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Abstract

We consider the fractional cointegrated vector autoregressive (CVAR) model of
Johansen and Nielsen (2012a) and show that the likelihood ratio test statistic for the
usual CVAR model is asymptotically chi-squared distributed. Because the usual CVAR
model lies on the boundary of the parameter space for the fractional CVAR in Johansen
and Nielsen (2012a), the analysis requires the study of the fractional CVAR model on
a slightly larger parameter space so that the CVAR model lies in the interior. This in
turn implies some further analysis of the asymptotic properties of the fractional CVAR
model.

Keywords: Cointegration, fractional integration, likelihood inference, vector autore-
gressive model.
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1 Introduction

For a p-dimensional time series, X, the fractional cointegrated vector autoregressive (CVAR)
model of Johansen (2008) and Johansen and Nielsen (2012a), hereafter JN(2012a), is

k
A'X, = af ATPLX, + Y TALIX, +ey, t=1,....T, (1)
i=1
where ¢; is p-dimensional independent and identically distributed with mean zero and co-

variance matrix Q and A’ and L, = 1 — A® are the fractional difference and fractional lag
operators, respectively.
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The fractional difference is given by, for a generic p-dimensional time series Z;,
AZy = mn(—d) Zi, (2)
n=0

provided the sum is convergent, and the fractional coefficients 7, (u) are defined in terms of
the binomial expansion (1 —z)™" = > m,(u)z", ie.,

wu+1)---(u+n—1)
n!

mn(u) = .
With the definition of the fractional difference operator in (2), Z; is said to be fractional of
order d, denoted Z; € I(d), if A?Z, is fractional of order zero, i.e., if AYZ, € 1(0). The latter
property can be defined in the frequency domain as having spectral density matrix that is
finite and non-zero near the origin or in terms of the linear representation coefficients if the
sum of these is non-zero and finite, see, for example, JN(2012a, p. 2672). An example of a
process that is fractional of order zero is the stationary and invertible ARMA model. Finally,
then, if Z; € I(d) and one or more linear combinations are fractional of a lower order, i.e.,
there exists a p x r matrix § such that §'Z, € I(d — b) with b > 0, then Z, is said to be
(fractionally) cointegrated.

When d = b =1 in (1) the standard, non-fractional CVAR model, see Johansen (1996),
is obtained as a very important special case. Given the importance of this model, it would
be desirable to test the restriction d = b = 1 within the more general model (1), and, indeed,
this test can be calculated straightforwardly using the software package of Nielsen and Popiel
(2016). However, the asymptotic theory provided for model (1) in JN(2012a) is derived under
the assumption that the parameter space is 7 < b < d < d; for some (arbitrarily small) n > 0
and some (arbitrarily large) d; > 0. Under this assumption, the standard CVAR model with
d = b =1 lies on the boundary of the parameter space, see Figure 1, and hence it does not
follow under the assumptions in JN(2012a) that the test statistic for the standard model
against the fractional model is asymptotically x*-distributed, see, e.g., Andrews (2001).

In this paper we show that it is possible to prove the main theorems in JN(2012a) for
a larger parameter space, where, in particular, the line d = b is no longer on the boundary.
Hence, assuming n < 1 < dy, the point d = b = 1 will be in the interior. The important
implication is that the test statistic for the non-fractional model against the fractional model
is asymptotically x?(2)-distributed under our assumptions.

These new results allow, at least, two important applications. First, they allow testing
the usual CVAR model against a model with more general fractional integration dynamics,
as part of the model specification step in empirical analysis. This test has been calculated
in empirical work, where it has been conjectured to be asymptotically y2-distributed as we
verify in this paper. Second, it seems common to apply the model (1) with the restriction
d = b imposed, without testing this restriction against the unrestricted model. For examples
of both these types of applications see, among others, Bollerslev, Osterrieder, Sizova, and
Tauchen (2013), Dolatabadi, Nielsen, and Xu (2016), and Chen, Chiang, and Hérdle (2016).

More generally, testing the usual CVAR model against the fractional CVAR model can
be viewed as a model specification test for the CVAR model against a fractional alternative.
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Figure 1: The parameter space A in (3) is the set bounded by bold lines.

There exists a large literature on testing univariate ARMA models against a fractional alter-
native, e.g., Robinson (1991), Agaikloglou and Newbold (1994), Tanaka (1999), and Dolado,
Gonzalo, and Mayoral (2002). Thus, the present paper contributes also to this literature by
analyzing the test of the multivariate CVAR model against a fractional alternative.

The remainder of the paper is laid out as follows. In the next section we give the
assumptions and the results. These results rely on an improved version of Lemma A.8 of
JN(2012a), which is given in Section 3. Some implications of the results are discussed in
Section 4.

2 Results and Methodology

In JN(2012a), asymptotic properties of maximum likelihood estimators and test statistics
were derived for model (1) with the parameter space n < b < d < d; for some d; > 0, which
can be arbitrarily large, and some 71 such that 0 < n < 1/2, which can be arbitrarily small
(although a smaller 1 implies a stronger moment condition, see Theorem 1 below). We will
instead consider the parameter space for d and b given by

N =N m,di) ={d,b:n<b<d+m,d<d}; (3)

again for an arbitrarily large d; > 0 and an arbitrarily small  such that 0 < n < 1/2. While
7 is exactly the same as in JN(2012a), we have in (3) introduced the new constant 1; > 0,
which is zero in JN(2012a). We note that the parameter space A explicitly includes the line
segment {d,b : n < d = b < dy} in the interior precisely because 17; > 0. The parameter
space and the role of the constant n; > 0 is illustrated in Figure 1.

We will assume that the data fort = 1,...,T is generated by the model (1). Our approach
is to conduct inference using the conditional likelihood function of Xi,..., Xt given initial
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values {X_, }n>0. This approach is standard in (finite-order) autoregressive models, where
conditional maximum likelihood leads to least squares estimation; see, e.g., Anderson (1971,
pp. 183-184) or Hamilton (1994, pp. 122-123). That is, we interpret equation (1) as a
model for X;,t = 1,...,T, given the past, which will allow us to apply the conditional
density to build a conditional likelihood function; see (7) below. Thus, our entire approach
is conditional on the initial values {X_,, },,>0, which are therefore considered non-random, as
is standard for (especially nonstationary) autoregressive models.

However, it is difficult to imagine a situation where {X,}7____ is available, or perhaps
even exists, so we assume that the data is only observed for t = —N + 1,...,7. JN(2016)
argue in favor of the assumption that data was initialized in the finite past using two leading
examples, political opinion poll data and financial volatility data, but we maintain the more
general assumption from JN(2012a), where the data {X_,}°  may or may not exist, but
in any case is not observed. However, although the initial values assumption is based on
that of JN(2012a), our notation for initial values is closer to that of JN(2016) (in particular,
our notation N and M follows the notation in JN(2016), and is basically reversed from the
notation in JN(2012a)). That is, given a sample of size Ty = T+ N, this is split into NNV initial
values, {X_, ibvz_ol, on which the estimation will be conditional, and T sample observations,
{X:}L |, to which the model is fitted. We summarize this in the following display:

Xy XN Xo . Xy Xy (4)
—— —_—— ————
Data may or may not exist, Data is observed Data is observed
but is not observed (initial values) (estimation)

The inclusion of initial values, i.e. letting N > 1, has the purpose of mitigating the effect of
the unobserved part of the process from time ¢ < —N. Note that the (both observed and
unobserved) initial values, i.e. {X_,}>°, are not assumed to be generated by the model (1),
but will only be assumed to be bounded, non-random numbers, see Assumption 3 below.
Also note that the statistical and econometric literature has almost universally assumed
N = 0 and, in many cases, also assumed that data did not exist for ¢ < 0 or was equal to
zero for ¢ < 0.

Because we do not observe data prior to time ¢ = 1— N, it is necessary to impose X _,, = 0
for n > N in the calculations, even if these (unobserved) initial values are not in fact zero.
To obtain our results we will need different assumptions on the initial values, and we will
discuss these below. Consequently, for calculation of (an approximation to) the likelihood
function, we will apply the truncated fractional difference operator defined by

t—14+N

A(]i\[)(t: Z 7"-n(_d))(t—m

n=0

and keep N fixed, but allow for more non-zero initial values in the DGP; see Assumptions 3

and 5 and Footnote 1. Note that our Aq corresponds to A, in, e.g., JN(2012a), and efficient

calculation of truncated fractional differences is discussed in Jensen and Nielsen (2014).
We therefore fit the model

k
ALGXy = af AT LX, + Y TiAVL X +&, t=1,....T, (5)

=1
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and consider maximum likelihood estimation of the parameters, conditional on only /V initial
values, {X_,,}+_. Define the residuals

k
el(N) = ALX, — af AV LLX, - Y TIAYLX,, (6)

i=1

where A is the collection of parameters {d, b, a, 3,1, ..., s, Q}, which are freely varying;
that is, A is in a product space. The conditional Gaussian log-likelihood function of {X;}L,,

given N initial values, {X_,}.20 is then

log Ly(\) —g log det {0} — gtr{QlTl S e e, (1)

t=1

and the maximum likelihood estimator, A, is defined as the argmax of (7) with respect to A
such that (d,b) € N. Specifically, the log-likelihood function log L1(\) can be concentrated
with respect to {a, 5,11, ..., s, 2} by reduced rank regression, for given values of (d,b), and
the resulting concentrated log-likelihood function is then optimized numerically with respect
to (d,b) over the parameter space N given in (3). Algorithms for optimizing the likelihood
function (7) are discussed in more detail in JN(2012a, Section 3.1) and implemented in
Nielsen and Popiel (2016).

Before we impose some further assumptions on the data generating process, we introduce
the following notation. For any n x m matrix A, we define the norm |A| = tr{4’A}!/2? and
use the notation A, for an n x (n—m) matrix of full rank for which A’A; = 0. For symmetric
positive definite matrices A and B we use A > B to denote that A — B is positive definite.
We also let

k
U(y) =1 -y, —aBfy—> Tl -y (8)
i=1
denote the usual polynomial from the CVAR model. Then equation (1) can be written as
(L) X; = AT W(Ly) Xy = &4, so that
M(z) = (1 —2)7"0(1 — (1 - 2)"). (9)

Finally, we let C, denote the fractional unit circle, which is the image of the unit disk
under the mapping y = 1 — (1 — 2)°, see (9) and Johansen (2008, p. 660), and we define
r=1,->" T.

Assumption 1 For k > 0 and 0 < r < p the process Xy, t = 1,...,T, is generated by
model (1) with the parameter value N, using non-random initial values {X_,}22 .

Assumption 2 The errors g; are i.i.d.(0,$g) with Qo > 0 and Elg;|® < oc.
Assumption 3 The initial values {X_,}° are uniformly bounded, i.e. sup,,>q | X_,| < oo.

Assumption 4 The true parameter value N\ satisfies (do,by) € N, 0 < dy — by < 1/2,
by # 1/2, and the identification conditions Tox # 0 (if k > 0), ag and By are p X r of rank r,
aofy # —1I,, and det{af Tobor} # 0. If r < p, det{¥(y)} = 0 has p — r unit roots and the
remaining roots are outside Cuaxpo1y- If K =17 =0 only 0 < dy # 1/2 is assumed.
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The conditions in Assumptions 1-4 are identical to those in JN(2012a). First, Assump-
tion 1 implies that the data is only generated by model (1) starting at time t = 1. Specifically,
the theory will be developed for observations X, ..., Xr, generated by model (1) with fixed,
bounded initial values, X _,,,n > 0, that are not assumed to be generated by the model. That
is, we conduct inference using the conditional likelihood function (7) and derive properties
of estimators and tests using the conditional distribution of Xi,..., X¢ given X_,,,n > 0,
as developed by JN(2012a) and JN(2016).

Moreover, for A*X;,a > 0, to be well-defined as an infinite sum, see (2), we assume
that the initial values, X_,,,n > 0, are uniformly bounded, c.f. Assumption 3. Many of the
intermediate results can be proved under just the boundedness assumption in Assumption 3,
but to get the asymptotic distributions we need to impose the stronger Assumption 5 as dis-
cussed below. Assumption 2 importantly does not assume Gaussian errors for the asymptotic
analysis, but only assumes ¢; is i.i.d. with eight moments, although the moment condition
needs to be strengthened for some of our results. The conditions in Assumption 4 imply
that the cointegrating relations 3)X; are (asymptotically) stationary because dy — by < 1/2,
allow the important special case of dy = by(= 1), and also guarantee that the lag length is
well defined and that the parameters are identified, see JN(2012a, Section 2.5) and Carlini
and Santucci de Magistris (2017), who discuss identification of the parameters when the lag
length is not fixed.

We are now ready to state our main results in the following two theorems. Both theorems
require some strengthening of the assumptions, and these are identical to those in JN(2012a)
and will be discussed subsequently. Note that the condition ¢ > (by — 1/2)~! when by > 1/2
was used to prove (31) in JN(2012a), but was apparently overlooked in the statement of the
consistency results in Theorems 4 and 5 in JN(2012a).

Theorem 1 Let Assumptions 1-4 hold and assume, in addition, that E|e,|? < oo for some
q > 1/min{n/3,(1/2 — dy + by)/2}, where 0 < n < 1/2. If by > 1/2 then assume also
that Ele|? < oo for ¢ > (bo — 1/2)7'. Let the parameter space N (n,m,d;) be given in (3),
where 1y s chosen such that 0 < ny < min{n/3,(1/2 — dy + bo)/2}. Then, with probability
converging to one, {CZ, b,a, 3,11, T, Q} exists uniquely for (d,b) € N, and is consistent.

Proof of Theorem 1. Theorem 4 of JN(2012a) gives, for the smaller parameter space, the
properties of the likelihood function which are needed to prove that the maximum likelihood
estimator exists and is unique. If these results can be established under our assumptions
(which are identical to those in JN, 2012a), but with the larger parameter space given in (3),
then the proof of Theorem 5(i) of JN(2012a), showing that the maximum likelihood estimator
exists uniquely with large probability for large T, can be used without any changes to prove
our Theorem 1. The proof of Theorem 4 in JN(2012a) is given in their Appendix B. To
avoid repeating their very lengthy proof, we only detail the differences.

The solution, X;,t > 1, of the equations (1) for the data generating process is found in
Theorem 2 of JN(2012a) under Assumptions 1-4 as

Xy = CoAT%e, + AT DY 4 g, for dy > 1/2, (10)
X, = CoA Mg, 4 A~y for dy < 1/2. (11)
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Here, Y, = ZZO:O TonEt—n i a stationary process and Y;© = Z;_:lo TonEt—n, fOr some matrix
coeflicients 79,, depending only on the true values and satisfying Y > [7,| < co. The matrix
Cy is given by

Co = Bor (g, Tofor) o - (12)

Letting I{-} denote the indicator function and using the definitions ¥ (L)X, = I{t >
133 WX, and U_ (L)X, = >0, U, X;_;, the term g is

por = —Vou (L) Wo_ (L)X,

which expresses (i as function of initial values. It is seen from (6) and (10), say, that the like-
lihood function contains terms of the form A% X, from which there are both stochastic and
deterministic contributions. The latter arise because the likelihood is analyzed conditional
on the initial values. Therefore, the terms in the likelihood function of the form Afibuot,
which are generated by the initial values, are considered deterministic in the analysis of the
model.

We first analyze the deterministic terms and establish that these are uniformly small. In
JN(2012a), this follows from their Lemma A.8. However, with our larger parameter space,
this requires a new proof, and thus we give an improved version of Lemma A.8 of JN(2012a)
in Lemma 1 in Section 3. It follows from Lemma 1(i) that deterministic terms from initial
values do not influence the limit behavior of product moments, and hence do not influence
the limit behavior of the likelihood function, so in the further analysis of the likelihood, we
assume they are zero.

Then we analyze the stochastic terms in the likelihood function, which are expressed in
terms of the stationary processes Cye; + A®Y; and its differences Afib’do(C’Ogt + AbOYt).
The behavior of the stochastic terms depend on d and b, and therefore on the parameter
space. More specifically, the stochastic terms are decomposed as 3, LA‘f'ib_dO(Cost + AbY;)
and ﬁ(’)A‘fjb_do(C’ost + AbY)) = 56Ai+jb_d°+b°}/} for i,j = —1,..., k. The former processes
are I(dy — d — ib), which can be either nonstationary, (asymptotically) stationary, or near
critical in the sense that dy — d — ib is close to 1/2. On the other hand, the latter processes
are (asymptotically) stationary for all 7 > —1 because ﬁéAiﬂ bdotboy, e I(dy — by — d — jb)
and dy — by —d — jb < dy—by—d—+b < dy—bg+m < 1/2 by choice of 1;. Thus, we have the
same classification of processes into nonstationary, stationary, and near critical processes as
in Appendix B.3 of JN(2012a).

Close to the critical value dy —d —ib = 1/2, the process 3, LA%”I’X#/ is difficult to analyze
because in a neighbourhood of this value it can be both stationary and nonstationary. The
proof therefore considers a small neighborhood of the near critical processes of the form

—ﬁlgdo—d—ib—l/QSH,

where the constant k1, in particular, plays an important role. The behaviour of the product
moments of the stationary, the nonstationary, and the near critical processes is analyzed in
Appendix B.3 of JN(2012a) in their Lemma A.9 and its corollaries. Those results can be
applied in the present setting without change.

In the application of Lemma 1(i) and the results in Appendix B.3 of JN(2012a) dealing
with the stochastic terms, we need to choose the constant x; carefully. Specifically, on p. 2728
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in Appendix B.3 of JN(2012a), k1 needs to be chosen such that ¢~ < k; < min{n/3, (1/2 —
do+bo)/2} (in Appendix B.3 of JN(2012a) it is also required that x; < 1/6, but this condition
is redundant because we assume 7 < 1/2), while in the application of Lemma 1(i) we need to
choose k1 such that 0 < 17 < k1 < 1/4. Choosing k; to satisfy all these restrictions is possible
because ¢ > 1/ min{n/3, (1/2 — dy + by)/2} and n; < min{n/3,(1/2 —do + by)/2} < 1/4. =

The next theorem presents the asymptotic distributions of the estimators. For this result
we will need to strengthen the condition in Assumption 3 on the initial values of the process
and impose the following assumption. Note that the stochastic terms are not influenced by
Assumption 5.

Assumption 5 Fither of the following conditions hold:
(i) sup,>q | X_n| < 00 and the sum Y o7 n~'2X_,| is finite,
(ii) sup,so|X_n| <00 and X_,, =0 for all n > My for some My > 0.

The condition in Assumption 5(i) is that the (non-random) initial values satisfy the
summability condition Y07 n~1/2|X_,| < co. This allows the initial values to be non-zero
back to the infinite past, but the summability condition implies that initial values do not
influence the asymptotic distributions; see Lemma 1(ii). For example, Assumption 5(i) would
be satisfied if | X_,| < en™Y27¢ for all n > 1 and a fixed € > 0.

Alternatively, under Assumption 5(ii), the initial values are assumed to be zero before
some time in the past; that is, X_, = 0 for all n > M,, where M, > 0 is fixed.! Assump-
tion 5(ii) is illustrated in the following display, see also (4):

Xy XXy, Xowo Xy, Xi Xp (13)
S— ~~ ~ ~~
Data does not exist Data exists Data is observed Data is observed
but is not observed (initial values) (estimation)

Note that M, is a feature of the data generating process and is not related to N, which is
chosen in the analysis of the data. The condition in Assumption 5(ii) was also imposed by
JN(2016), and they provide some motivation for this assumption based on political polling
data and financial volatility data.

Theorem 2 Let Assumptions 1-5 hold with (dy,by) € int(N') and let the parameter space
N(n,m,dy) be given in (3), where n and n; are chosen such that 0 < n < 1/2 and 0 <
m < min{n/3,(1/2 — dy + by)/2}. Assume, in addition, that El|e|? < oo for some q >
1/min{n/3,(1/2 —dy + by)/2}. Then the following hold.

(i) If by < 1/2 the distribution of {CZ b,a, 53,1, .. f‘k} is asymptotically normal.

(ii) If bo > 1/2 we assume, in addition, that E|€t\q < oo for some ¢ > (bg — 1/2). Then
the distribution of {d b a,Ty,.. Fk} 15 asymptotically normal and the distribution of
B 15 asymptotically mized Gaussmn, and the two are independent.

!The proof of Lemma 1(ii), and especially equation (26), makes it clear that My could be allowed to
diverge. That is, we could allow My — oo as T — oo as long as My/v/T — 0, as in Section 4.2 of JN(2012a).
Allowing My to diverge with T illustrates that if we use a large value of T for likelihood inference, then we can
allow for more non-zero initial values, and still hope to make reliable inference on the parameters of interest.
However, to avoid further notational complexity we do not consider this possibility in the remainder.
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Table 1: Summary of moment conditions
Statement Conclusion Assumption on DGP  Assumption on ¢
Assns 2,4 assumed throughout 0 < dy— by < = bo £ 1 5q>8

Thm. 1  consistency by < % g > 1/min{Z, 1/2— do+b0}

Thm. 1 consistency by > % q> 1/m1n{’7 1/2 go+Zo by — 2}
Thm. 2(i) distn. params. by < % g >1/min{Z, / 20+ 0}

Thm. 2(ii) distn. params. bo > 1 q> 1/m1n{” —1/2 dotbo b — 1}
Cor. 1(i) distn. LR(d = b) do = by < q > =

distn. LR(d = b) do = by > q> 1/mln{77 bo— 1}
Cor. 1(ii) distn. LR(d=b=1) dy = by = 1 q>2

Note: This table provides a summary of the different moment conditions and where they are applied.

NN =

Proof of Theorem 2. This follows from parts (i) and (ii) of Theorem 10 in JN(2012a).
First, Lemma 1 shows that under Assumption 5, the deterministic terms generated by the
initial values do not influence the asymptotic behavior of the score function and Hessian
matrix; see also JN(2012a, p. 2694). Next, the proof of Theorem 10 in JN(2012a) relies on
the usual Taylor expansion of the score function around the true values, and since we have
made no changes to the assumptions on the data generating process or the true values, this
proof applies to the current setting as well without any changes. Note that the moment
condition ¢ > (by — 1/2)~! in part (ii) is used in the proof of Theorem 10 in JN(2012a) to
apply the functional CLT for processes that are fractional of order by and obtain convergence
to fractional Brownian motion, see also JN(2012b). This fractional Brownian motion appears
in the mixed Gaussian asymptotic distribution of B [

The important implication of Theorem 2 is stated in the following corollary, where
LR(d ="0) and LR(d = b = 1) denotes the likelihood ratio test statistics for the hypotheses
Hy - dy = by and Hyy : dy = by = 1, respectively.

Corollary 1 Let Assumptions 1-5 hold and let the parameter space N (n,n1,dy) be given in
(3), where n and n, are chosen such that 0 < m < n/3 < 1/6. Assume, in addition, that
Elei|? < 0o for some g > 3/n. Then:

(i) Let the null hypothesis Hyy : do = by be true, and if by > 1/2 assume also that E|e|? <
oo for some ¢ > 1/ min{n/3,by — 1/2}. Then it holds that LR(d = b) 3 2(1).
(i1) Under the null hypothesis Hyy : dyg = by = 1 it holds that LR(d = b= 1) S X2 (2).

Proof of Corollary 1. The corollary follows straightforwardly from Theorem 2 because
dy = by satisfies (do,by) € int(N) under (3). The conditions ¢ > 2/(1/2 — dy + by) and
m < (1/2 —dy + bp)/2 from Theorem 2 are redundant when dy = by because then 2/(1/2 —
do+by) =4<3/nand (1/2—dy+by)/2=1/4>n/3 since n/3<1/6. m

We note from the statements of Theorems 1 and 2, and in particular from their proofs,
that the moment conditions and the conditions on the parameter space, i.e. on the user-
chosen constants 7 and 7y, are closely linked. The different moment conditions that we
apply are summarized in Table 1. Under the conditions of the hypotheses in Corollary 1,
these simplify substantially. Specifically, under the null hypothesis Hops : dg = by = 1 in
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Corollary 1(ii), only ¢ > 3/n moments are required, in addition to ¢ > 8 from Assumption 2,
because all other moment restrictions from Theorems 1 and 2 are redundant when dy = by =
1. For example, if n is chosen as n > 3/8 (i.e., in particular if consideration is restricted to
the case of so-called “strong cointegration”, where by > 1/2), then the results in Corollary 1
follow under only the moment condition ¢ > 8 in Assumption 2.

3 Improving Lemma A.8 of JN(2012a)

In this section we state and prove Lemma 1, which gives results for the impact of deterministic
terms generated by initial values. It improves Lemma A.8(i) of JN(2012a) to accommodate
the larger parameter space given in (3). Part (i) of Lemma 1 is used to prove convergence
of the likelihood function, and hence in the consistency result in Theorem 1, while part (ii)
is used in the analysis of the score function, and hence in the asymptotic distribution result
in Theorem 2. Part (i) of the lemma requires a new proof and particularly requires careful
choice of the constants 7; in the parameter space (3) and ; used in the lemma.

To state the lemma, we define the operators A and A_ such that, for any a, A X, =
AgX, and, for a > 0, A*X; = A2 X, + A X;. We also define X; = X,I{l — N <t < 0} as
the initial values used in the calculations. Note that, for any a, A* X, = (A% — A%)X,, and
that A® X;|,—0 = XoI{t = 0} such that A1A° X, = 0.

When dy > 1/2, the deterministic terms in the likelihood function can be written as
functions of

(AP — A X, + (AT — AL ) gy, i=—1,
Di(d,b) = ¢ (AL — ALY X, (ATFE  ADERYY i =0,k — 1, (14)
Aiﬂvb)z-t + Ai+kb/L0t, i k.
where, see equations (8) and (97) in JN(2012a),

k
por = Fu(L)agBpAT AP0 X, — 3 " (CoWg; AT + Fy (L) Ty A7) ALt X, - (15)
=0
Here, Cj is given in (12) and W, are the coefficients in the polynomial ¥(y) in (8), both
evaluated at the true values, and F{(L)Z; = Zi;lo TonZi—n Where the coefficients 7, are
given in (10) and (11). Note that ug depends only on the true values of the parameters and
on the initial values of X;. When dy < 1/2, we use a different representation of the solution
and hence leave out the terms involving A%, in (14), see Theorem 2 in JN(2012a).
The terms Dj(d, b) are functions of the variables d+ib, d, and d+kb. The m’th derivative
of D;(d,b) with respect to d, say, is denoted D'} D;;(d, b) and the generic notation D™Dy, (d, b)
is used for any m’th derivative involving d and/or b.
For the analysis of the deterministic terms in the score function we define the two oper-
ators, see Johansen (2008),
t—1 e
(L)X, =I{t > 1} Y X, and (L)X, = > TLX,
=0 i=t
for which II(L)X; = I (L)X; + I1_(L) Xy, see (9). Then the score function contains the
deterministic terms

doy = Ty (L) (X, — X;) and dy; = DIy (L) po; + DIo_ (L) Xy, (16)

10



Testing the CVAR in the fractional CVAR model

where D™ denotes derivatives with respect to d + ib and DIIy_(L) denotes the derivative
of II_(L) evaluated at the true value. Note that the expression for dy; is found as a linear
combination of DD;; ()] y—y,, see (14), and also T2~ 30 DD _; 1(¥)| =y, if bo > 1/2, and
hence is analyzed in part (i) of Lemma 1.

Lemma 1 (i) Let Assumption 3 be satisfied. Choose k1 and 1y such that 0 < < k1 < 1/4
and define the intervals Sy = [dy — 1/2 — k1, 00[ and S_ = [—n1,do — 1/2 — k1|. Then the
functions D™D;(d, b) are continuous in (d,b) € N(n,m,d;) and satisfy

sup |D™Dy(d,b)| = 0 ast — oo, (17)
d+ibe St
sup max |[DTET D280 D (d b)| = 0 as T — oo. (18)

d+ibes_ 1=t<T
(i) Under Assumption 5 and do > by it holds that T=> 31 |do,| — 0.

Proof of Lemma 1(i). The following evaluations are taken from Lemmas B.3 and C.1 of
JN(2010). For |u| < wup, 0 <vyg < v <wy, m>0,and ¢t > 1, it holds that

D™y (w)| < c(1 + logt)™t* !, (19)
DT AL AYX| < e(1+log Ty mest=obuvu, (20)

where the constant ¢ does not depend on u, v, m, t, or T'. Our new Lemma 2 below shows
that, foru4+v+12>a; > 0and v > ay > 0, it holds that

DI ALAY Xy < e(1+ log )™ Hpmextmertmnm2umont), (21)

where the constant ¢ does not depend on u, v, m, or ¢. In each of the evaluations (19)—(21),
the m’th derivative with respect to u gives rise to an extra logarithmic factor, which does
not influence the convergences in (17) and (18), so in the following we assume m = 0.

Proof of (17) and (18) for the terms involving X;: In both expressions, the initial values
X, appear in terms of the form A”X, for w = d + ib > —n,. We apply (19) to obtain the
bound

N-1 N-1
A X = > ma(—w) X[ < e ) (47 SNt < et (22)
j=0 j=0

which tends to zero as ¢t — oo, and hence proves (17).

To prove (18) we first note that if dy < 1/2, then S_ = & because 0 < 1m; < k1, and
consequently there is nothing to prove if dy < 1/2. Thus, we prove the result for dy > 1/2.
It follows from (22) that

sup max |[AYX;| < e,
w>—p 1<E<T

and for w € S_ it holds that

sup Tw—dot1/2 < Ry ),
w<do—1/2—k1

11
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which proves (18).

Proof of (17) for the terms involving po: These terms are only present if dy > 1/2,
which we therefore assume in the remainder of the proof. There are three types of terms;
namely SUPg;ipes, |AL® 10y | for 4 = —1,... k, which are all equal, SUDgibes, | AR 1y | for
i =0,...,k, which are dominated by supy, jpes, |AT* 11|, and SUDy_peg, |A%por|, which is
dominated by supeg, |Ai,u0t|. Thus, for w € S, we need only consider AY i, given by

k
Fy(L)agBgAYy =t AP0 X, — N " (CoWo;AY ™0 + F (L)W, Ay~ A%t x, - (23)

J=0

see (15). We note that the terms in (23) are of the form $1_) ARy, s(w), n = 1,2,3, for
suitable matrices A,;, which satisfy >~ |A,;| < oo, and

Ryy(w) = Av=dotbo Ado—bo X, Roy(w) = A0 ADTON, Ryy(w) = A dotbo Adotibo x|

Thus, we show that sup,cg, |Rns—i(w)| — 0 as ¢t — oo for i fixed and n = 1,2,3, such
that, in particular, sup,cg, [Rn:—i(w)| < ¢, for some ¢, that does not depend on i. For
each n, the coefficients |A,;|,7 = 0,..., are summable in i, and therefore the sequence
| Api| supyeg, [Rni—i(w)|I{i <t} is dominated by the summable series c,|Ay;|. It then follows
from the Dominated Convergence Theorem that sup,,cg, | S ARy i(w)| — 0 for n =
1,2,3, which proves (17) in view of (23).

We apply (21) for each R,;(w), giving the proofs for i = 0 to simplify notation. For
Rit(w) we first note that A2 X; = XoI{t = 0}, such that AYA° X; = 0, to see that Ry;(w)
is in fact zero when dy = by, i.e.,

th(w)|d0=b0 = Aqi_do—i_bOAio_boXt’dO:bo = AiAS-A(lXt = 0.

We therefore assume dy > by in the proof for Ry (w). Let u = w — dy + by, v = dy — by
such that for w > dy —1/2 — ky wefindu+v+1=w+1>dy+1/2 -k =a; > 0 and
v =dy— by =as > 0. Then (21) shows that

|A1A11Xt| < C(l +logt)tmax{fufl,fv,szLfvfl} < C(l +logt)tmax{fufl,faz,falfu}.

Moreover, u+ay > do+byg—2Kk1 > 1/2 -2k >0and u+1>1/24+by— K1 > 1/2— Ky >0,
such that sup,,cg, [Ri(w)| — 0.

The proof for Ryi(w) is the same as that for Ry, (w), setting u = w—dy and v = dy+ jbg >
do > 0. Finally, for R (w) we let u = w — dy+ by, v = do + jby > dy > 0 and apply the same
proof as for Ry (w).

Proof of (18) for the terms involving pg;: Again only the case dy > 1/2 needs to be

considered (because S- = @ when dy = 1/2) and there are three types of terms to be
analyzed: (i) The terms sup,;eg |70 0F/2AM® 0| for i = —1,...,k, which are all
equal, (ii) the terms sup,,yeq |70 OFY/2ATH 0| for ¢ = 0,...,k, and (iii) the term

SUPy_peg 170" 0F/2 AL g, |. Thus, for w = d +ib € S_, we analyze
Tw_d0+l/256J_F+(L)Oéoﬂ(l)Aq_ﬁ—i_hb_dO—i_bO Aio_bOXt (24)
k .
. Tw—d0+1/2 ZjZO(CO\IIOJ'A$+hb_dO + F+(L)\IJOjAz_ﬁ—i-hb—do-i-bo)Aio-i-JboXt’

12
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where h = 0 (for terms of type (i)), h = (k — )b (for terms of type (ii)), or h = b (for the
term of type (iii)), see (15). By application of the Dominated Convergence Theorem we only
need to prove that sup,cq |Qnr(w)] — 0 as T'— oo for n = 1,2, 3, where

— Tw7d0+1/2 A’w+hb7d0+b0Ad0*boX
Qur(w) max |AY 2T,

_ Tw—d0+1/2 Aw+hb—d0Ad0+jboX
Qor(w) max. |AY “ ¢

QST(UJ) _ Tw—d0+1/2 max |Aw+hb_d0+b°AdO+jboXt|.
i<t<t' T -

Each term has a factor with a bound from (20) for suitable choices of u and v. Note that
all three cases have either v = dy — by > 0 or v = dgy + jby > dy > 0, which implies that
u—v < wand u+v > w > —ny, so that —v < u+n;. This shows that max{—v, —1,u—v,u} =
max{u + 7y, —1}, so that the bound in (20), multiplied by 7%, becomes

TP A% A X;| < (1 + log T)Tmaxtutztmz=1), (25)
For n = 1,2,3 we apply (25) with the choices

n=1:u=w+hb—dy+by,z=1/2— hb— by,
n=2:u=w+hb—dy,z=1/2— hb,
n=3:u=w+hb—dy+by,z=1/2— hb— by,

respectively. For all three cases we find that u+z4+m =w—doy+1/24+m < —k1+m <0
by choice of 71 < k1, and for all three cases we find that 2 —1<1/2—-hb—1< —-1/2 <0,
so it follows from (25) that sup,cq |Qnr(w)] = 0asT — oo forn=1,2,3. m
Proof of Lemma 1(ii). The deterministic term dy; = ITo_(L)(X; — X;) depends on the
terms A%t X, for 4 > —1.

Suppose first that Assumption 5(i) is satisfied. We then apply (19) to obtain the bound

|Afio+iboXt| < CZ(” + t)_l_(do_b0)|X_n| < Ct—l/?—(do—bo) Zn_1/2|X—n| < Ct_l/z_(do_bo),
n=0 n=0

such that T=Y2 31 |doy| < ¢T=V2 307 17127 (do=bo) < (1 + log T)Tx{=1/2—(do=bo)} _, )
for dy > by. If dy = by then A®™X, = A°X, = 0 for ¢t > 1 and the dominating term
becomes T2 ST |A% X, | < ¢(1 + log T)T™>{=1/2=do} _, ),

Next, suppose Assumption 5(ii) is satisfied. We again apply (19) and find

Mp—1 Mp—1
|Acio+ib0Xt| = | Z 7Tn+t(_d0 — ibO)X—n,T| S C Z (n + t)_(do_bo)_l S CM()t_(dO_bO)_l. (26)
n=0 n=0

It follows that T2 3" |dy| — 0. =

The final result, given as Lemma 2, presents a new bound on |[D]’AY%AY X;| and thus
improves Lemma C.1 in JN(2010). This bound is critical to the analysis of the initial values

13
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on the larger parameter space compared with Lemma A.8 in JN(2012a). Furthermore, it is
also this new bound that allows us to include the case dy = 1/2 in the proof of Lemma 1,
which was missing in the proof of Lemma A.8 in JN(2012a).

Furthermore, the bound in Lemma 2 allows us to avoid the condition that xk; < dy —1/2
when dy > 1/2 in Lemma 1, which was assumed in Lemma A.8 in JN(2012a), but appar-
ently was overlooked in the statement of the main theorems and assumptions in JN(2012a).
Specifically, this would have required the existence of ¢ > (dy — 1/2)~! when dy > 1/2, in
addition to other conditions on ¢, so that x; can be chosen to satisfy ¢7! < r; < dy — 1/2.
The use of our new Lemma 2 allows us to avoid this condition in the proof of Lemma 1 and
hence avoid strengthening the moment condition on g¢.

Lemma 2 Let Assumption 3 be satisfied. Then, uniformly for u+v +1 > a; > 0 and
v > ag > 0, it holds that

|DumA1A1iXt’ < C(l + IOg t)m+1tmax{—u—1,—v,—2u—v—1}’
where the constant ¢ does not depend on u, v, m, ort.

Proof of Lemma 2. We prove the result for m = 0 and find that

t—1 oo
ALAYX <Y Y Im(—u)llm(—v)| = A+ By,
7=0 k=t—j

where the inner summation is split in two at k& = max{j,t — j} to define

t—1 max{j,t—j}—1

t—1 00
Ar=c) Y Im(=u)llm(—v)and Bi=¢d > |m(—uw)l[m(—v)].
j=0 k=t—j 7=0 k=max{j,t—j}
Next, for r > s we use the decomposition and evaluations

Wr(w) :71'3(21)> H (1+(w— 1)/@) :ﬂs(w>as’r(w)’ (27>
|ms(w)] < s, and |, (w)] < e

where the constant ¢ does not depend on w, 7, or s; see Lemma A.3 of JN(2016). We will
also need Lemma B.4 from JN(2010), which shows that

t—1
Zju—l(t _j)v—l < C(l +logt)tmax{u—l,v—l,u—kv—l}’ (28)

j=1

where ¢ does not depend on ¢, u, v for |u| < ug, [v| < vy.

Proof for A;: Note that the condition ¢t —j < k < max{j,t—j} — 1 in the summation in
A; implies that £k < j — 1 because t — j < k <t — j — 1 is not possible. Thus, for k < j we
find from (27) that

|75 (=) | (—0)] = |mi (=) |l (=) || (—v)| < ej ™t roaD
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and it follows that

t—1 7j—1
A <ec Z j—u—l Z L (utvt1)— < c Z j —u—1 t— —(utv+1)
j=t/2 k=t—j j=t/2

= C(]- + log t)tmax{_u_lv_u_v—l,—2u—v—1}7

where we used (28) and that 37—} ket ml ST R DTl e — ) (et
foru+v+1>a; >0.

Proof for By;: In the summation in B; the condition k& > max{j,¢ — j} implies that k > j
and k > t/2. Then, from (27) we find that

|75 (—w)l|mi(—0)| = |mj(—w)l[m; (—v)l[aju(—v)| < ej~FrD T,

and it follows that

Bt<CZJ )= Z R <t ZJ (utotD)-1 o oy=v,

k=t/2

where we used that Y72, , k771 < ct™ for v > ap > 0 and > e b=l < e for
u+v+1>a; >0 =

4 Conclusions and discussion

In this paper, we have shown that the test statistic for the usual CVAR model in the more
general fractional CVAR model is asymptotically chi-squared distributed. In the analysis of
the fractional CVAR in Johansen and Nielsen (2012a), the usual CVAR was on the boundary
of the parameter space, so in this article we studied the fractional CVAR model on a slightly
larger parameter space for which the CVAR model lies in the interior. This analysis required
improving several related results in Johansen and Nielsen (2012a); in particular regarding the
negligibility of the contribution of the initial values of the process to the likelihood function.

Our main results, presented in Corollary 1, show that the likelihood ratio test of the
usual CVAR is asymptotically x?(2) and that the likelihood ratio test of the less restrictive
hypothesis that d = b in the fractional model is asymptotically x?(1). Thus, the tests are
very easy to implement and can be calculated straightforwardly using the software package
of Nielsen and Popiel (2016). Both tests are important in empirical analysis as part of
model determination to test a more simple and parsimonious formulation of the empirical
model. As mentioned in the introduction, these tests have been calculated in empirical work
(see references in the introduction) with a conjectured y?-distribution, which we have now
verified.
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