Bidirectional coupling of a long-term integrated assessment model REMIND v3.0.0 with an hourly power sector model DIETER v1.0.2
Chen Chris Gong,
Falko Ueckerdt,
Robert Pietzcker,
Adrian Odenweller,
Wolf-Peter Schill,
Martin Kittel and
Gunnar Luderer
Papers from arXiv.org
Abstract:
Integrated assessment models (IAMs) are a central tool for the quantitative analysis of climate change mitigation strategies. However, due to their global, cross-sectoral and centennial scope, IAMs cannot explicitly represent the spatio-temporal detail required to properly analyze the key role of variable renewable electricity (VRE) for decarbonizing the power sector and end-use electrification. In contrast, power sector models (PSMs) incorporate high spatio-temporal resolutions, but tend to have narrower scopes and shorter time horizons. To overcome these limitations, we present a novel methodology: an iterative and fully automated soft-coupling framework that combines the strengths of a IAM and a PSM. This framework uses the market values of power generation as well as the capture prices of demand in the PSM as price signals that change the capacity and power mix of the IAM. Hence, both models make endogenous investment decisions, leading to a joint solution. We apply the method to Germany in a proof-of-concept study using the IAM REMIND and the PSM DIETER, and confirm the theoretical prediction of almost-full convergence both in terms of decision variables and (shadow) prices. At the end of the iterative process, the absolute model difference between the generation shares of any generator type for any year is
Date: 2022-09, Revised 2022-10
New Economics Papers: this item is included in nep-ene and nep-env
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2209.02340 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2209.02340
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().