The realized empirical distribution function of stochastic variance with application to goodness-of-fit testing
Kim Christensen,
Martin Thyrsgaard and
Bezirgen Veliyev
Journal of Econometrics, 2019, vol. 212, issue 2, 556-583
Abstract:
We propose a nonparametric estimator of the empirical distribution function (EDF) of the latent spot variance of the log-price of a financial asset. We show that over a fixed time span our realized EDF (or REDF) – inferred from noisy high-frequency data – is consistent as the mesh of the observation grid goes to zero. In a double-asymptotic framework, with time also increasing to infinity, the REDF converges to the cumulative distribution function of volatility, if it exists. We exploit these results to construct some new goodness-of-fit tests for stochastic volatility models. In a Monte Carlo study, the REDF is found to be accurate over the entire support of volatility. This leads to goodness-of-fit tests that are both correctly sized and relatively powerful against common alternatives. In an empirical application, we recover the REDF from stock market high-frequency data. We inspect the goodness-of-fit of several two-parameter marginal distributions that are inherent in standard stochastic volatility models. The inverse Gaussian offers the best overall description of random equity variation, but the fit is less than perfect. This suggests an extra parameter (as available in, e.g., the generalized inverse Gaussian) is required to model stochastic variance.
Keywords: Empirical processes; Goodness-of-fit; High-frequency data; Microstructure noise; Pre-averaging; Realized variance; Stochastic volatility (search for similar items in EconPapers)
JEL-codes: C10 C50 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407619301411
Full text for ScienceDirect subscribers only
Related works:
Working Paper: The realized empirical distribution function of stochastic variance with application to goodness-of-fit testing (2018)
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:212:y:2019:i:2:p:556-583
DOI: 10.1016/j.jeconom.2019.06.002
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().