The Combined Forecasts Using the Akaike Weights
Mariola Pilatowska ()
Dynamic Econometric Models, 2009, vol. 9, 5-16
Abstract:
The focus in the paper is on the information criteria approach and especially the Akaike information criterion which is used to obtain the Akaike weights. This approach enables to receive not one best model, but several plausible models for which the ranking can be built using the Akaike weights. This set of candidate models is the basis of calculating individual forecasts, and then for combining forecasts using the Akaike weights. The procedure of obtaining the combined forecasts using the AIC weights is proposed. The performance of combining forecasts with the AIC weights and equal weights with regard to individual forecasts obtained from models selected by the AIC criterion and the a posteriori selection method is compared in simulation experiment. The conditions when the Akaike weights are worth to use in combining forecasts were indicated. The use of the information criteria approach to obtain combined forecasts as an alternative to formal hypothesis testing was recommended.
Keywords: combining forecasts; weighting schemes; information criteria. (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.dem.umk.pl/dem/archiwa/v9/01_MPilatowska_UMK.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cpn:umkdem:v:9:y:2009:p:5-16
Access Statistics for this article
Dynamic Econometric Models is currently edited by Mariola Pilatowska
More articles in Dynamic Econometric Models from Uniwersytet Mikolaja Kopernika
Bibliographic data for series maintained by Miroslawa Buczynska ().