Threshold cointegration and adaptive shrinkage
Florian Huber and
Thomas Zörner ()
Authors registered in the RePEc Author Service: Thomas O. Zoerner
No 250, Department of Economics Working Paper Series from WU Vienna University of Economics and Business
Abstract:
This paper considers Bayesian estimation of the threshold vector error correction (TVECM) model in moderate to large dimensions. Using the lagged cointegrating error as a threshold variable gives rise to additional difficulties that are typically solved by relying on large sample approximations. Relying on Markov chain Monte Carlo methods we circumvent these issues by avoiding computationally prohibitive estimation strategies like the grid search. Due to the proliferation of parameters we use novel global-local shrinkage priors in the spirit of Griffin and Brown (2010). We illustrate the merits of our approach in an application to five exchange rates vis-á-vis the US dollar and assess whether a given currency is over or undervalued. Moreover, we perform a forecasting comparison to investigate whether it pays off to adopt a non-linear modeling approach relative to a set of simpler benchmark models.
Keywords: non-linear modeling; shrinkage priors; multivariate cointegration; exchange rate modeling (search for similar items in EconPapers)
Date: 2017-06
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://epub.wu.ac.at/5577/ original version (application/pdf)
Related works:
Working Paper: Threshold cointegration and adaptive shrinkage (2017)
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wiw:wus005:5577
Access Statistics for this paper
More papers in Department of Economics Working Paper Series from WU Vienna University of Economics and Business Welthandelsplatz 1, 1020 Vienna, Austria.
Bibliographic data for series maintained by WU Library ().