Quasi Empirical Likelihood Estimation of Moment Condition Models
Shane Sherlund ()
No 507, Econometric Society 2004 North American Summer Meetings from Econometric Society
Abstract:
In this paper, I develop a quasi empirical likelihood estimator that has good finite-sample properties when there are many moment conditions. I show that the quasi empirical likelihood estimator, which uses semiparametric efficient estimation, is an approximation to the empirical likelihood estimator, which has been shown to have good statistical properties. The quasi empirical likelihood estimator is a consistent estimator and has a normal asymptotic distribution. As with the full-blown empirical likelihood estimator, the quasi empirical likelihood estimator reduces finite-sample bias, but is much simpler to compute than the empirical likelihood estimator. Monte Carlo experiments and a quick validation exercise confirm my theoretical results
Keywords: GMM; empirical likelihood; finite-sample bias; instrumental variables (search for similar items in EconPapers)
JEL-codes: C13 C20 C30 (search for similar items in EconPapers)
Date: 2004-08-11
New Economics Papers: this item is included in nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://repec.org/esNASM04/up.18670.1075573160.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ecm:nasm04:507
Access Statistics for this paper
More papers in Econometric Society 2004 North American Summer Meetings from Econometric Society Contact information at EDIRC.
Bibliographic data for series maintained by Christopher F. Baum ().