Out-of-sample forecasting of unemployment rates with pooled STVECM forecasts
Costas Milas and
Philip Rothman ()
International Journal of Forecasting, 2008, vol. 24, issue 1, 101-121
Abstract:
In this paper we use smooth transition vector error-correction models (STVECMs) in a simulated out-of-sample forecasting experiment for the unemployment rates of the four non-Euro G-7 countries, the U.S., the U.K., Canada, and Japan. For the U.S., pooled forecasts constructed by taking the median value across the point forecasts generated by the linear and STVECM forecasts perform better than the linear AR(p) benchmark, and more so during business cycle expansions. Such pooling leads to statistically significant forecast improvement for the U.K. across the business cycle. "Reality checks" of these results suggest that they do not stem from data snooping.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (28)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169-2070(07)00162-8
Full text for ScienceDirect subscribers only
Related works:
Working Paper: Out-of-Sample Forecasting of Unemployment Rates with Pooled STVECM Forecasts (2007)
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:24:y:2008:i:1:p:101-121
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().