
Chapter 4

EXTRACTING EVIDENCE USING
GOOGLE DESKTOP SEARCH

Timothy Pavlic, Jill Slay and Benjamin Turnbull

Abstract Desktop search applications have improved dramatically over the last
three years, evolving from time-consuming search applications to in-
stantaneous search tools that rely extensively on pre-cached data. This
paper investigates the extraction of pre-cached data for forensic pur-
poses, drawing on earlier work to automate the process. The result is
a proof-of-concept application called Google Desktop Search Evidence
Collector (GDSEC), which interfaces with Google Desktop Search to
convert data from Google’s proprietary format to one that is amenable
to offline analysis.

Keywords: Google Desktop Search, evidence extraction

1. Introduction

Current desktop search utilities such as Windows Desktop Search,
Google Desktop Search and Yahoo! Desktop Search differ from earlier
tools in that user data is replicated and stored independently [1, 10].
Unlike the older systems that searched mounted volumes on-the-fly, the
newer systems search pre-built databases, accelerating the search for
user data with only a nominal increase in hard disk storage [5]. The
replication of data in a search application has potential forensic appli-
cations – data stored independently within a desktop search application
database often remains after the original file is deleted.

In previous work [9], we examined the forensic possibilities of data
stored within Google Desktop Search; in particular, we discussed the
extraction of text from deleted word processing documents, thumbnails
from deleted image files and the cache for HTTPS sessions. However, the
format of the extracted data files does not allow for simple interpretation
and analysis; therefore, the only sure method of extracting data was via



44 ADVANCES IN DIGITAL FORENSICS IV

the search application interface. We also showed that it was possible to
maintain the forensic integrity of the extracted data by disabling certain
components of the Google Desktop Search application. But this data
could only be accessed using manual keyword searches submitted via
the application interface.

This paper presents a more efficient technique for extracting data
from desktop search utilities. The discussion focuses on Google Desk-
top Search, but the concepts are applicable to other desktop search ap-
plications. The resulting proof-of-concept application, Google Desktop
Search Evidence Collector (GDSEC), automates the data extraction pro-
cess and enables investigators to copy data from Google Desktop Search
files in a forensically-sound manner without having to conduct manually
searches using the interface.

2. Google Desktop Search

Google Desktop Search was released in 2004. The original version
was designed only for Windows XP. Currently, versions are available for
Windows Vista, Linux and Mac OS X.

The Windows version of Google Desktop Search was designed for sin-
gle users. However, when Google Desktop Search was installed and run
by an administrator in a multi-user environment, the program would
index and search all files regardless of their ownership. This potential
security flaw received widespread media coverage [6, 8].

Security concerns have been raised about the integration of Google
Desktop Search with Google’s Internet search engine, but these vulner-
abilities have not been exploited [3]. Attention has also focused on the
privacy issues related to Google Desktop Search’s approach of copying
local data to external machines for faster search [2].

This work focuses exclusively on the Windows-based implementation
of Google Desktop Search, the most widely used application. The Mac-
intosh and Linux versions of Google Desktop Search operate very dif-
ferently. Note that Google Desktop Search is executed under Windows
NT/2000 and later versions because it uses libraries that are available
only in more recent platforms.

Google Desktop Search has three executables, GoogleDesktopIndex
.exe, GoogleDesktopSearch.exe and GoogleDesktopCrawl.exe. The
GoogleDesktopSearch.exe executable is the main program of the search
suite; it operates by setting up an HTTP server on local port 4664
and controls all user interactions. The GoogleDesktopCrawl.exe pro-
gram traverses the file structure on the hard disk and reports changes to
GoogleDesktopIndex.exe. GoogleDesktopIndex.exe interfaces with



Pavlic, Slay & Turnbull 45

persistent storage files, GoogleDesktopCrawl.exe and the Microsoft In-
dexing Service. The Indexing Service sends notifications when files are
changed; this information is used by GoogleDesktopCrawl.exe to de-
termine the files that may require updating. Note that Google Desk-
top Search creates a registry key at HKEY USERS\SID\Software\Google
\Google Desktop where SID is the unique user SID. Several options are
provided, including locations for file storage.

The Google desktop searching utility allows third-party additions to
its software, which facilitates the customization of search parameters.
However, third-party additions must use the Google API to customize
all settings via the Google program, meaning that direct communication
with the database that stores files is not permitted. Google provides a
software development kit (SDK) for Google Desktop Search that con-
tains five APIs. The SDK is based on the COM model, allowing any
programming language supporting COM to be used to develop plug-ins
that utilize the APIs.

Google Desktop Search supports the ability to encrypt the data store
that contains cached items. However, further examination has revealed
that the application merely invokes Windows NTFS encryption for the
folder containing user data. Since the computer is being examined for
forensic purposes, we assume that some measure of access is guaranteed.

3. Google Desktop Search Evidence Collector

This section describes the Google Desktop Search Evidence Collector
(GDSEC) tool. It highlights the methods developed for accessing and
extracting data, and for storing results. Also, it discusses how evidence
collection can be conducted in a forensically-sound manner.

3.1 Accessing Data

Several methods are available for accessing data from desktop search
applications. The ordering of access methods from a forensic integrity
perspective (best to worst) are:

Accessing files directly.

Accessing files using an interpreter.

Extracting data using API mechanisms provided by the original
application.

Extracting data using the API.

Searching for data using the API.



46 ADVANCES IN DIGITAL FORENSICS IV

Directly accessing and interpreting any files created by a desktop
search utility is the preferred method from a forensic perspective because
it ensures that all the stored information is available without using an
intermediate system. In addition, the data is much more easily extracted
using existing digital forensic tools.

The issue with accessing files directly or using an interpreter is that
it is difficult to determine the format of the files, which is required to
ensure that all the data can be extracted in its original form. Of course,
the format can be reverse engineered, but unless the software developer
is involved, reverse engineering may have to be performed repeatedly
because the format often changes between releases.

Extracting data via an API is less preferable than accessing the data
directly. Using an API requires the original Desktop Search program to
execute in a forensically-sound manner. The primary advantage is that
it permits more thorough extraction of data from the given file format
than screen scraping or manual searching.

Our previous research [9] was unsuccessful at determining the file
structure to an adequate level of detail. We were, therefore, unable to
access the data directly from within Google Desktop Search. However,
the following method can be used to access file data in a forensically-
sound manner:

Data Access Method

1 Copy the Google Desktop Search storage folder (default is c:\Documents and
Settings\username\Local Settings\Application Data\Google\Google De-
sktop Search) from the source machine to the Google Desktop Search folder
on the analysis machine.

2 Rename the file GoogleDesktopCrawl.exe to GoogleDesktopCrawl.exe2 on
the analysis machine; this prevents the file from loading.

3 Open the Google Desktop Search program and ensure that no email programs
are loaded on the analysis machine.

4 After the Google Desktop Search program has loaded on the analysis machine,

navigate to the storage folder and change the file attributes of the files to read-

only; this allows the Google Desktop Search program to close without editing

any files.

This data access method is time consuming; the only options are to
manually search for keywords using the user interface or to screen scrape
the information to another search tool. In either case, there is no means
to ensure that all the data has been extracted. The problem is acerbated
by the fact that Google Desktop Search performs a strict search, i.e., the



Pavlic, Slay & Turnbull 47

entire word being searched must be present for a hit to occur (searching
for “bana” does not return results with “banana”).

As mentioned earlier, Google Desktop Search provides several APIs to
enable third-party applications to be used for data search and collection.
Also of interest is Google Desktop’s interface mechanism, which uses a
web interface on a local host web server; this web server receives all user
queries and functions as the main user interface to the application. Since
a web server is a common service with a standardized access method, it
provides another method for accessing data maintained within Google
Desktop’s storage mechanism. Thus, an HTTP-based extraction appli-
cation can be used to submit queries to Google Desktop Search and
retrieve results.

Extracting information from Google Desktop Search via an HTTP
server was deemed to be the most effective method. Several APIs are
available that enable data to be retrieved in raw HTML or XML formats.
Our GDSEC prototype uses GDAPI, a Java-based API for querying the
Google Desktop Search web server.

3.2 Analyzing Output Data

Google Desktop Search was used on a test database containing a va-
riety of file types. Our analysis revealed that Google Desktop Search
records file-type-specific metadata (e.g., movie lengths and bit rates,
and image resolutions) in a common set of fields, which means that the
value of the fields are ambiguous.

The SDK documentation supplied by Google [4] describes an option
for viewing search results in an XML format. Specifically, by appending
the string &format=xml to the end of a search result page, the results
can be viewed as a formatted XML page; this helped us to understand
the data that is retrieved for each filetype. Every search result has a
standard set of XML elements. File-specific metadata is stored in the
snippet element as a single string, which could be parsed if required.

Google Desktop Search (version 2) enables items to be viewed in a
timeline format, which lists the files indexed on each day. Implementing
this feature requires metadata (e.g., timestamps) to be stored. A time
element (with date and time information) was discovered in the XML
search results. Examination of the SDK revealed it to be the date/time
that the item was indexed and cached by Google Desktop Search, rather
than a timestamp extracted from the computer’s file system metadata
(e.g., file creation time or time of last modification).



48 ADVANCES IN DIGITAL FORENSICS IV

3.3 Extracting Data

Google Desktop Search does not offer a wildcard search feature. A
linear search requires an identifier for the indexed entries. However, al-
though Google Desktop Search has identifiers, we were unable to format
search requests based on item identifiers. In any case, item identifiers
would have to be discovered by issuing queries before they could be used
in queries; this doubles the computational requirements.

Consequently, our experiments used brute force search with a dic-
tionary containing a small set of words designed to test the ability of
the application to handle query results that contained references to files
discovered by previous queries. The keywords in the dictionary were
chosen to correspond to the test files used to evaluate the application
and validate the extraction process.

3.4 Storing and Querying Extracted Data

GDSEC was developed as a proof-of-concept application for extracting
data. Consequently, the results are simply stored in text files. The
search application initially stores the retrieved results in memory as
result objects before writing them to files. Each result object is simply
an encapsulated collection of strings and integers used to represent every
XML element available from a Google Desktop Search query result. A
red-black binary tree is used to manage all the result objects with the url
XML element (which points to a file on the file system or the Internet)
of the search result used as the unique identifier. After a query is issued,
result objects are created for each result and an attempt is made to add
them to the tree based on their URLs. A file that has already been
discovered in a previous query is not added to the tree.

The text files generated as output contain a list of all the elements
extracted from the XML results along with the information related to
the elements. Cached content is also appended to the end of the text
output. The file names of output files are based on the last component
of the URL (usually the file name and extension). For cached files with
the same name that reside in different directories, an extra numerical
character is appended to the file extensions of the output files to make
them unique. Illegal file name characters such as “?” that appear in
a URL (due to web pages with parameters) are replaced with the “ ”
character. The text files are generated in a separate folder on the file
system. Each folder is given a unique name by using its creation time;
this ensures that all subsequent output requests are written to different
folders.



Pavlic, Slay & Turnbull 49

Table 1. Google Desktop Search data.

Filename Match Filename Match

dbc2e.ht1 Yes Dbdam Yes
Dbdao Yes Dbeam Yes
Dbeao Yes Dbm Yes
dbu2d.ht1 Yes dbvm.cf1 Yes
dbvmh.ht1 Yes fii.cf1 Yes
Fiid Yes fiih.ht1 Yes
Hp Yes hpt2i.ht1 Yes
rpm.cf1 Yes rpm1m.cf1 Yes
rpm1mh.ht1 Yes rpmh.ht1 Yes
uinfo data No

3.5 Verifying Forensic Soundness

It is important to verify that the GDSEC application is forensically
sound and that the extracted data can be used as evidence. The verifica-
tion process used a controlled indexing test and a hash value comparison.

The first test used a controlled indexing environment to verify that
GDSEC retrieved data without modifying it. A partition was created
on a test system with multiple files named EVIDENCE.txt containing the
text string “criminal activity.” Google Desktop Search was configured to
only index this partition. After the indexing was completed, GDSEC was
launched with instructions to perform the dictionary search and to write
all the retrieved items to a text file. This text file contained all the XML
search results and the cached content retrieved from the cache URL.
The cached content that was recovered contained the strings “criminal
activity,” which proved that no data was modified during extraction.

Next, it was necessary to verify that no other data was modified during
the extraction process. As part of the controlled indexing test, when
the file was indexed, Google Desktop Search was terminated and MD5
hash values [7] were generated for all the data files used by the search
application. The application was then re-executed and the remainder of
the controlled indexing test was performed. When this was completed,
Google Desktop Search was once again terminated and a second set of
MD5 hash values was generated for the data files.

Table 1 shows the results of the hash value matching test. Only file
uinfo data was altered; all the other files had the same hash values
before and after extraction and were, therefore, unaffected. The file
uinfo data stores user information about the search application and
no actual cached content. Therefore, although this file was altered by



50 ADVANCES IN DIGITAL FORENSICS IV

Google Desktop Search, the loss of integrity is known and explained, and
does not impact the extraction of cached content.

4. Conclusions

Google Desktop Search Evidence Collector (GDSEC) is a prototype
tool designed to collect data from the files used by Google Desktop
Search in a forensically-sound manner. The current version of GDSEC
interacts with Google Desktop Search to extract information. How-
ever, the preferred extraction technique from a forensic point of view is
for the application to directly access files; future research will investi-
gate this issue with the goal of implementing the capability in GDSEC.
Other avenues for improvement include interfacing GDSEC with an SQL
database to provide the ability to conduct additional searches of the re-
trieved information and implementing routines to retrieve cached con-
tent for items that have multiple cached versions (e.g., websites that are
visited frequently).

References

[1] B. Cole, Search engines tackle the desktop, IEEE Computer, vol.
38(3), pp. 14–17, 2005.

[2] Electronic Frontier Foundation, Google copies your hard drive
– Government smiles in anticipation (www.eff.org/press/archives
/2006/02/09), February 9, 2006.

[3] T. Espiner, Google admits Desktop security risk, ZDNet UK (news
.zdnet.co.uk/internet/security/0,1000000189,39253447,00.htm), Fe-
bruary 20, 2006.

[4] Google, Google Desktop (desktop.google.com).

[5] S. Olsen, Google unveils Desktop Search, CNET News.com
(www.news.com/2100-1024 3-5408765.html), October 14, 2004.

[6] B. Posey, Working with NTFS encryption (www.brienposey.com
/kb/working with ntfs encryption.asp), 2002.

[7] R. Rivest, MD5 message-digest algorithm, RFC 1321 (www.ietf.org
/rfc/rfc1321.txt), 1992.

[8] T. Spring, Google Desktop Search: Security threat? PC World
(blogs.pcworld.com/staffblog/archives/000264.html), 2004.

[9] B. Turnbull, B. Blundell and J. Slay, Google Desktop as a source
of digital evidence, International Journal of Digital Evidence, vol.
5(1), 2006.

[10] X1 Technologies, X1 Desktop Search (pro.x1.com/?source=Yahoo).


