Determining feature importance for actionable climate change mitigation policies
Romit Maulik,
Junghwa Choi,
Wesley Wehde and
Prasanna Balaprakash
Papers from arXiv.org
Abstract:
Given the importance of public support for policy change and implementation, public policymakers and researchers have attempted to understand the factors associated with this support for climate change mitigation policy. In this article, we compare the feasibility of using different supervised learning methods for regression using a novel socio-economic data set which measures public support for potential climate change mitigation policies. Following this model selection, we utilize gradient boosting regression, a well-known technique in the machine learning community, but relatively uncommon in public policy and public opinion research, and seek to understand what factors among the several examined in previous studies are most central to shaping public support for mitigation policies in climate change studies. The use of this method provides novel insights into the most important factors for public support for climate change mitigation policies. Using national survey data, we find that the perceived risks associated with climate change are more decisive for shaping public support for policy options promoting renewable energy and regulating pollutants. However, we observe a very different behavior related to public support for increasing the use of nuclear energy where climate change risk perception is no longer the sole decisive feature. Our findings indicate that public support for renewable energy is inherently different from that for nuclear energy reliance with the risk perception of climate change, dominant for the former, playing a subdued role for the latter.
Date: 2020-03
New Economics Papers: this item is included in nep-big, nep-ene and nep-env
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2003.10234 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2003.10234
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().