Separating the signal from the noise - financial machine learning for Twitter
Matthias Schnaubelt,
Thomas G. Fischer and
Christopher Krauss
No 14/2018, FAU Discussion Papers in Economics from Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics
Abstract:
Most statistical arbitrage strategies in the academic literature soley rely on price time series. By contrast, alternative data sources are of growing importance for professional investors. We contribute to bridging this gap by assessing the price-predictive value of more than nine million tweets on intraday returns of the S&P 500 constituents. For this purpose, we design a machine learning pipeline addressing specific challenges inherent to this task. At first, we engineer domain-specific features along three categories, i.e., directional indicators, relevance indicators and meta features. Next, we leverage a random forest to extract the relationship between these features and subsequent stock returns in a low signal-to-noise setting. For performance evaluation, we run a rigorous eventbased backtesting study across all tweets and stocks. We find annualized returns of 6.4 percent and a Sharpe ratio of 2.2 after transaction costs. Finally, we illuminate the machine learning black box and unveil sources of profitability: First, results are both driven and limited by the temporal clustering of tweets, i.e., the majority of profits stem from tweets clustered closely together in time, corresponding to high-event situations. Second, the importance of included features follows an economic rationale, e.g., tweets with positive sentiment tend to yield positive returns and vice versa. Third, we find that stocks of medium market capitalization and from the consumer and technology sectors contribute most to our results, which we interpret as a trade-off between tweet coverage and tweet relevance.
Keywords: finance; statistical arbitrage; machine learning; random forests; trading strategy backtesting; social media (search for similar items in EconPapers)
Date: 2018
New Economics Papers: this item is included in nep-big and nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/191256/1/1045719498.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:iwqwdp:142018
Access Statistics for this paper
More papers in FAU Discussion Papers in Economics from Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().