DagSemProc.06111.22.pdf
- Filesize: 188 kB
- 7 pages
It is known that, for every constant $kgeq 3$, the presence of a $k$-clique (a complete subgraph on $k$ vertices) in an $n$-vertex graph cannot be detected by a monotone boolean circuit using fewer than $Omega((n/log n)^k)$ gates. We show that, for every constant $k$, the presence of an $(n-k)$-clique in an $n$-vertex graph can be detected by a monotone circuit using only $O(n^2log n)$ gates. Moreover, if we allow unbounded fanin, then $O(log n)$ gates are enough.
Feedback for Dagstuhl Publishing