eq.3.3. FISTA solves the optimization problems in
the form of minµ f (µ) + r(µ), where f (µ) is convex and smooth, and r(µ)
is convex but non-smooth. We adopt FISTA since it is a popular tool for
solving many convex smooth/non-smooth problems and its effectiveness has
been verified in many applications. In our setting, we denote the smooth term
part as f (ci

k) = ‖xi
k − ci

kDk‖
2
2 + λ2‖xi

kP − ci
kD‖

2
2 and the non-smooth term part as

g(ci
k) = λ1‖ci

k‖1.

Step 4: Fixing Dk, Ck, D, compute P. Considering X = [X′1, ...,X
′
k]
′, C =

[C′1, ...,C
′
k]
′, we solve:

min
P
‖XP − CD‖2F

s.t. P′P = I (3.4)

Substituting D = (C′C)−1C′XP back into the above function, we obtain:

min
P

tr(P′X′(I − C(C′C)−1C′)XP)

s.t. P′P = I

The optimal P is composed of eigenvectors of the matrix B =

X′(I − C(C′C)−1C′)X corresponding to the s smallest eigenvalues.

After the optimized dictionaries are obtained for styles and artists, the final
classification of a test image is based on computing its sparse coefficient and
calculating the minimal reconstruction error, similarly to [67, 119].
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Braque
Ceiling in the Louvre, 

1952

Gris
Bottle and Glass on a Table, 

1914

Monet
Bouquet of mallows, 

1880

Gauguin
Bord de Mer II, 

1887

Titian
Center panel of resurrection, 

1542

Raphael
Cecilia,

1516

Figure 3.3: Examples of paintings from the DART dataset. Each image is associated with a
detailed description containing year, artist and painting name.

3.1.4 Experimental Results

In this section we introduce the DART dataset and evaluate the effectiveness of
our method.

3.1.4.1 Dataset

The DART dataset contains paintings collected from the web representing six
different artistic styles, i.e., Baroque, Cubism, Impressionism, Postimpression-

ism, Renaissance and Modern. Examples with a detailed description for artists,
painting name and year as recorded in DART are shown in Fig.3.3. For each
style the painting of at least three artists have been collected. As shown in Ta-
ble 3.1, there are totally 1616 paintings in the DART dataset. There is a high
variability in paintings as each artist typically developed different painting tech-
niques and styles as time passed. Therefore, for each painter, we ensured that
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Table 3.1: Structure of the DART dataset.
Artistic Style Artists # of paintings

Baroque
Rubens 60

Rembrandt 104
Poussin 117

Cubism
Braque 113

Gris 119
Picasso 62

Impressionism
Monet 108
Renoir 109
Manet 58

Post-impressionism
van Gogh 134
Gauguin 136
Odilon 69

Renaissance

Raphael 67
Titian 92
Bosch 46

Caravaggio 59

Modern
Mondrian 60

Frida 45
Dali 58

the selected artworks cover a wide range of techniques and subjects. We also
ensured that the paintings are from different periods of the artist life. To the
best of our knowledge, DART is the largest high quality art dataset available
with paintings and associated descriptions so far.

3.1.5 Experimental Setup and Baselines

In our experiments we randomly split the dataset into two parts, half for train-
ing and half for testing. We repeated the experiments ten times. The average
results and associated standard deviations are reported. We set the regulariza-
tion parameters, the subspace dimensionality s and the dictionary size l with
cross-validation.

We compare the proposed method with several state-of-the-art single-task
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dictionary learning and multi-task learning methods. Specifically we consider
(1) Support Vector Machine (SVM); (2) Elastic Net (EN), as it is the classifier
used for painting style analysis in [51]; (3) Dictionary Learning by Aggregating

Tasks (AT-DL), i.e. performing single task dictionary learning by simply aggre-
gating data from all tasks; (4) Locality-constrained Linear Coding (LLC) [99],
a method which uses the locality constraints to project each descriptor into its
local-coordinate system and integrates the projected coordinates by max pool-
ing to generate the final representation; (5) Graph Structure Multi-Task Learn-

ing3 (GSMTL) [133], a state-of-the-art multi-task learning method imposing
graph structure to exploit tasks relationship; (6) Dirty Model Multi-Task Learn-

ing3 (DMMTL) [49], a multi-task learning algorithm based on `1/`q-norm regu-
larization; (7) Robust Multi-Task learning3 (RMTL) [21], a multi-task learning
approach which imposes a low rank structure capturing task-relatedness and
detects outlier tasks.

3.1.5.1 Quantitative Evaluation

We conduct extensive experiments to evaluate the effectiveness of the proposed
method in recognizing artistic styles. Table 3.2 compares our approach with dif-
ferent single-task dictionary learning and multi-task methods. From Table 3.2,
the following observations can be made: (i) Our proposed style-specific dic-
tionary learning method significantly outperforms generic single task methods
such as SVM and EN. (ii) Multi-task learning approaches (GSMTL, DMMTL,
RMTL) always perform better than single-task dictionary learning (AT-DL,
LLC) since they consider the correlation among paintings of different artists
with the same style. (iii) Our approach performs better than the other multi-task
learning methods, due to its unique ability of combining multi-task and dictio-
nary learning. By introducing style-specific dictionaries a more discriminative
data representation is obtained.

3 http://www.public.asu.edu/∼jye02/Software/MALSAR/

42



Table 3.2: Comparison with baseline methods.
Methods Average accuracy
SVM 0.564 ± 0.004
EN [51] 0.624 ± 0.007
AT-DL 0.595 ± 0.003
LLC [99] 0.642 ± 0.003
GSMTL [133] 0.681 ± 0.010
DMMTL [49] 0.651 ± 0.005
RMTL [21] 0.672 ± 0.006
Ours 0.745 ± 0.003

Table 3.3: Evaluation on different features combinations.
Features Average accuracy
Raw Pixels 0.527 ± 0.004
Color 0.533 ± 0.002
Composition 0.571 ± 0.008
Lines 0.489 ± 0.003
Color + Composition 0.632 ± 0.005
Color + Lines 0.598 ± 0.004
Composition + Lines 0.675 ± 0.006
Color + Composition + Lines 0.745 ± 0.005

Fig. 3.4(left) shows the confusion matrix obtained with the proposed method.
Cubism achieves relative high recognition accuracies compared with other
styles, which is reasonable since the paintings belonging to Cubism contain
many “long lines” compared with other styles. This aspect is evident observ-
ing Fig. 3.1. Moreover, many Impressionism and Postimpressionism paintings
are misclassified into the other class because these styles are more correlated.
In the literature, Postimpressionism was influenced by Impressionism. Indeed,
Postimpressionism was meant to extend Impressionism. The painters continued
to use vivid colors and brushtrokes and focused on real-life subjects, but they
were more interested to emphasize geometric forms, use unnatural colors and
distort the original forms for more expressive effects.

We also evaluate our approach with respect to different parameters,
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Figure 3.4: (Left) Confusion Matrix on DART dataset. (Middle) Performance at varying dic-
tionary size l and subspace dimensionality s. (Right) Visualization of contributions of each
component for the Cubism style. Different colors represent different components, i.e. color
(green), composition (red) and lines (blue).

namely the dictionary size l and the different subspace dimensionality s.
Fig. 3.4(middle) shows that the proposed method achieves the best results when
the dictionary size is 100 and the subspace dimensionality is 25. Too large or too
small values for dictionary size and subspace dimensionality tend to decrease
the performance. We also analyze the convergence of the proposed approach.

It is also interesting to investigate the contributions of each component
(color, composition, and lines) for painting style classification. To evaluate this,
we set the dictionary length equal to the dimensions of the feature vector and
averaged the learned sparse codes for each style. Fig. 3.4(right) visualizes the
contribution of each component for the Cubism style. We observe that the line
features contribute the most to the recognition of the Cubism style. We also
quantitatively evaluate the importance of different features on recognizing all
styles as shown in Table 3.3. Raw pixels, color, composition, lines and their
combinations are considered. Experimental results shows that using high-level
features is advantageous with respect to simply using raw pixels. Moreover,
combining all the heterogeneous features is greatly beneficial in terms of accu-
racy. While raw pixels are not appropriate for classification, to give a better idea
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Figure 3.5: Visualization of learned dictionaries when using raw pixels features for (left) Cu-
bism and (right) Renaissance.

of the output of our method, we use pixel values as features to learn the dictio-
nary for each specific style. Fig. 3.5 visualizes the qualitative learned dictionar-
ies for the Cubism and the Renaissance style, respectively. It is interesting to
notice that the learned dictionaries share some similarity while many visual pat-
terns are different. This clearly implies the necessity of learning style-specific
dictionaries for paintings classification.

Finally, to further validate the proposed feature representation, we show a
phylogenetic tree reflecting the similarities among artists (Fig. 3.6). The sim-
ilarities are measured by euclidean distance among the average values of our
feature vectors. Then a hierarchical clustering algorithm is applied. We can
clearly see that painting collections of the same artistic styles are much more
similar to each other than painting collections of different art movements (e.g.

Dali is clustered with Frida Kahlo and Mondrian rather than with Rubens or
Picasso).
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Figure 3.6: The phylogenetic tree reflecting the similarities among artists. (Figure is best viewed
under zoom).

3.2 Discriminative multi-task dictionary learning for image
classification2

Following the work on painting style recognition with multi-task dictionary
learning in section 3.1, we step further to present our work on image classi-
fication with dictionary learning in section 3.2.
Sparse coding (Dictionary learning) was shown to be able to find succinct rep-
resentations of stimuli. Recently, it has been successfully applied to a variety
of problems in image processing analysis. Sparse coding models data vectors
as a linear combination of a few elements from a dictionary. However, most
existing sparse coding methods are applied for a single task on a single dataset.
The learned dictionary is then possibly biased towards the specific dataset and
lacks of generalization abilities. In light of this, in section 3.2 we propose a
multi-task sparse coding approach by uncovering a shared subspace among het-
erogeneous datasets. The proposed multi-task coding strategy leveraged the

2Gaowen Liu, Yan Yan, Jingkuan Song, Nicu Sebe: Minimizing dataset bias: Discriminative multi-task sparse
coding through shared subspace learning for image classification. International Conference on Image Processing
(ICIP): 2869-2873, 2014
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commonality benefit from different datasets. Moreover, our multi-task coding
framework is capable of direct classification by incorporating label information.
Experimental results show that the dictionary learned by our approach has more
generalization abilities and our model performs better classification compared
to the model learned from only one dataset or the model learned from simply
pooling different datasets together.

3.2.1 Introduction

Recently, sparse coding has been successfully applied to a variety of problems
in image processing, e.g. image classification [117], image denoising [31] and
image segmentation [68]. Different optimization algorithms [1, 55] have also
been proposed to solve sparse coding problems. Sparse coding was shown to be
able to find succinct representations of stimuli and model data vectors as a linear
combination of a few elements from a dictionary. However, in terms of image
recognition task, most sparse coding methods work on a single task on a single
dataset. Therefore, the learned dictionary can be highly biased towards the
specific dataset and can be lack of generalization abilities. The dataset selection
bias [25, 90, 91, 97, 127] is a common problem in research. In [97], the authors
point out that despite the best efforts of the dataset creator, the datasets always
appear to have strong build-in bias. Nowadays, most experimental evaluations
are often done within a heterogeneous dataset, so it is questionable that the
results are a reliable indicator of true generalization. The learned dictionary
based on a dataset could not probably carry enough general information to be
applied to different datasets.

Multi-task learning [4] aims to simultaneously learn classification/regression
models for a set of related tasks. This typically leads to better models as com-
pared to a learner that does not consider task relationships. Multi-task learning
has been successfully applied to different computer vision and image process-
ing problems, such as image classification [126], human headpose estimation
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Figure 3.7: Framework of Discriminative Multi-task Sparse Coding through Shared Subspace
Learning.

[107, 110] and human action recognition [104, 109]. In [70], authors provide
theoretical bounds on the generalization error of sparse coding for multi-task
learning and transfer learning. Considering the goal of minimizing the dataset
bias and dictionary generalization, in this section we propose a new multi-task
sparse coding approach by uncovering a shared subspace of different datasets.
Moreover, since the traditional sparse coding framework cannot directly clas-
sify the data, we incorporate label information into our sparse coding frame-
work. This enables our proposed model to be directly used for classification.
The overall framework of our proposed method is shown in Fig.1. Different
tasks are embedded in the shared subspace to be coded together and then the la-
bel information from different tasks is incorporated. The codes learned by this
framework contain discriminative information and this can be used for classifi-
cation. Experimental results show that the dictionary learned by our approach
has more generalization abilities and our model has better classification perfor-
mance compared to the model learned from only a single dataset or the model
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learned from simply pooling different datasets together.
To sum up, section 3.2 makes the following contributions:

• We propose a multi-task sparse coding algorithm by exploiting shared sub-
space learning and an efficient solver is devised;

• The learned dictionary based on our approach has more generalization
abilities towards different datasets;

• The relationship among different tasks could be discovered through the
learned shared subspace;

• Our model can be directly used for classification due to the adding of label
information.

The rest of this section is organized as follows. Section 3.2.2 elaborates the
details of our Muti-task Sparse Coding approach and illustrates how we design
it directly for classification. Section 3.2.3 reports the experimental results, fol-
lowed by conclusion in section 3.2.4.

3.2.2 Problem Formulation

In this section, we first present our multi-task sparse coding framework and then
illustrate how we make the framework suitable for classification. An optimiza-
tion algorithm is further proposed to solve the problem.

3.2.2.1 Multi-task Sparse Coding

Suppose we are given K tasks and each task consists of data samples denoted
by Xk = {x1

k , x
2
k , ..., x

nk
k } ∈ Rnk×d, (k = 1, ...,K), where xi

k ∈ Rd is a d-dimensional
feature vector, nk is the number of samples in the k-th task. We are going to learn
a shared subspace, obtained by an orthonormal projection W ∈ Rd×s across all
tasks, where s is the dimensionality of the subspace. In this learned subspace,
the data distribution from all tasks should be similar to each other. Therefore,
we can code all tasks together in the shared subspace and achieve better coding
quality. The benefits of this strategy are: (i) we can improve each individual
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coding quality by transferring knowledge across all tasks. (ii) we can discover
the relationship among different datasets via coding analysis. We consider the
following optimization problem:

min
Dk ,Ck ,W,D

K∑
k=1
‖Xk −CkDk‖

2
F + λ1

K∑
k=1
‖Ck‖1

+λ2
K∑

k=1
‖XkW −CkD‖2F

s.t.


WT W = I

(Dk) j·(Dk)T
j· ≤ 1, ∀ j = 1, ..., l

D j·DT
j· ≤ 1, ∀ j = 1, ..., l

(3.5)

where Dk ∈ Rl×d is an overcomplete dictionary (l > d) with l prototypes of
k-th task, (Dk) j· in the constraints denotes the j-th row of Dk. Ck ∈ Rnk×l are the
sparse representation coefficients of Xk. In the third term of Eqn.1, Xk is pro-
jected by W to the subspace to explore the relationship among different tasks.
D ∈ Rl×s is the dictionary learned in the subspace. D j· in the constraints de-
notes the j-th row of D and I is an identity matrix. (·)T denotes the transpose
operator. λ1 and λ2 are regularization parameters. The first constraint guaran-
tees the learned W to be orthonormal. The second and third constraints prevent
learned dictionary being arbitrarily large. When λ2 = 0, Eqn.1 converts to the
traditional sparse coding on separated tasks.

3.2.2.2 Discriminative Multi-task Sparse Coding for Classification

It is well-known that the traditional sparse coding framework is not suitable for
classification and the learned dictionary is merely used for signal reconstruction.
To circumvent this problem, researchers have developed several algorithms to
learn a classification-oriented dictionary in a supervised learning fashion by
exploring the label information. In this subsection, we extend our proposed
Multi-task Sparse Coding of Eqn.1 to be suitable for classification.

Assuming the k-th task has mk classes, the label information of the k-th task is
Yk = {y1

k, y
2
k, ..., y

nk
k } ∈ Rnk×mk , (k = 1, ...,K), yi

k = [0, ..., 0, 1, 0, ..., 0] (the position
of a non-zero element indicates the class). Θk ∈ Rl×mk is the parameter of the
k-th task classifier. Inspired by [130], we consider the following optimization
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Algorithm 3: Algorithm for Multi-task Sparse Coding.
Input:

K tasks Data (X1, ..., Xk) and Label (Y1, ...,Yk);
Subspace dimensionality s, Dictionary size l, Regularization parameters λ1, λ2, λ3.

Output:
Optimized W ∈ Rd×s, Ck ∈ R

nk×l, Dk ∈ R
l×d, D ∈ Rl×s, Θk ∈ R

l×mk .
1: Initialize W using any orthonormal matrix;
2: Initialize Ck with l2 normalized columns;
3: repeat

Compute D using Algorithm 2 in [66];
for k = 1 : K

Compute Dk using Algorithm 2 in [66];
Adopting FISTA [8] to solve Ck;
Θk = (CT

k Ck)−1CT
k Yk;

end for
Compute W by eigen decomposition of XT (I −C(CTC)−1CT )X;
until Convergence;

problem:
min

Dk ,Ck ,Θk ,W,D

K∑
k=1
‖Xk −CkDk‖

2
F + λ1

K∑
k=1
‖Ck‖1

+λ2
K∑

k=1
‖XkW −CkD‖2F + λ3

K∑
k=1
‖Yk −CkΘk‖

2
F

s.t.


WT W = I

(Dk) j·(Dk)T
j· ≤ 1, ∀ j = 1, ..., l

D j·DT
j· ≤ 1, ∀ j = 1, ..., l

(3.6)

Compared with Eqn.1, we added the last term in Eqn.2 to incorporate the dis-
criminative power for classification . This objective function can simultane-
ously achieve a desired dictionary with good representation power and support
optimal discrimination of the classes for multi-task setting. To solve the pro-
posed objective problem of Eqn.2, we adopt the alternating minimization al-
gorithm to optimize it with respect to D, Dk, Ck, Θk and W respectively. We
propose Algorithm 3 to solve the objective function of Eqn.2.

After the optimized Θ is obtained, the final classification of a test image is
based on its sparse coefficient ci

k, which carries the discriminative information.
We can simply apply the linear classifier ci

kΘk to obtain the predicted label of
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the image.

3.2.3 Experiments

In this section, we conduct the experiments to evaluate the effectiveness of our
framework.

3.2.3.1 Datasets

Since our aim is to evaluate the generalization ablity of our proposed method,
we use the Animals with Attributes (AwA) dataset1 and a subset (25 animal
classes) of the Caltech-101 dataset2. In this way, images from two datasets
are all animals which are reasonable for multi-task learning to share similarity
among tasks. The examples from these two datasets are shown in Fig.3.8. We
can observe that the Caltech-101 dataset has small spatial variances (the target
object is often in the central part of the images). However, the AwA dataset
has large spatial variances. This dataset selection bias gives us the possibility to
evaluate our proposed method.

3.2.3.2 Experiment Settings

For both datasets, SIFT features are extracted from 16 × 16 patches with a stride
of 6 pixels. Spatial pyramid features based on SIFT features are extracted for
3-level (1 × 1, 2 × 2, 4 × 4) pyramid. The codebook size for spatial pyra-
mid is set as 512 × (1 + 4 + 16). In each spatial sub-region of the spatial
pyramid, the vector quantization codes are pooled together using max pool-
ing to form the pooled feature. The final spatial pyramid feature is reduced to
1000 dimensions by PCA. We set the regularization parameters in the range of
{10−2, 10−1, ..., 102}. The subspace dimensionality s is set by searching the grid
from {100, 200, 400, 600}. For the experiments in this section, we tried four

1http://attributes.kyb.tuebingen.mpg.de/
2http://www.vision.caltech.edu/Image Datasets/Caltech101/
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Figure 3.8: Example images from AwA dataset (top) and Caltech-101 dataset (bottom).

different dictionary sizes from {512, 768, 1024, 1280}. The presented results
denote the mean classification accuracy corresponding to five randomly chosen
training sets.

3.2.3.3 Quantitative Evaluation

In this subsection, we report the quantitative evaluation results. We compare
our multi-task sparse coding to the following baselines:

• Separately coding: Performing sparse coding separately on each dataset;

• Pooling coding: Performing sparse coding simply putting all datasets to-
gether.

Fig.3.9(a)-(b) show experimental results when we vary the dictionary size (5
training samples per class and 200 dimensional subspace are used). We can ob-
serve that (i) Coding different datasets together performs better than coding each
dataset separately. This proves that the dataset bias exists. (ii) Our multi-task
sparse coding strategy always outperforms single task sparse coding or simply
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Figure 3.9: Performance comparisions (5 training samples per class used) (a) Different dictio-
nary size on Caltech-101 dataset; (b) Different dictionary size on AwA dataset; (c) Different
subspace size on Caltech-101 and AwA dataset.

coding datasets together with various dictionary sizes. This shows that shar-
ing information among multiple tasks could be used for minimizing the dataset
selection bias. Fig.3.9(c) shows experimental results with various subspace di-
mensions (5 training samples per class and dictionary length of 1024 are used).
We observe that the best performance is achieved when the subspace dimen-
sionality is 200 and the performance is sensitive to the subspace dimensional-
ity, which means that we need to embed different tasks into a good subspace to
share information among different tasks effectively.

We also study the parameter sensitivity of the proposed method in Fig.3.10.
Here, we fix λ3 = 1 (discriminative information contribution fixed) and analyze
the regularization parameters λ1 and λ2. We observe that the proposed method
is more sensitive to λ2 compared with λ1, which demonstrates the importance
of the subspace for multi-task sparse coding. At last, we compare our pro-
posed method to several sparse coding based [117, 130] and subspace feature
selection based [64] classification approaches. [117] is a spatial-pyramid image
representation based on sparse codes and max pooling. [130] is a dictionary-
learning approach by adding a discriminative term into the objective function
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Figure 3.10: Sensitivity study of parameters λ1 and λ2 (5 training samples per class used) on (a)
Caltech-101 dataset; (b) AwA dataset.

of the original K-SVD algorithm. [64] is a method which combined shared fea-
ture subspace uncovering and joint feature selection with sparsity. However,
all these methods are only in the single task settings. The comparision results
are listed in Table 1. From the table, we observe that our proposed multi-task
coding achieves higher classification accuracy compared to the methods based
on single task, which shows the effectiveness of our proposed method.

Table 3.4: Recognition accuracy (5 training samples per class)

Datasets
Method Caltech-101 (25 classes) AwA
Proposed 0.492 0.265
Ma [64] 0.433 0.203
Zhang [130] 0.451 0.211
Yang [117] 0.454 0.209
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3.2.4 Conclusion

In section 3.1, we investigated how to automatically infer painting styles from
the perspective of dictionary learning and we proposed a novel multi-task dic-
tionary learning approach to discover a low dimensional subspace where a style-
specific dictionary representation can be computed. We conducted extensive ex-
periments to evaluate our algorithm on the new DART dataset. Our results show
that our style-specific approach performs significantly better than a generic one
and that the proposed multi-task method achieves higher accuracy than state of
the art dictionary learning algorithms.
In section 3.2, we have proposed a supervised version of multi-task dictionary
learning based on different datasets. The proposed model learns a shared sub-
space to transfer knowledge among different datasets. The model is also able to
perform classification and we apply it for image annotation. Experimental re-
sults show that the dictionary learned by our approach has more generalization
abilities and our model performs better classification compared to the model
learned from only one dataset or the model learned from simply pooling differ-
ent datasets together.

In next chapter, we will introduce an unsupervised multi-task clustering
framework for first-person vision activity recognition.
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Chapter 4

Activity recognition via Multi-task
Clustering1

Recognizing human activities from videos is a fundamental research problem
in computer vision. Recently, there has been a growing interest in analysing hu-
man behaviour from data collected with wearable cameras. First-person cam-
eras continuously record several hours of their wearers’ life. To cope with this
vast amount of unlabelled and heterogeneous data, novel algorithmic solutions
are required. In this chapter, we propose a multi-task clustering framework for
address the problem of activity of daily living analysis from visual data gathered
from wearable cameras. Our intuition is that, even if the data are not annotated,
it is possible to exploit the fact that the tasks of recognizing everyday activities
of multiple individuals are related, since typically people perform the same ac-
tions in similar environments (e.g. people working in an office often read and
write documents). In our framework, rather than clustering data from different
users separately, we propose to look for clustering partitions which are coherent
among related tasks. Specifically, two novel multi-task clustering algorithms,
derived from a common optimization problem, are introduced. Our experimen-
tal evaluation, conducted both on synthetic data and on publicly available first-

1Yan Yan, Elisa Ricci, Gaowen Liu, Nicu Sebe: Egocentric Daily Activity Recognition via Multitask Cluster-
ing. IEEE Transactions on Image Processing 24(10): 2984-2995, 2015
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1. Data from each single task must be clustered appropriately.

2. Coherence among partitions of related tasks should be enforced.

First-Person Vision 
Activities Feature Space

Figure 4.1: Overview of our multi-task clustering approach for FPV activity recognition (Figure
best viewed in color).

person vision datasets, shows that the proposed approach outperforms several
single task and multi-task learning methods.

4.1 Introduction

Research in wearable sensor-based activity recognition leverages the data auto-
matically collected from sensors embedded into mobile devices to predict the
user daily activities in real-time. RFID, GPS and accelerometers represent the
most popular wearable sensors and several works [16, 94] have already pro-
posed to exploit them for inferring people behaviors. Nowadays, wearable cam-
eras are becoming increasingly common among consumers. Wearable cameras
can be employed in many different applications, such as life-logging, ambient
assisted living, personal security and drivers’ assistance. It is intuitive that,
while GPS and inertial sensors may suffice for detecting simple activities (i.e.
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running, walking), only by analyzing visual informations from wearable cam-
eras more complex behaviors can be inferred.

Activity of Daily Living (ADL) analysis has attracted considerable atten-
tion in the computer vision and image processing communities [7, 56, 71, 80].
Analyzing visual streams recorded from video surveillance cameras to automat-
ically understand what people do is a challenging task [98]. It implies not only
to infer the activities of a single individual, but also to recognize the environ-
ment where he/she operates, the people with whom he/she interacts, the objects
he/she manipulates and even his/her future intentions. While much progress has
been made in this area, recent works [50] have demonstrated that the traditional
“third-person” view perspective (i.e. employing fixed cameras monitoring the
user environment) may be insufficient for recognizing user activities and inten-
tions and that wearable cameras provide a valid alternative.
In this chapter, we consider the problem of ADL analysis from a first-person
vision (FPV) perspective. Among the many challenges arising in this context,
one particular issue is related to the fact that wearable cameras are intended to
record the entire life of a person. Thus, a huge amount of visual data is automat-
ically generated. Moreover, labels are usually not available since the annotation
would require a massive human effort. As a consequence, algorithms which
are both scalable and able to operate in an unsupervised setting are required.
To face these challenges, we propose to cast the problem of egocentric daily
activity recognition within a Multi-Task Learning (MTL) framework. When
considering the tasks of inferring everyday activities of several individuals, it
is natural to assume that these tasks are related. For example, people working
in an office environment typically perform the same activities (e.g. working in
front of a personal computer, reading and writing documents). Similarly, peo-
ple at home in the morning usually make breakfast and brush their teeth. In
this chapter we argue that, when performing activity recognition, learning from
data of several targets simultaneously is advantageous with respect to consid-
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ering each person separately. For example, if there are limited data for a sin-
gle person, typical clustering methods may fail to discover the correct clusters
and leveraging auxiliary sources of information (e.g. data from other people)
may improve the performance. However, simply combining data from different
people together and applying a traditional clustering approach does not nec-
essarily increase accuracy, because the data distributions of single tasks can be
different (i.e. visual data corresponding to different people may exhibit different
features). To address these problems, we propose a novel Multi-Task Cluster-
ing (MTC) framework from which we derive two different algorithms. Our
approach ensures that the data of each single task are clustered appropriately
and simultaneously enforces the coherence between clustering results of related
tasks (Fig. 4.1). To demonstrate the validity of our method we first conduct
experiments on synthetic data and compare it with state-of-the-art single task
and multi-task learning algorithms. Then, we show that our approach is effec-
tive in recognizing activities in an egocentric setting and we consider two recent
FPV datasets, the FPV activity of daily living dataset [77] and the coupled ego-
motion and eye-motion dataset introduced in [74]. This chapter extends our
previous work [105].
To summarize, the contributions of this chapter are the following: (i) To our
knowledge, this is the first work proposing a multi-task clustering framework
for FPV activity recognition. Most papers on MTL for human activity analy-
sis [65, 108] focus on video collected from fixed cameras and mostly rely on
supervised methods. (ii) Our work is one of the few works presenting an un-

supervised approach for MTL. The proposed MTC methods are novel and two
efficient algorithms are derived for solving the associated optimization prob-
lems. (iii) Our learning framework is general and many other computer vision
and pattern recognition applications can benefit from using it.
The chapter is organized as follows. Section 4.2 reviews related work on
first person vision activity recognition and supervised/unsupervised multi-task
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learning. In Section 4.3 our MTC framework for FPV activity recognition is
described in details. The experimental results are reported in Section 4.4. We
then conclude in Section 4.5.

4.2 Related Work

In this section, we review prior works in (i) FPV activity analysis, (ii) supervised
MTL and (iii) multi-task clustering.

4.2.1 First-person Vision Activity Analysis

Automatically analyzing human behavior from videos is a widely researched
topic. Many previous works have focused on recognizing everyday activities
[56, 71, 80]. In [71] features based on the velocity history of tracked keypoints
are proposed for detecting complex activities performed in a kitchen. A kitchen
scenario is also analyzed by Rohrbach et al. [80] and an approach for fine-
grained activity recognition is presented. More recently, RGB-D sensors are
exploited for ADL analysis [56] and improved performance is obtained with
respect to approaches based on traditional cameras. However, all these works
consider a “third-person” view perspective, i.e. they are specifically designed
to analyse video streams from fixed cameras.

The challenges of inferring human behavior from data collected by wear-
able cameras are addressed in [34–36, 74, 75, 77, 95]. Aghazadeh et al. [75]
proposed an approach for discovering anomalous events from videos captured
from a small camera attached to a person’s chest. In [62] a video summariza-
tion method targeted to FPV is presented. Fathi et al. [36] introduced a method
for individuating social interactions in first-person videos collected during so-
cial events. Some recent works have focused on FPV-ADL analysis considering
different scenarios (e.g. kitchen, office, home) [34, 35, 74, 77, 95]. In [77] Pirsi
et al. introduced some features based on the output of multiple object detectors.
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In [74] the task of recognizing egocentric activities in an office environment is
considered and motion descriptors extracted from an outside looking camera are
combined with features describing the user eye movements captured by an in-
side looking camera. In [95] activity recognition in a kitchen scenario (i.e. mul-
tiple subjects preparing different recipes) is considered. A codebook learning
framework is proposed in order to alleviate the problem of the large within-class
data variability due to the different execution styles and speed among different
subjects. Ryoo et al. [83] investigated multi-channel kernels to integrate global
and local motion information and presented a new activity recognition method-
ology that explicitly models the temporal structures of FPV data. In [78] an
approach for temporal segmentation of egocentric videos into twelve hierarchi-
cal classes is presented. Differently from these previous works, in this chapter
we address the problem of FPV ADL analysis proposing a multi-task learning
framework.

4.2.2 Supervised Multi-task Learning

Multi-task learning methods [15] have recently proved to be particularly effec-
tive in many applications, such as complex event detection [111], object detec-
tion [85], head pose estimation [112], image classification [63], painting style
recognition [61], etc. The idea of MTL is simple: given a set of related tasks, by
simultaneously learning the corresponding classification or regression models,
improved performance can be achieved. Usually, the advantages of MTL over
traditional approaches based on learning independent models are particularly
pronounced when the number of samples in each task is limited.

To capture the tasks dependencies a common approach is to constrain all the
learned models to share a common set of features. This motivates the intro-
duction of a group sparsity term, i.e. the `1/`2-norm regularizer as in [5]. This
approach works well in ideal cases. However, in practical applications, simply
using a `1/`2-norm regularizer may not be effective since not every task is re-
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lated to all the others. To this end, the MTL algorithm based on the dirty model
is proposed in [49] with the aim to identify irrelevant (outlier) tasks. Similarly,
robust multi-task learning is introduced in [21]. In some cases, the tasks exhibit
a sophisticated group structure and it is desirable that the models of tasks in
the same group are more similar to each other than to those from a different
group. To model complex task dependencies several clustered multi-task learn-
ing methods have been introduced [48, 131, 132]. In computer vision, MTL
have been previously proposed in the context of visual-based activity recog-
nition from fixed cameras and in a supervised setting [65, 108, 125]. In this
chapter, we consider the more challenging FPV scenario where no annotated
data are provided.

4.2.3 Multi-task Clustering

Many works on MTL focused on a supervised setting. Only few [40, 54, 129]
have considered the more challenging scenario where the data are unlabelled
and the aim is to predict the cluster labels in each single task. Gu et al. [40]
presented an algorithm where a shared subspace is learned for all the tasks.
Zhang et al. [129] introduced a MTC approach based on a pairwise agreement
term which encourages coherence among clustering results of multiple tasks. In
[54] the k-means algorithm is revised from a Bayesian nonparametric viewpoint
and extended to MTL. None of these works have focused on the problem of
visual-based activity recognition.

In this chapter, we propose two novel approaches for multi-task clustering.
The first one is inspired by the work in [129] but it is based on another objec-
tive function and thus on a radically different optimization algorithm. Further-
more, in the considered application, it provides superior accuracy with respect
to [129]. Our second approach instead permits to easily integrate prior knowl-
edge about the tasks and the data of each task (e.g. temporal consistency among
subsequent video clips). Moreover, it relies on a convex optimization problem,
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thus avoids the issues related to local minima of previous methods [40, 54, 129].

4.3 Multi-task Clustering for First-person Vision Activity
Recognition

In this section, we first introduce the motivation behind our approach, together
with an overview of the proposed framework. Then, two different MTC al-
gorithms, namely Earth Mover’s Distance Multi-Task Clustering (EMD-MTC)
and Convex Multi-task Clustering (CMTC), and their application to the problem
of FPV ADL recognition are described.

4.3.1 Motivation and Overview

We consider the videos collected from wearable cameras of several people per-
forming daily activities. No annotation is provided. We only assume that people
perform about the same tasks, a very reasonable assumption in the context of
ADL analysis.

To discover people activities, we consider T related tasks corresponding to
T different people1 and we introduce a MTC approach. For each task (per-
son) t, a set of samples Xt = {xt

1, x
t
2, ..., x

t
Nt
} is available, where xt

j ∈ IRd is the
d-dimensional feature vector describing the j-th video clip and Nt is the total
number of samples associated to the t-th task. We want to segment the entire
video clip corresponding to user t into parts, i.e. we want the data in the set Xt

to be grouped into Kt clusters. Furthermore, as we assume the tasks to be re-
lated, we also require that the resulting partitions are consistent with each other.
This is a reasonable assumption in the context of everyday activity recognition
where people perform about the same activities. Note that the number of re-
quired partitions Kt can be different for different tasks, as different people can
perform slightly different types of activities. Our assumptions are verified in

1This is not a constraint. In this chapter we focus on detecting activities for each user by exploiting related
information from other users.
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the context of ADL recognition. For example, typical activities in the morning
are preparing breakfast, eating and brushing teeth. Therefore, when analysing
video streams collected by wearable cameras of different users, it is reasonable
to expect that the recordings will capture the same or at least very similar ac-
tivities. To automatically discover these activities, we formulate the following
optimization problem corresponding to multi-task clustering:

min
Θt

T∑
t=1

Λ(Xt,Θt) + λ

T∑
t=1

T∑
s=t+1

Ω(Θt,Θs) (4.1)

The term Λ(·) represents a reconstruction error which must be minimized by
learning the optimal task-specific model parameters Θt (i.e. typically the clus-
ter centroids and the associated assignment matrix), while Ω(·) is an “agree-
ment” term imposing that, since the multiple tasks are related, also the associ-
ated model parameters should be similar. Under this framework, in this chap-
ter we propose two different algorithms for MTC. To stress the generality of
our framework, we apply the proposed algorithms in two different FPV sce-
narios: an office environment where people are involved in typical activities
such as browsing the web or writing documents and a home environment where
a chest mounted camera records users’ activities such as opening a fridge or
preparing tea. To perform experiments we use two publicly available datasets,
corresponding to the scenarios described above: the FPV office dataset intro-
duced in [74] and the FPV ADL dataset described in [77]. Both datasets con-
tain visual streams recorded from an outside-looking wearable camera while the
office dataset also has information about eye movements acquired by an inside-
looking camera. In the following subsections we describe the proposed MTC
algorithms and the adopted feature descriptors.

Notation: In the following Ai., A. j denote respectively the i-th row and
the j-th column of the matrix A. We also denote with (·)′ the transpose op-
erator, N =

∑T
t=1 Nt is the total number of datapoints, while X ∈ IRN×d,
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X = [X1′ X2′ . . . XT ′]′ is the data matrix obtained by concatenating the task
specific matrices Xt ∈ IRNt×d, Xt = [xt

1 xt
2 ... xt

Nt
]′.

4.3.2 Earth Mover’s Distance Multi-task Clustering

Given the task data matrices Xt, we are interested in finding the centroid matri-
ces Ct ∈ IRKt×d, and the cluster indicators matrices Wt ∈ IRNt×Kt by solving the
following optimization problem:

min
Ct,Wt

T∑
t=1

∥∥∥Xt −WtCt
∥∥∥2

F + λ

T∑
t=1

T∑
s=t+1

ΩE(Ct,Wt,Cs,Ws)

The first term in the objective function is a relaxation of the traditional k-means
objective function for T separated data sources. The agreement term ΩE(·) is
added to explore the relationships between clusters of different data sources and
it is defined as follows:

ΩE(Ct,Wt,Cs,Ws) = min
f st
i j ≥0

Kt∑
i=1

Ks∑
j=1

f st
i j (Ct

i. − Cs
j.)
′(Ct

i. − Cs
j.)

s.t.
Ks∑
j=1

f st
i j =

Nt∑
n=1

Wt
ni ∀t, i

Kt∑
i=1

f st
i j =

Ns∑
n=1

Ws
n j ∀s, j

Kt∑
i=1

Ks∑
j=1

f st
i j = 1 ∀s, t

It consists in the popular Earth Mover’s Distance (EMD) [81] computed con-
sidering the signatures T and S obtained by clustering the data associated to
task t and s separately, i.e. T = {(Ct

1.,w
1
t ), . . . , (Ct

Kt
.,wKt

t )}, wi
t =

∑Nt
n=1 Wt

ni,
and S = {(Cs

1.,w
1
s), . . . , (Cs

Ks
.,wKs

s )}, wi
s =

∑Ns
n=1 Ws

ni. In practice Ct
i. and Cs

j.

are the cluster centroids and ws
i , wt

i denote the weights associated to each cluster
(approximating the number of datapoints in each cluster). In practice ΩE(·) rep-
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Algorithm 4: Algorithm for solving (4.2).
Input: the data matrices X1,X2, the numbers of clusters K1, K2, the parameter λ.

1: Initialize F as an identity matrix.
2: Initialize W > 0 with l1 normalized columns and P > 0 with l1 normalized rows.
3: repeat

Given Wk, Pk, compute Fk+1 solving (4.4).
Given Fk+1, Pk, compute: Wk+1 = max(0,Wk − αk∇W∆(Pk,Wk,Fk+1)).
Given Fk+1, Wk+1, compute: Pk+1 = max(0,Pk − αk∇P∆(Pk,Wk+1,Fk+1)).

Normalize P by Pk+1
i j ←

Pk+1
i j∑

j
Pk+1

i j
.

until convergence;
Output: the optimized matrices W,P.

resents the distance between two distributions and minimizing it we impose the
found partitions between pairs of related tasks to be consistent. The variables
f st
i j are flow variables as follows from the definition of EMD as a transportation

problem [81].
In the proposed optimization problem there are no constraints on the Ct

values. In this chapter we define the matrix C ∈ IRK×d, C = [C1′ . . .CT ′]′,
K =

∑T
t=1 Kt, and we impose that the columns of C are a weighted sum of

certain data points, i.e. C = PX where P = blkdiag(P1, . . . ,PT ), P ∈ IRK×N .
In the following, for the sake of simplicity and easy interpretation, we con-
sider only two tasks. The extension to T tasks is straightforward. Defining
F = diag( f11 . . . fK1K2), F ∈ IRK1K2×K1K2 and the block diagonal matrix W =

blkdiag(W1,W2), W ∈ IRN×K, we formulate the following optimization prob-
lem:

∆(P,W,F) = min
P,W,F≥0

{‖X −WPX‖2F + λtr(MPXX′P′M′F)} (4.2)

s.t. ‖Pt
i.‖1 = 1, ∀i = 1, . . . ,K ∀ t = 1, 2

tr(I jF) =

N∑
i=1

Wi j, ∀ j = 1, ...,K (4.3)

tr(F) = 1

where: I j ∈ IRK1K2×K1K2 and M ∈ IRK1K2×K are appropriately defined selection
matrices. To solve the proposed optimization problem we develop an iterative
optimization scheme described below. It is worth noting that our method can
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Algorithm 5: Algorithm for solving (4.5).
Input: The data matrix X, E,B, the parameter λ2.

1: Set Q = ρE′E + 2I + 2λ2B.
2: Compute Cholesky factorization of the matrix Q.
3: for j=1:d do

repeat
Set bk = ρE′qk − E′pk + 2X. j

Update Π. j
Solve Q[Π. j]k+1 = bk

Update q using a soft thresholding operator
qk+1 = S T1/ρ(E[Π. j]k+1 + 1

ρpk)
Update p

pk+1 = pk + ρ(E[Π. j]k+1 − qk+1)
until convergence;

Output: The final centroid matrix Π.

be kernelized, defining a feature mapping φ(·) and the associated kernel matrix
KX = φ(X)φ(X)′. The objective function of (4.2) becomes:

‖φ(X) −WP φ(X)‖2F + λtr(MPφ(X)φ(X)′P′M′F) =

tr(KX − 2KXP′W′+WPKXP′W′ + λMPKXP′M′F)

The update rules of the kernelized version of our method can be easily derived
similarly to the linear case presented below using KX instead of X′X.

4.3.2.1 Optimization

To solve (4.2), we first note that the optimal solution can be found by adopting
an alternating optimization scheme, i.e. optimizing separately first with respect
to P and then with respect to W and F jointly. In both cases, a non-negative
least square problem with constraints arises, for which standard solvers can
be employed. However, due to computational efficiency, in this chapter we
consider an approximation of (4.2), replacing the constraints (4.3) with tr(I jF) =

e, where e ∈ IRK1K2, ei = 1
K1

, if i ≤ K1, ei = 1
K2

otherwise. This approximation
implies that for each task the same number of datapoints is assigned to all the
clusters. In this way a more efficient solver can be devised. Specifically, we

68



adopt an alternating optimization strategy, i.e. we optimize (4.2) separately
with respect to F, W and P until convergence, as explained in the following:
Step 1: Fixed W,P, optimize F solving:

min
F>0, tr(F)=1

tr(MPXX′P′M′F) (4.4)

s.t. tr(I jF) = e, ∀ j = 1, ...,K1 + K2

This is a simple linear programming problem. It can be solved efficiently with
standard solvers.

Step 2: Fixed F,P, optimize W solving:

min
W>0
‖X −WPX‖2F

Following [60], we update W using a projected gradient method for bound-
constrained optimization, i.e. Wk+1 = max(0,Wk − αk∇W∆(Pk,Wk,Fk+1)),
where ∇W∆(P,W,F) = WPXX′P′ − XX′P′.

Step 3: Fixed W,F, optimize P solving:

min
P>0
‖X −WPX‖2F + λtr(MPXX′P′M′F)

s.t. ‖Pt
i.‖1 = 1, ∀i ∀ t = 1, 2

Similarly to step 2, we update P using a projected gradient method for bound-
constrained optimization, i.e. Pk+1 = max(0,Pk − αk∇P∆(Pk,Wk+1,Fk+1)),
where ∇P∆(P,W,F) = W′WPXX′ −W′XX′ + λM′FMPXX′. To account for
constraints at each iteration we also normalize each row of P, following the
normalization invariance approach in [30].

The algorithm for solving (4.2) is summarized in Algorithm 4. Regarding
the computational complexity, the cost of solving (4.2) with the iterative ap-
proach outlined in Algorithm 4 is dominated by the first step, i.e. by the linear
programming problem in (4.4) which can be solved in polynomial time.
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4.3.3 Convex Multi-task Clustering

Given the task specific training sets Xt, we propose to learn the sets of cluster
centroids Π t = {πt

1,π
t
2, ...,π

t
Nt
},πt

i ∈ IRd, by solving the following optimization
problem:

min
πt

i

{

T∑
t=1

Nt∑
i=1

‖xt
i − π

t
i‖

2
2 + λt

T∑
t=1

Nt∑
i, j=1
j>i

wt
i j‖π

t
i − π

t
j‖1 + λ2ΩC(Π t)} (4.5)

where:

ΩC(Π t) =

T∑
t,s=1
s>t

γst

Nt∑
i=1

Ns∑
j=1

‖πt
i − π

s
j‖

2
2

In (4.5) the first two terms guarantee that the data of each task are clustered:
specifically with λt = 0 the found centroids are equal to the data-points while as
λt increases the number of different centroids πt

i reduces. The last term Ωc(Π t)
instead imposes the found centroids to be similar if the tasks are related. The
relatedness between tasks is modelled by the parameter γst which can be set
using an appropriate measure between distributions. We consider the Maximum
Mean Discrepancy [11], defined asD(Xt, Xs) = ‖ 1

Nt

∑Nt
i=1 φ(xt

i) −
1
Ns

∑Ns
i=1 φ(xs

i )‖
2

and we compute it using a linear kernel. We set γst = e−βD(Xt,Xs) with β being
a user-defined parameter (β = 0.1 in our experiments). The parameters wt

i j are
used to enforce datapoints in the same task to be assigned to the same cluster
and can be set according to some a-priori knowledge or in a way such that the
found partitions structure reflects the density of the original data distributions.

4.3.3.1 Optimization

To solve (4.5) we propose an algorithm based on the alternating direction
method of multipliers [12]. We consider the matrixΠ = [Π1′Π2′ . . . ΠT ′]′,Π ∈
IRN×d, obtained concatenating the task-specific matrices Πt = [πt

1 π
t
2 ... π

t
Nt

]′.
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Figure 4.2: Feature extraction pipeline on the FPV office dataset. Some frames corresponding
to the actions read, browse and copy are shown together with the corresponding optical flow
features (top) and eye-gaze patterns depicted on the 2-D plane (bottom). It is interesting to
observe the different gaze patterns among these activities.

The problem (4.5) can be solved considering d separate minimization subprob-
lems (one for each column of X) as follows:

minq, Π. j {‖X. j −Π. j‖
2
2 + ‖q‖1 + λ2‖BΠ. j‖22} (4.6)

s.t. EΠ. j − q = 0

where E is a block diagonal matrix defined as E = blkdiag(E1,E2, . . . ,ET ) and
Et ∈ IR|Et |×Nt is a matrix with |Et| =

Nt(Nt−1)
2 rows. Each row is a vector of all

zeros except in the position i where it has the value λtwt
i j and in the position

j where it has the value −λtwt
i j. Similarly the matrix B ∈ IR|B|×N , where |B| =

T (T−1)
2 , imposes smoothness between the parameters of related tasks. A row

of the matrix B is a vector with all zeros except in the terms corresponding to
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datapoints of the t-th task which are set to γst and to the terms corresponding to
datapoints of the s-th task which are all set to −γst. To solve (4.6) we consider
the associated lagrangian:

Lρ(Π. j,q,p) = ‖X. j −Π. j‖
2
2 + ‖q‖1 + λ2‖BΠ. j‖22

+p′(EΠ. j − q) +
ρ

2

∥∥∥EΠ. j − q
∥∥∥2

2

with p being the vector of augmented Lagrangian multipliers and ρ being the
dual update step length. We devise an algorithm where three steps, correspond-
ing to the update of the three variables Π. j,q,p, are performed.

Step 1: Update Π. j, given q,p fixed, by solving:

min
Π. j
‖X. j −Π. j‖

2
2 + ‖q‖1 + λ2‖BΠ. j‖22

+p′(EΠ. j − q) +
ρ

2

∥∥∥EΠ. j − q
∥∥∥2

2

Imposing the gradient with respect to Π. j equal to 0, the update step is formu-
lated as:

Q[Π. j]k+1 = bk

where Q = ρE′E + 2I + 2λ2B and bk = ρE′qk − E′pk + 2X. j. The computation
of Π. j involves solving a linear system. To solve it efficiently, we use Cholesky
factorization and decompose Q = Σ′Σ. In practice, at each iteration, we solve
two linear systems: Σ′g = bk and ΣΠ. j = g. Since Σ is an upper triangular
matrix, solving them is typically very efficient. Step 2: Update q, given Π. j,p
fixed, by solving:

min
q

‖q‖1 − p′q +
ρ

2

∥∥∥EΠ. j − q
∥∥∥2

2

Neglecting the constant terms, the update step is:

qk+1 = arg min
q

1
2

∥∥∥∥∥q − E[Π. j]k+1 −
1
ρ

pk
∥∥∥∥∥2

2
+

1
ρ
‖q‖1
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This equation has a closed-form solution. Defining the soft thresholding opera-
tor S Tλ(x) = sign(x) max(|x| − λ, 0) the update step becomes:

qk+1 = S T1/ρ(E[Π. j]k+1 +
1
ρ

pk)

Step 3: Update p, given Π. j,q fixed, with the equation:

pk+1 = pk + ρ(E[Π. j]k+1 − qk+1)

We summarize our approach in Algorithm 5. Regarding the computational com-
plexity of Algorithm 5, the most computationally expensive step is the Cholesky
matrix factorization (O(N3)). However, the Cholesky factorization is performed
only once. In the inner loop, for each dimension j = 1, . . . , d, each iteration
involves solving one linear system (O(N2)) and a soft-thresholding operation
(O(

∑
t |E

t|)).

4.3.4 Features Extraction in Egocentric Videos

The growing interest in the vision community towards novel approaches for
FPV analysis has motivated the creation of several publicly available datasets
(see [92] for a recent survey). In this chapter we consider two of them, the FPV
office dataset [74] and the FPV home dataset [77].

Due to the large variability of visual data collected from wearable cameras
there exist no standard feature descriptors. While in some situations extract-
ing simple motion information, e.g. by computing the optical flow, may suffice
[74], in other cases motion patterns may be too noisy and other kind of infor-
mation (e.g. presence/absence of objects) must be exploited. In this chapter we
demonstrate that, independently from the employed feature descriptors, MTC
is an effective strategy for recognizing everyday activities. We now describe the
adopted feature representations respectively for the considered office and home
scenarios.
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4.3.4.1 FPV office dataset

The FPV office dataset [74] consists of five common activities in an office envi-
ronment (reading a book, watching a video, copying text from screen to screen,

writing sentences on paper and browsing the internet). Each action was per-
formed by five subjects, who were instructed to execute each task for about two
minutes, while 30 seconds intervals of void class were placed between target
tasks. To provide a natural experimental setting, the void class contains a wide
variety of actions such as conversing, singing and random head motions. The
sequence of five actions was repeated twice to induce interclass variance. The
dataset consists of over two hours of data, where the video from each subject is
a continuous 25-30 minutes video.
We follow [74] and extract features describing both the eye motion (obtained
by the inside-looking camera) and the head and body motion (computed pro-
cessing the outside camera’s stream). To calculate the eye motion features, we
consider the gaze coordinates provided in the dataset and smooth them applying
a median filter. Then the continuous wavelet transform is adopted for saccade
detection separately on the x and y motion components [13]. The resulting sig-
nals are quantized according to magnitude and direction and are coded with a
sequence of discrete symbols. To analyze the streams of the output camera, for
each frame the global optical flow is computed by tracking corner points over
consecutive frames and taking the mean flow in the x and y directions. Then,
the optical flow vectors are quantized according to magnitude and direction with
the same procedure adopted in the eye motion case. The obtained sequences of
symbols are then processed to get the final video clip descriptors. We use a
temporal sliding window approach to build an n-gram dictionary over all the
dataset. Then each video is divided into segments corresponding to 15 seconds,
each of them representing a video clip. For each sequence of symbols associated
to a video clip, a histogram over the dictionary is computed. The final feature
descriptor xi is calculated by considering some statistics over the clip histogram
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and specifically computing the maximum, the average, the variance, the number
of unique n-grams, and the difference between maximum and minimum count.
Fig.4.2 shows the feature extraction pipeline.

4.3.4.2 FPV home dataset

The FPV home dataset [77] contains videos recorded from chest-mounted cam-
eras by 20 different users. The users perform 18 non-scripted daily activities in
the house, like brushing teeth, washing dishes, or making tea. The length of the
videos is in the range of 20-60 minutes. The annotations about the presence of
42 relevant objects (e.g. kettle, mugs, fridge) and about temporal segmentation
are also provided.

In this chapter we adopt the same object-centric approach proposed in [77],
i.e. to compute features for each video clip we consider the output of several
object detectors. We use the pre-segmented video clips and the active object
models in [77]. Active object models are introduced to exploit the fact that ob-
jects may look different when being interacted with (e.g. open and close fridge).
Therefore in [77] additional detectors are trained using a subset of training im-
ages depicting the object appearance when objects are used by people. To ob-
tain object-centric features for each frame a score for each object model and
each location is computed. The maximum scores of all the object models are
used as frame features. To compute the final clip descriptor xi, two approaches
are adopted: one based on “bag of features” (accumulating frame features over
time) and the other based on temporal pyramids. The temporal pyramid features
are obtained concatenating multiple histograms constructed with accumulation:
the first is a histogram over the full temporal extent of a video clip, the next
is the concatenation of two histograms obtained by temporally segmenting the
video into two parts, etc.
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4.4 Experimental Results

In this section, we first conduct experiments on synthetic data to demonstrate
the advantages of the proposed MTC approach over traditional single task learn-
ing methods. Then, we apply our MTC algorithms to FPV data showing their
effectiveness for recognizing everyday activities.

In the experiments, we compare our methods, i.e. EMD Multi-task Clus-
tering with linear and gaussian kernel and Convex Multi-task Clustering (here
denoted as EMD-MTC, KEMD-MTC and CMTC, respectively), with single
task clustering approaches. Specifically we consider k-means (KM), kernel
k-means (KKM), convex (CNMF) and semi-nonnegative matrix factorization
(SemiNMF) [27]. We also consider recent multi-task clustering algorithms such
as the SemiEMD-MTC proposed in [129], its kernel version KSemiEMD-MTC
and the LS-MTC method in [40]. For all the methods (with the exception of
CMTC which relies on convex optimization) ten runs are performed, corre-
sponding to different initializations conditions. Averaging over multiple itera-
tions is typical when considering non-convex optimization problems for clus-
tering, such as in case of the popular k-means. The average results are shown.
In CMTC the parameters λt are varied in order to obtain the desired number of
clusters. The value of the regularization parameters of our approaches (λ for the
methods based on EMD regularization and λ2 for CMTC) are set in the range
{0.01, 0.1, 1, 10, 100}. As evaluation metrics, we adopt the clustering accuracy
(ACC) and the normalized mutual information (NMI), as they are widely used
in the literature.

4.4.1 Synthetic data experiments

In the synthetic data experiments we consider T = 4 different tasks. Each task
contains 4 clusters as shown in Fig.4.3. The input data xt

i ∈ Rd (d = 2) for
the four clusters are generated from multivariate normal distributions N(µ, σ),
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Table 4.1: Parameters used in the synthetic data experiments.

Cluster 1 Cluster 2 Cluster 3 Cluster 4
µ1 µ2 µ3 µ4

Task 1 (0, 0) (1, 1) (-1, 1) (1, -1)
Task 2 (-0.2, -0.22) (1, 1.04) (-1, 0.95) (1.2, -0.83)
Task 3 (0.02, 0) (1.04, 1) (-0.95, 1) (1.03, -1)
Task 4 (-0.22, -0.22) (1.04, 1.04) (-0.95, 0.95) (1.23, -0.83)
σ (0.1, 0.1) (0.2, 0.4) (0.1, 0.2) (0.4, 0.2)

Table 4.2: FPV office dataset: comparison of different methods using saccade (S), motion (M)
and S+M features.

ACC NMI
S M S+M S M S+M

KM 0.230 0.216 0.257 0.029 0.021 0.045
SemiNMF [27] 0.320 0.303 0.358 0.149 0.131 0.166
SemiEMD-MTC [129] 0.371 0.349 0.415 0.229 0.209 0.259
LSMTC [40] 0.286 0.261 0.335 0.043 0.031 0.071
CNMF [27] 0.328 0.301 0.357 0.152 0.139 0.170
EMD-MTC 0.389 0.363 0.442 0.239 0.221 0.273
CMTC (λ2 = 0) 0.367 0.346 0.413 0.224 0.209 0.244
CMTC 0.425 0.401 0.468 0.259 0.238 0.305
KKM 0.345 0.316 0.377 0.159 0.152 0.185
KSemiEMD-MTC [129] 0.387 0.359 0.432 0.241 0.228 0.287
KEMD-MTC 0.436 0.419 0.485 0.268 0.244 0.311

as shown in Table 4.1, in order to obtain correlated clusters for the different
tasks. For each task and each cluster 10 samples are generated for training and
20 are used to set the regularization parameters. For CMTC we set the weights
wt

i j = e−‖x
t
i−xt

j‖
2

if e−‖x
t
i−xt

j‖
2
≤ θ and wt

i j = 0 otherwise. This aims to enforce that
the discovered partitions reflect the density of the original data distributions.

We compared the proposed methods with other state-of-the-art approaches.
Fig.4.4 reports the average accuracy and NMI. The higher numbers indicate
better performance. From Fig.4.4 it is evident that our multi-task approaches
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Figure 4.3: Samples generated in the synthetic data experiments (different colors represent
different clusters).

significantly outperform the single-task methods, both when a linear kernel
is used (e.g. EMD-MTL and CMTC achieve higher accuracy than KM), and
in the nonlinear case (KEMD-MTC outperforms KKM). The proposed algo-
rithms also achieve higher accuracy than recent multi-task clustering methods,
i.e. KSemiEMD-MTC [129] and LS-MTC [40].

4.4.2 FPV Results

In this subsection, we present the experimental results on the FPV office dataset
and the FPV home dataset, respectively.
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Figure 4.4: Clustering results on synthetic data for different methods. Methods based on linear
kernel are separated from those with Gaussian kernel. (Figure is best viewed in color).

4.4.2.1 FPV office dataset

We consider T = 5 tasks, as the FPV office dataset [74] contains videos corre-
sponding to five people. As each datapoint corresponds to a video clip in this
dataset, we set the parameters wt

i j in CMTC in order to enforce temporal con-
sistency, i.e. for each task t, wt

i j = 1 if the features vectors xt
i and xt

j correspond
to temporal adjacent video clips, otherwise wt

i j = 0.

Table 4.2 compare different clustering methods when different types of fea-
tures are employed, i.e. only saccade, only motion and saccade+motion fea-
tures. The last three rows correspond to methods which employ a non-linear
kernel. From Table 4.2, several observations can be made. First, independently
on the adopted features representation, multi-task clustering approaches always
perform better than single task clustering methods (e.g. SemiEMD-MTC out-
performs SemiNMF, EMD-MTC provides higher accuracy than CNMF, a value
of λ2 greater than 0 leads to an improvement in accuracy and NMI in CMTC).
Confirming the findings reported in [74], we also observe that combining mo-
tion and saccade features is advantageous with respect to considering each sin-
gle feature representation separately. Noticeably, our methods are among the
best performers, with KEMD-MTC reaching the highest values of accuracy and
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Figure 4.5: FPV Office dataset. Temporal video segmentation on the second sequence of
subject-3 (13 minutes): comparison of different methods. (Best viewed in color).

NMI. This is somehow expected probably due to both the use of kernels and
the adoption of the multi-task learning paradigm. Moreover, CMTC outper-
forms EMD-MTC by up to 4% which means that incorporating information
about temporal consistency in the learning process is beneficial. Furthermore,
in this case the use of Maximum Mean Discrepancy may capture better the re-
lationship among tasks with respect to EMD. Fig.4.5 shows some qualitative
temporal segmentation results on the second sequence of subject-3. In this case
for example the CMTC method outperforms all the other approaches and the
importance of enforcing temporal consistency among clips is evident.

Finally, Fig.4.6 shows the confusion matrices associated to our methods
KEMD-MTC and CMTC. Examining the matrix associated to KEMD-MTC,
we observe that the void, copy and write actions achieve relative high recogni-
tion accuracies compared with the video and browse actions. It is also interest-
ing to note that 25% and 17% of the video actions are recognized as browse ac-
tions for KEMD-MTC and CMTC respectively, because of the similarity among
motion and eye-gaze patterns.
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Figure 4.6: FPV Office dataset. Confusion matrices using saccade+motion features obtained
with (left) KEMD-MTC and (right) CMTC methods.
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Figure 4.7: Comparison of different methods using (left) bag of features and (right) temporal
pyramid features on FPV home dataset. (Figure is best viewed in color).

4.4.2.2 FPV home dataset

In the FPV home dataset [77] there are 18 different non-scripted activities. Since
each person typically performs a small subset of the 18 activities, in our experi-
ments we consider a series of three tasks problems, selecting videos associated
to three randomly chosen users but imposing the condition that videos corre-
sponding to the three users should have at least three activities in common. We
perform 10 different runs. In this series of experiments, we did not cluster video
clips of fixed size as in the office dataset, but we consider the pre-segmented
clips as provided with the dataset. In this scenario, it does not make sense to
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set wt
i j as in CMTC to model temporal consistency. Therefore, as for in the

synthetic data experiments, we set wt
i j = e−‖x

t
i−xt

j‖
2

if e−‖x
t
i−xt

j‖
2
≤ θ and wt

i j = 0
otherwise.

Fig.4.7 shows the results (average accuracy) obtained with different clus-
tering methods for both the bag-of-words and the temporal pyramid features
representation. From Fig.4.7 it is evident that the MTC approaches outperforms
their single task version (e.g. CMTC outperforms CMTC with λ2 = 0, EMD-
MTC outperforms CNMF, SemiEMD-MTC outperforms SemiNMF). On the
other hand, our algorithms based on EMD regularization and CMTC achieve
a considerably higher accuracy with respect to all the other methods. Fig.4.8
shows some temporal segmentation results on a sequence of the FPV home
dataset comparing KM with the proposed methods. As discussed above, pre-
segmented clips of different duration are considered here.
Finally, we investigate the effect of different values of the regularization pa-
rameters λ in (4.2) for EMD-MTC, λt and λ2 in (4.5) for CMTC on clustering
performance. As shown in Fig.4.9, independently from the adopted feature rep-
resentation, the accuracy values are sensitive to varying λ. Fig.4.9 shows that
choosing a value of λ = 0.1 in EMD-MTC and KEMD-MTC always leads to
similar or superior performance with respect to adopting a single-task cluster-
ing approach (λ = 0). The value λ = 0.1 corresponds to the results reported in
Fig.4.7. This clearly confirms the advantage of using a MTC approach for FPV
analysis. Similar observations can be drawn in the case of CMTC. In Fig.4.10
we analyze how the accuracy changes at varying λt and λ2. Note that in our
previous experiments the parameters λt are fixed independently for each task
according to the desired number of clusters. In this experiment instead we show
that, independently from the chosen values for λt (i.e. the number of clusters)
the best performance is typically obtained for λ2 ≥ 0.1, i.e. when the coherence
between partitions of different tasks is enforced. For example, for temporal
pyramid features, the higher accuracy is usually given by λ2 = 1.
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Figure 4.8: Temporal video segmentation on a sequence of the FPV home dataset. (The edge
of the shaded area at the bottom of each subfigure indicates the current frame).

4.4.3 Discussion

In this chapter we address the problem of automatically discovering activities of
daily living from first-person videos. Currently, few datasets are publicly avail-
able for this task and, according to the recent survey in [92], the two datasets
we consider [74, 77] are the only ones suitable. The other datasets focus on
different applications, e.g. food preparation or analysis of social interactions,
and often do not have videos recorded from multiple users, as required by the
proposed framework.

Regarding previous works using the same datasets [74, 77], it is worth not-
ing that we consider an unsupervised setting. Previous works focused on a
supervised scenario and therefore use different evaluation metrics. While a di-
rect comparison is not possible, it is reasonable to expect that their methods are
more accurate than our approach since they use labelled data for learning. How-
ever, recognizing everyday activities in absence of annotated data is especially
important to automatically analyze videos recorded from wearable cameras.
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Figure 4.9: FPV home dataset: performance variations of EMD-MTC and KEMD-MTC at
different values of λ using (left) bag of features and (right) temporal pyramid features.

As stated in the introduction, the proposed multi-task clustering approach is
general and can be used in other applications. For example, our framework nat-
urally applies to the problem of activity of daily living analysis when traditional
cameras are used as an alternative to wearable sensors [56, 71, 80, 102].

4.5 Conclusions

In this chapter, we proposed a multi-task clustering framework to tackle the
challenging problem of egocentric activity recognition. Oppositely to many
previous works, we focused on the unsupervised setting and we presented two
novel MTC algorithms: Earth Movers Distance Multi-Task Clustering and Con-
vex Multi-task Clustering. We extensively evaluated the proposed methods on
synthetic data and on two real world FPV datasets, clearly demonstrating the
advantages of sharing informations among related tasks over traditional sin-
gle task learning algorithms. Comparing the proposed methods, KEMD-MTC
achieves the best performance, while CMTC is particularly advantageous when
some a-priori knowledge about the data relationship is available. For example,
in this chapter we consider embedding temporal information about video clips

84



0.01

0.1

1

10

100

0.01

0.1

1

10

100

0

0.2

0.4

0.6

0.8

λ
2

λ
t

A
C

C

0.01

0.1

1

10

100

0.01

0.1

1

10

100

0

0.2

0.4

0.6

0.8

λ
2

λ
t

A
C

C
Figure 4.10: Sensitivity study of parameters λt and λ2 in CMTC using (left) bag of features and
(right) temporal pyramid features.

but the CMTC method also permits to integrate other information about task
dependencies by defining an appropriate matrix B (e.g. people performing the
same activities in the same rooms may correspond to closely related tasks with
respect to people operating in different rooms). Future work will focus on im-
proving our MTC algorithms (e.g. by detecting outlier tasks) and on testing the
effectiveness of the proposed methods for other vision applications.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, we address several image and video recognition problems under
the framework of learning with shared information.

• In Chapter 2, we propose an active transfer learning framework which
explicitly accounts for ambiguous labels provided by the domain expert.
Moreover, we also extend traditional active learning from binary classifi-
cation to a multi-class setting through error-correcting output coding.

• In Chapter 3, we investigate how to automatically infer painting styles
from the perspective of dictionary learning. In particular, we propose a
novel multi-task dictionary learning approach to address this problem. We
also evaluate our approach on other image recognition datasets.

• In Chapter 4, we propose a unsupervised multi-task clustering framework
to tackle the challenging problem of egocentric activity recognition. We
focus on the unsupervised setting and present two novel multi-task cluster-
ing algorithms, Earth Movers Distance Multi-Task Clustering and Convex
Multi-task Clustering.

To summarize, the contributions of this thesis are as follows:
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• We explore several challenge recognition problems, such as human daily
activity recognition under the framework of learning with shared informa-
tion.

• We develop several novel machine learning algorithms under the frame-
work of learning with shared information, such as active transfer learning,
multi-task clustering, multi-task dictionary learning.

• Our algorithms outperform other state-of-the-art algorithms in several im-
age and video recognition problems.

• All the proposed algorithms are general framework, potentially applicable
to other computer vision and pattern recognition problems.

5.2 Future Work

In the future, we will continue our research with the following possible direc-
tions:

• Our models can be extended to other applications, such as human action
recognition, video segmentation, crowd analysis.

• Deep learning based framework can be explored to address these applica-
tions. We can build separate networks for each domain, or share the same
network for different domains. We can also explore which specific layers
can be shared, etc.
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