Quasi-maximum likelihood estimation of break point in high-dimensional factor models
Jiangtao Duan,
Jushan Bai and
Xu Han
Papers from arXiv.org
Abstract:
This paper estimates the break point for large-dimensional factor models with a single structural break in factor loadings at a common unknown date. First, we propose a quasi-maximum likelihood (QML) estimator of the change point based on the second moments of factors, which are estimated by principal component analysis. We show that the QML estimator performs consistently when the covariance matrix of the pre- or post-break factor loading, or both, is singular. When the loading matrix undergoes a rotational type of change while the number of factors remains constant over time, the QML estimator incurs a stochastically bounded estimation error. In this case, we establish an asymptotic distribution of the QML estimator. The simulation results validate the feasibility of this estimator when used in finite samples. In addition, we demonstrate empirical applications of the proposed method by applying it to estimate the break points in a U.S. macroeconomic dataset and a stock return dataset.
Date: 2021-02, Revised 2021-03
New Economics Papers: this item is included in nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2102.12666 Latest version (application/pdf)
Related works:
Journal Article: Quasi-maximum likelihood estimation of break point in high-dimensional factor models (2023)
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2102.12666
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().