[go: up one dir, main page]

 

  Previous |  Up |  Next

Article

Keywords:
finite element method; composite grids; iterative solution; computer implementation; inexact subproblems; numerical experiments
Summary:
This paper concerns the composite grid finite element (FE) method for solving boundary value problems in the cases which require local grid refinement for enhancing the approximating properties of the corresponding FE space. A special interest is given to iterative methods based on natural decomposition of the space of unknowns and to the implementation of both the composite grid FEM and the iterative procedures for its solution. The implementation is important for gaining all benefits of the described methods. We also discuss the case of inexact subproblems, which can frequently arise in the course of hierarchical modelling.
References:
[1] O. Axelsson, V. A.  Barker: Finite Element Solution of Boundary Value Problems. Academic Press, Orlando, Florida, 1984. MR 0758437
[2] R. Blaheta: Iterative local refinement methods for nonlinear problems. HIPERGEOS report. IGAS Ostrava, 1998.
[3] R. Blaheta: Adaptive composite grid methods for problems of plasticity. Math. Comput. Simulation 50 (1999), 123–134. DOI 10.1016/S0378-4754(99)00064-6 | MR 1717646
[4] R. Blaheta: Space decomposition methods: displacement decomposition, composite grid finite elements and overlapping domain decomposition. In: Proceedings of the Conference Contemporary Mathematical Methods in Engineering, J. Doležalová (ed.), TU Ostrava, 2000, pp. 7–16.
[5] R. Blaheta: GPCG: CG method with general preconditioning and its applications. In: Proceedings of the Conference PRISM’01, O. Axelsson, B. Polman, M. Neytcheva (eds.), KUN Nijmegen, The Netherlands, 2001, pp. 9–15.
[6] D. Braess: Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics. Cambridge University Press, Cambridge UK, 1997. MR 1463151 | Zbl 0894.65054
[7] J. H. Bramble, D. E.  Ewing, J. E. Pasciak and A. H. Schatz: A preconditioning technique for the efficient solution of problems with local grid refinement. Comput. Meth. Appl. Mech. Engrg. 67 (1988), 149–159. DOI 10.1016/0045-7825(88)90122-3
[8] R. D. Cook: Finite Element Modeling for Stress Analysis. J. Wiley, New York, 1995. Zbl 0837.73001
[9] T. F. Chan, T. P.  Mathew: Domain decomposition algorithms. Acta Numerica 3 (1994), 61–143. DOI 10.1017/S0962492900002427 | MR 1288096
[10] L. Hart, S. F. McCormick: Asynchronous multilevel adaptive methods for solving partial differential equations on multiprocessors: Basic ideas. Parallel Comput. 12 (1989), 131–144. DOI 10.1016/0167-8191(89)90048-3 | MR 1026394
[11] J. Mandel, S. F. McCormick: Iterative solution of elliptic equations with refinement: the two-level case. In: Domain Decomposition Methods, T. F. Chan, R. Glowinski, J. Periaux and O. B. Widlund (eds.), SIAM, Philadelphia, 1989, pp. 81–92. MR 0992005
[12] J.  Mandel, S. F.  McCormick: Iterative solution of elliptic equations with refinement: the model multi-level case. In: Domain Decomposition Methods, T. F. Chan, R. Glowinski, J. Periaux and O. B. Widlund (eds.), SIAM, Philadelphia, 1989, pp. 93–102. MR 0992006
[13] S. F. McCormick: Fast adaptive grid (FAC) methods: theory for variational case. In: Defect Correction Methods: Theory and Applications, K. Böhmer, H. J. Stetter (eds.), Computing Supplementum, 5, Springer-Verlag, Wien, 1984, pp. 115–122. MR 0782693
[14] S. F.  McCormick: Multilevel Adaptive Methods for Partial Differential Equations. SIAM, Philadelphia, 1989. MR 1056696 | Zbl 0707.65080
[15] S. F. McCormick, D.  Quinlan: Asynchronous multilevel adaptive methods for solving partial differential equations on multiprocessors: Performance results. Parallel Comput. 12 (1989), 145–156. DOI 10.1016/0167-8191(89)90049-5 | MR 1026395
[16] P. S. Vassilevski, L. T. Zikatanov: Local refinement solution of 3D elasticity equations. Project Report, COPERNICUS CP94-00820, 1995.
[17] O. B.  Widlund: Optimal iterative refinement methods. In: Domain Decomposition Methods, T. F. Chan, R.  Glowinski, J.  Periaux and O. B.  Widlund (eds.), SIAM, Philadelphia, 1989, pp. 114–125. MR 0992008 | Zbl 0682.65066
Partner of
EuDML logo