[go: up one dir, main page]

  EconPapers    
Economics at your fingertips  
 

Evaluating the Performance of ANN Prediction System at Shanghai Stock Market in the Period 21-Sep-2016 to 11-Oct-2016

Barack Wamkaya Wanjawa

Papers from arXiv.org

Abstract: This research evaluates the performance of an Artificial Neural Network based prediction system that was employed on the Shanghai Stock Exchange for the period 21-Sep-2016 to 11-Oct-2016. It is a follow-up to a previous paper in which the prices were predicted and published before September 21. Stock market price prediction remains an important quest for investors and researchers. This research used an Artificial Intelligence system, being an Artificial Neural Network that is feedforward multi-layer perceptron with error backpropagation for prediction, unlike other methods such as technical, fundamental or time series analysis. While these alternative methods tend to guide on trends and not the exact likely prices, neural networks on the other hand have the ability to predict the real value prices, as was done on this research. Nonetheless, determination of suitable network parameters remains a challenge in neural network design, with this research settling on a configuration of 5:21:21:1 with 80% training data or 4-year of training data as a good enough model for stock prediction, as already determined in a previous research by the author. The comparative results indicate that neural network can predict typical stock market prices with mean absolute percentage errors that are as low as 1.95% over the ten prediction instances that was studied in this research.

New Economics Papers: this item is included in nep-cmp
Date: 2016-12
References: View references in EconPapers View complete reference list from CitEc
Citations Track citations by RSS feed

Downloads: (external link)
http://arxiv.org/pdf/1612.02666 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1612.02666

Access Statistics for this paper

More papers in Papers from arXiv.org
Series data maintained by arXiv administrators ().

 
Page updated 2017-09-29
Handle: RePEc:arx:papers:1612.02666