Model uncertainty and expected return proxies
Christoph Jäckel ()
MPRA Paper from University Library of Munich, Germany
Abstract:
Over the last two decades, alternative expected return proxies have been proposed with substantially lower variation than realized returns. This helped to reduce parameter uncertainty and to identify many seemingly robust relations between expected returns and variables of interest, which would have gone unnoticed with the use of realized returns. In this study, I argue that these findings could be spurious due to the ignorance of model uncertainty: because a researcher does not know which of the many proposed proxies is measured with the least error, any inference conditional on only one proxy can lead to overconfident decisions. As a solution, I introduce a Bayesian model averaging (BMA) framework to directly incorporate model uncertainty into the statistical analysis. I employ this approach to three examples from the implied cost of capital (ICC) literature and show that the incorporation of model uncertainty can severely widen the coverage regions, thereby leveling the playing field between realized returns and alternative expected return proxies.
Keywords: Time-varying expected returns; implied cost of capital; asset pricing; model averaging; model selection (search for similar items in EconPapers)
JEL-codes: C11 G12 (search for similar items in EconPapers)
Date: 2013-12-05
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed
Downloads: (external link)
https://mpra.ub.uni-muenchen.de/51978/1/MPRA_paper_51978.pdf original version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:51978
Access Statistics for this paper
More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().