An incomplete equilibrium with a stochastic annuity
Kim Weston and
Gordan Zitkovic
Papers from arXiv.org
Abstract:
We prove the global existence of an incomplete, continuous-time finite-agent Radner equilibrium in which exponential agents optimize their expected utility over both running consumption and terminal wealth. The market consists of a traded annuity, and, along with unspanned income, the market is incomplete. Set in a Brownian framework, the income is driven by a multidimensional diffusion, and, in particular, includes mean-reverting dynamics. The equilibrium is characterized by a system of fully coupled quadratic backward stochastic differential equations, a solution to which is proved to exist under Markovian assumptions.
Date: 2018-09
New Economics Papers: this item is included in nep-upt
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1) Track citations by RSS feed
Downloads: (external link)
http://arxiv.org/pdf/1809.05947 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1809.05947
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().