Are There Any Reliable Leading Indicators for U.S. Inflation and GDP Growth?
Anindya Banerjee and
Massimiliano Marcellino
No 236, Working Papers from IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University
Abstract:
In this paper we evaluate the relative merits of three approaches to information extraction from a large data set for forecasting, namely, the use of an automated model selection procedure, the adoption of a factor model, and single-indicator-based forecast pooling. The comparison is conducted using a large set of indicators for forecasting US inflation and GDP growth. We also compare our large set of leading indicators with purely autoregressive models, using an evaluation procedure that is particularly relevant for policy making. The evaluation is conducted both ex-post and in a pseudo real time context, for several forecast horizons, and using both recursive and rolling estimation. The results indicate a preference for simple forecasting tools, with a good relative performance of pure autoregressive models, and substantial instability in the leading characteristics of the indicators.
Date: 2003
New Economics Papers: this item is included in nep-cba, nep-mac and nep-mon
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
https://repec.unibocconi.it/igier/igi/wp/2003/236.pdf (application/pdf)
Related works:
Journal Article: Are there any reliable leading indicators for US inflation and GDP growth? (2006)
Working Paper: Are There Any Reliable Leading Indicators for US Inflation and GDP Growth? (2002)
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igi:igierp:236
Ordering information: This working paper can be ordered from
https://repec.unibocconi.it/igier/igi/
Access Statistics for this paper
More papers in Working Papers from IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University via Rontgen, 1 - 20136 Milano (Italy).
Bibliographic data for series maintained by ().