[go: up one dir, main page]

  EconPapers    
Economics at your fingertips  
 

Bayesian prediction of jumps in large panels of time series data

Angelos Alexopoulos, Petros Dellaportas and Omiros Papaspiliopoulos

Papers from arXiv.org

Abstract: We take a new look at the problem of disentangling the volatility and jumps processes of daily stock returns. We first provide a computational framework for the univariate stochastic volatility model with Poisson-driven jumps that offers a competitive inference alternative to the existing tools. This methodology is then extended to a large set of stocks for which we assume that their unobserved jump intensities co-evolve in time through a dynamic factor model. To evaluate the proposed modelling approach we conduct out-of-sample forecasts and we compare the posterior predictive distributions obtained from the different models. We provide evidence that joint modelling of jumps improves the predictive ability of the stochastic volatility models.

Date: 2019-03, Revised 2021-04
New Economics Papers: this item is included in nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/1904.05312 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1904.05312

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2024-07-01
Handle: RePEc:arx:papers:1904.05312