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Abstract

We investigate the ability of textual analysis-based metrics of physical or transition risks

associated with climate change in forecasting the daily volume of trade contracts of gold.

Given the count-valued nature of gold volume data, our econometric framework is a log-

linear Poisson integer-valued generalized autoregressive conditional heteroskedasticity (IN-

GARCH) model with a particular climate change-related covariate. We detect a significant

predictive power for gold volume at 5- and 22-day-ahead horizons when we extend our model

using physical risks. Given the underlying positively evolving impact of such risks on the

trading volume of gold, as derived from a full-sample analysis using a time-varying IN-

GARCH model, we can say that gold acts as a hedge against physical risks at 1-week and

1-month horizons. Such a characteristic is also detected for platinum, and to a lesser extent,

for palladium, but not silver. Our results have important investment implications.
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1. Introduction

Climate change is associated with two types of risks, namely physical and transition.

Physical risk involves losses and costs due to, e.g., rising temperatures, higher sea levels,

storms, and floods or wildfires. Transition risk is instead associated with a costly switchover

to a low-carbon economy usually prompted by climate policy changes, emergence of com-

petitive green technologies, and shifts in consumer preferences. Naturally, though the uncer-

tainty around the future course of climate change and its economic implications, every future

scenario includes climate-related financial risks. Climate-related risks have been shown to

adversely affect a large number of asset classes, including currencies, equities, fixed-income

securities, and real estate, as well as financial institutions (Battiston et al., 2021; Giglio

et al., 2021; Bonato et al., 2022), generally raising the stress of the entire financial system

(Flori et al., 2021).

Due to heightened distress in the financial system arising out of climate risks, gold,

given its well-established “safe haven” properties (Boubaker et al., 2020; Bouri et al., 2022),

may play a key role. Gold, in fact, serves as an investment vehicle that offers portfolio

diversification and/or hedging benefits during periods of financial turmoil, also possibly

originated from climate-related events. In such instances of “bad news” and due to the

information-seeking actions of traders, gold returns and its volatility are therefore expected

to increase due to higher trading volumes, capturing information flows emanating from its

higher demand (Wang & Yau, 2000; Batten & Lucey, 2010; Baur, 2012). As a support of this

theory, recent studies show a positive relationship between gold returns, and its volatility,

with climate risks (Cepni et al., 2022; Gupta & Pierdzioch, 2022).

In light of the underlying intuition that climate risks can be associated with higher

returns and volatility of gold prices due to increased trading volumes, this paper contributes

to the broader green finance literature5 by documenting the direct effect of climate risks

on the volume of traded contracts of gold. In this regard, we resort to an out-of-sample

forecasting exercise over the daily period of 3rd January, 2005 to 29th October, 2021, rather

than an in-sample predictability analysis mainly for two reasons. First, under a statistical

5See Giglio et al. (2021) and Hong et al. (2020) for an exhaustive review.
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perspective, forecasting is considered to be a more robust test of predictability in terms

of both models and predictors (Campbell, 2008). Second, accurate real-time forecasting of

volumes (based on the information content of climate risks), which is known to lead returns

and volatility, should be of much more value to traders and investors in the gold market,

relative to in-sample evidence, in the timely pricing of related derivative securities and for

devising portfolio-allocation strategies.

Realizing the count-valued nature of the time series data on the trading volume of gold,

our econometric framework is a log-linear Poisson integer-valued generalized autoregressive

conditional heteroskedasticity (INGARCH) model with predictors, which in turn are textual

analysis-based metrics of physical or transition risks associated with climate. While the focus

is on gold, given that recent studies have also depicted the possible safe haven characteristic

for palladium, platinum, and silver (Lucey & Li, 2015; Salisu et al., Forthcoming), we also

consider the role of climate risks as predictors of the trading volumes of these three different

precious metals, over the same period as gold. Our main findings suggest that gold acts as

a hedge for physical risks at one-week and one-month-horizons, result that we detect also

for platinum and, to a lesser extent, for palladium but not for silver. To the best of our

knowledge, this is the first paper using count data-based models to forecast daily volumes of

precious metals relying on the information contained in physical and/or transition climate

risks to provide a direct test of the safe haven characteristic of this asset-class. The remainder

of the paper is organized as follows: Section 2 presents the methodology, Section 3 discusses

the data, Section 4 is devoted to the empirical findings, and Section 5 concludes the paper.

2. Methodology

Consider the following autoregressive model for count time-series inspired from the

GARCH model of Bollerslev (1986)

yt|yt−1, yt−2, · · · ∼ Poi(λt) (2.1)

λt = α0 + α1yt−1 + β1λt−1

where y1, · · · yt is an observed general non-negative integer-valued time-series, λt stands for

the shape parameter of the Poisson distribution used to model the marginal distribution of
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yt, and α0, α1, and β1 are attached coefficients used to model the intercept, autoregressive

and the GARCH lag contributions, respectively. In the literature, such models are named

INGARCH(1,1) and have become a state-of-the-art framework for analyzing count data

(Davis et al., 2021). In the forecasting exercises we carry out in this paper, we choose

trading volume as this count time-series. The parameter space for these basic model in

2.1 models is restricted due to constraints of positivity, and this gives rise to the following

log-linear INGARCH model, making the parameter space relatively more unrestricted:

yt|yt−1, yt−2, · · · ∼ Poi(λt) (2.2)

log(λt) = α0 + α1log(1 + yt−1) + β1log(λt−1)

Bringing in covariates or predictors, we obtain the following log-linear Poisson INGARCH(1,1)

model:

yt|yt−1, yt−2, · · · ∼ Poi(λt) (2.3)

log(λt) = α0 + α1 log(1 + yt−1) + β1 log(λt−1) + ηTXt

where Xt is the matrix of covariates and η is a matrix of suitable dimensions corresponding

to the coefficients attached to these covariates. To ensure stationarity and stability of such

univariate models, it is necessary to assume that: 0 < α1 + β1 < 1.

We use the prediction routine in the tscount package in R (Liboschik et al., 2017) to

produce forecasts. In short, this method chooses a roll-over forecasting scheme such that, to

predict yn+1 based on y1, · · · yn, the simple conditional expectation is used, and to predict

yn+2 based on y1, · · · yn+1, the simple conditional expectation is still used, but the unknown

yn+1 is replaced by ŷn+1 based on the previous computation, and so on for yn+3, · · · .

We judge the quality of future the h−step aggregated forecast, i.e. yn+1 + · · ·+ yn+h for

different values of h through a pseudo-out-of-sample evaluation metric. More specifically,

we follow the following steps:

• Predict FWCi,h = ŷi+m+ · · ·+ ŷi+m+h−1 using the log-linear INGARCH tsglm predict

routine with covariate(s) based on pairs (yj, Xj) j = i, · · · , i+m− 1;

• FWOCi,h = ŷi+m+· · ·+ŷi+m+h−1 using the log-linear INGARCH tsglm predict routine

without covariates based on pairs (yj) j = i, · · · , i+m− 1;

• Next we compare the two forecasted series FWC{},h and FWOC{},h by the means of
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Clark & West (2007) test.

3. Data

Our climate risks data are sourced from Bua et al. (2022) and consist of a daily Physical

Risk Index (PRI) and Transition Risk Index (TRI). These two novel climate risk indicators

are the result of a text-based approach which combines the term frequency-inverse document

frequency and the cosine-similarity techniques expanding on the work of Engle et al. (2020).

Specifically, the authors first group various scientific texts on climate change by topic, either

involving physical or transition risk, to obtain two documents that, if digested, provide

a comprehensive understanding of the physical and transition climate risks. The authors

then use these climate risks-related documents to feed their text-based algorithms, and

search the same structured information within a corpus of (European) news sourced by

Reuters News. As output, they obtain two distinct time series, so-called “concerns”, roughly

representing the news media attention towards physical and transition risks, which we denote

as CONCERNPR and CONCERNTR, respectively. As a final step, the authors model the

climate risks series, PRI and TRI, as autoregressive order one (AR(1)) residuals of the

concerns series in order to capture shocks and innovations in physical and transition risks.

We use these measures of climate risks because the proposed measures, originated from

advanced climate vocabularies, exhibit several advantages with respect to previous studies.

They, for instance, embed multiple dimensions of these risks without discarding relevant

aspects resulting in complete climate risks indicators, which can enhance studies on the

financial implications of climate risks. The PRI includes both acute and chronic physical

risks like floods, extreme weather events, permafrost thawing, and sea level rise, as well as

issues about climate adaptation actions, and other physical risk-averse effects like the loss in

biodiversity. The TRI, on the other hand, includes news on regulations and measures to curb

greenhouse gas (GHG) emissions, news concerning the costs associated with the transition

to a greener economy, and news discussing the advances of technological innovation and

renewable energies to reach, for example, net-zero emissions targets. Bua et al. (2022) also

perform commonality tests to assess the actual degree of overlap of the two indicators and
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conclude that both PRI and TRI carry relevant individual information.

Daily data on the volume of traded contracts of the top four precious metals, namely

gold, palladium, platinum and silver, are downloaded from Bloomberg. Our analysis covers

the period of 3rd January, 2005 to 29th October, 2021, i.e., 4245 daily observations. Note

that, the start and end dates of our samples are purely driven by the availability of data on

the climate risks predictors. All the variables of interest have been plotted in Figure 1 to

provide a graphical summary of their evolution over time for the sample period considered

in this paper.

4. Empirical results

4.1. Preliminary analysis of the relationship between trading volumes and cli-

mate risks

Before we proceed to the formal forecasting exercise, we check if indeed climate risks

positively impact the trading volume of gold, as expected in light of the gold’s “safe haven”

ability to hedge, e.g., climate risks. For this purpose, we utilize a time-varying approach

analogue to that of Eq. (2.3).6 Figure 2 shows the time-varying effect, t-statistics, of

CONCERNPR and CONCERNTR on the trading volume of gold (top row), palladium (second

row), platinum (third row), and silver (bottom row). An overall positive (negative) sign

would indicate that climate risks indeed increase (decrease) the trading volume of precious

metal confirming (contrasting) the underlying hypothesis. Considering gold, such effect is

generally positive in a statistically significant manner under physical risks, CONCERNPR,

while this is not necessarily the case under transition risks, CONCERNTR.
7 Qualitatively

similar results are drawn for palladium and platinum, and, to a lesser extent, for silver.

This finding is expected to a certain degree, given the underlying nature of these two risks,

6The time-varying log-linear Poisson INGARCH(1,1) model can be described as: yt|yt−1, yt−2, · · · ∼
Poi(λt), with log(λt) = α0(t/n)+α1(t/n) log(1 + yt−1)+β1(t/n) log(λt−1)+η(t/n)

T
Xt. For the estimation

of the parameter functions (α0(·), α1(·), β1(·), η), we employ a kernel-based technique padded on quasi-
maximum likelihood estimation as in Karmakar et al. (2022). In this regard, we use the rectangular kernel
K(x) = I(−1 ≤ x ≤ 1) and bandwidth bn = m/n to remain consistent with our forecasting set-up, which in
turn assumes stationarity of the last m observations.

7Using PRI and TRI instead of CONCERNPR and CONCERNTR, yielded, not surprisingly, similar
observations, with the results available upon request from the authors.
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Fig. 1: Time series plot of climate risk measures and count data variables
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with the effects of physical risks likely to be felt immediately on the stress of the financial

system. In light of this evidence related to the sign of the effect of climate risks, we would

want to put relatively more reliance on the forecasting accuracy of gold volumes emanating

from physical rather than transition risks in the process of validating the safe haven nature

of gold, and other precious metals.

Fig. 2: Climate risks’ time-varying effect on the volume of contracts traded for precious metals

𝑡-statistic of the effect of CONCERNPR on Gold

 
 

𝑡-statistic of the effect of CONCERNTR on Gold 

 

𝑡-statistic of the effect of CONCERNPR on Palladium 

 

𝑡-statistic of the effect of CONCERNTR on Palladium 

 
𝑡-statistic of the effect of CONCERNPR on Platinum 

 

𝑡-statistic of the effect of CONCERNTR on Platinum 

 
𝑡-statistic of the effect of CONCERNPR on Silver 

 

𝑡-statistic of the effect of CONCERNTR on Silver 

 
 

Note: The dotted lines correspond to t-values at the significance levels of 1% (+/−2.575), 5% (+/−1.96)

and 10% (+/−1.645).
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4.2. Climate risks and forecasting results of trading volumes of precious metals

In Table 1, we present the p-values of the CW test derived based on a rolling-window

estimation of m = 500, i.e., approximately two years of data points, implying that the

out-of-sample period starts from the tumultuous time associated with the beginning of the

global financial crisis. The forecasts are conducted for three horizons of h=1, 5, and 22,

corresponding to a one-day-, one-week-, and one-month-ahead. We find that CONCERNPR

produces statistically superior forecasting gains relative to the benchmark model at h=5

and 22 for the trading volume of gold, which in turn are also reflected in the PRI results for

these corresponding forecasting horizons. TRI is also found to produce statistical forecasting

gains for gold trading volumes at h=5, but the corresponding PRI produces a much lower

p-value, indicating that physical risk is therefore a better predictor. In sum, while we do not

find evidence of forecastability of gold volume one-day-ahead, we do so at one-week- and at

one-month-ahead, and that too from the physical risks component of climate change. Given

the positive time-varying impact of such risks on the trading volume of gold (as shown in

Figure 2), we can say that gold acts as a hedge against physical risks at one-week- and

one-month-horizons.

Turning now to the other three precious metals, we find that statistically superior fore-

casting gains for palladium emanating from both physical and transition risks are obtained

at h=1, while this holds for both h=5 and h=22 for platinum. As far as silver is concerned,

accurate forecasting is derived from the climate risks-related metrics for all three horizons,

with a stronger effect obtained under transition risks compared to physical ones, especially

when one compares the p-values associated with TRI and PRI. In light of the underlying

time-varying relationship between the trading volumes of palladium, platinum, and silver

with climate risks, we tend to conclude that while the former two, especially platinum, can

hedge climate risks, silver, with its volume being negatively impacted, is not necessarily

well-suited to play the role of a safe haven relative to physical and transition risks.8

8As part of additional analysis, we collected 5-minute interval intraday price data of these four precious
metals from Bloomberg, and computed daily counts of positive and negative log-returns. The idea in this
instance is that if gold and the other three metals are indeed safe haven, then climate risks should be able
to predict relatively more accurately the positive rather than the negative counts, as an indication of being
a hedge against such risks. For this exercise, we consider the period of 1st May, 2018 to 29th October, 2021,
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Table 1: CW p-values for forecasts of trading volumes of precious metals based on metrics of
climate risks

Gold Palladium Platinum Silver

h = 1 day

CONCERNPR 0.1516 0.0338 0.5155 0.0185

CONCERNTR 0.7873 0.0080 0.9380 0.5576

PRI 0.3311 0.0115 0.4822 0.0054

TRI 0.3779 0.0977 0.5424 0.0860

h = 5 days

CONCERNPR 0.0036 0.8603 0.0985 0.6815

CONCERNTR 0.3347 0.2218 0.5316 0.3738

PRI 0.0037 0.5924 0.0024 0.0078

TRI 0.0338 0.1357 0.0373 0.0000

h = 22 days

CONCERNPR 0.0071 0.8689 0.0139 0.5256

CONCERNTR 0.8585 0.8147 0.3902 0.1232

PRI 0.0146 0.5540 0.0037 0.0062

TRI 0.5376 0.6736 0.2331 0.0001

5. Conclusions

In this paper, we forecast the daily volume of trade contracts of gold based on the infor-

mation contained in text-based metrics of physical or transition risks associated with climate

change. In light of the count-valued nature of the time series data of gold volume, we use

a log-linear Poisson integer-valued generalized autoregressive conditional heteroskedasticity

(INGARCH) model involving a specific-type of climate change-related predictor. Based on

daily data covering the period 3rd January, 2005 to 29th October, 2021, we detect statistically

superior forecasting gains for gold volume emanating from physical risks at one-week- and

at one-month-ahead horizons, but not for one-day-ahead. Given the underlying positively

evolving impact of such risks on the trading volume of gold, obtained from a full-sample

analysis using a time-varying INGARCH model, we conclude that gold acts as a hedge

against physical risks of climate change at one-week- and one-month-horizons. This finding

is also documented for platinum and, to a lesser extent, for palladium, but not for silver.

with the start date concentrated around the peak date (19th September, 2018) of the physical risk metrics,
with which gold trading volumes were shown to be, in general, positively related. As shown in Table A1 of
the Appendix, gold is the only case, compared to the three other precious metals, whereby not only physical,
but also transition risks, tend to accurately forecast positive returns only at h = 1- and 5-day ahead. Note
that, in light of the small sample size of 973 observations, we use a rolling-window of 125 days to obtain
our results. These findings, in turn, confirm that gold is indeed best-suited among precious metals to hedge
climate risks.
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Considering that trading volume is known to lead gold returns and volatility, our results

have important investment implications in terms of the design of optimal portfolios. In

particular, our findings suggest that gold can be included in a multi-asset portfolio to hedge

against the physical aspect of climate risks, known to negatively impact the risk of financial

assets. Additionally, future research can, e.g., further explore the climate risks forecasting

ability for the trading volume of other assets though to offer financial hedge against the

climate change, such as “green” or “environmental, social, and governance (ESG)” assets.
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Appendix

Table A1: CW p-values for forecasts of count of negative and positive log-returns of precious
metals based on metrics of climate risks

Gold(−) Gold(+) Palla(−) Palla(+) Plati(−) Plati(+) Silv(−) Silv(+)

h = 1 day

CONCERNPR 0.5133 0.1752 0.4537 0.3530 0.2563 0.3806 0.5666 0.1382

CONCERNTR 0.5863 0.0974 0.0005 0.2325 0.3271 0.2477 0.1800 0.4095

PRI 0.5582 0.3376 0.0911 0.1454 0.5451 0.1769 0.4141 0.0584

TRI 0.2448 0.0101 0.0000 0.0001 0.0979 0.0295 0.0055 0.0599

h = 5 days

CONCERNPR 0.8809 0.0614 0.6413 0.1020 0.8995 0.0616 0.6656 0.0231

CONCERNTR 0.8519 0.1150 0.6939 0.0674 0.5921 0.4680 0.9058 0.2494

PRI 0.4390 0.1400 0.4699 0.0724 0.8710 0.0501 0.3262 0.0173

TRI 0.6106 0.0978 0.1539 0.0061 0.4548 0.2239 0.7337 0.1364

h = 22 days

CONCERNPR 0.9741 0.4987 0.3309 0.6267 0.7895 0.5719 0.9915 0.1660

CONCERNTR 0.8692 0.5397 0.8881 0.1097 0.7086 0.8413 0.9736 0.6213

PRI 0.8479 0.8827 0.8744 0.7016 0.9113 0.6123 0.8696 0.1650

TRI 0.8745 0.7585 0.8180 0.0985 0.6247 0.9366 0.9059 0.5890

Note: − or + corresponding to the name of a precious metal indicates the case of negative or positive count
of log-returns; Palla, Plati and Silv stand for Palladium, Platinum and Silver respectively.
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