Autoencoder asset pricing models
Shihao Gu,
Bryan Kelly and
Dacheng Xiu
Journal of Econometrics, 2021, vol. 222, issue 1, 429-450
Abstract:
We propose a new latent factor conditional asset pricing model. Like Kelly, Pruitt, and Su (KPS, 2019), our model allows for latent factors and factor exposures that depend on covariates such as asset characteristics. But, unlike the linearity assumption of KPS, we model factor exposures as a flexible nonlinear function of covariates. Our model retrofits the workhorse unsupervised dimension reduction device from the machine learning literature – autoencoder neural networks – to incorporate information from covariates along with returns themselves. This delivers estimates of nonlinear conditional exposures and the associated latent factors. Furthermore, our machine learning framework imposes the economic restriction of no-arbitrage. Our autoencoder asset pricing model delivers out-of-sample pricing errors that are far smaller (and generally insignificant) compared to other leading factor models.
Keywords: Stock returns; Conditional asset pricing model; Nonlinear factor model; Machine learning; Autoencoder; Neural networks; Big data (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (77)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407620301998
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:222:y:2021:i:1:p:429-450
DOI: 10.1016/j.jeconom.2020.07.009
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().