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Abstract

General parametric forms are assumed for the conditional mean λt(θ0) and variance

υt (ξ0) of a time series. These conditional moments can for instance be derived from

count time series, Autoregressive Conditional Duration (ACD) or Generalized Autore-

gressive Score (GAS) models. In this paper, our aim is to estimate the conditional

mean parameter θ0, trying to be as agnostic as possible about the conditional distri-

bution of the observations. Quasi-Maximum Likelihood Estimators (QMLEs) based

on the linear exponential family fulfill this goal, but they may be inefficient and have

complicated asymptotic distributions when θ0 contains zero coefficients. We thus study

alternative weighted least square estimators (WLSEs), which enjoy the same consis-

tency property as the QMLEs when the conditional distribution is misspecified, but

have simpler asymptotic distributions when components of θ0 are null and gain in effi-

ciency when υt is well specified. We compare the asymptotic properties of the QMLEs

and WLSEs, and determine a data driven strategy for finding an asymptotically opti-

mal WLSE. Simulation experiments and illustrations on realized volatility forecasting

are presented.
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1 Estimating the conditional mean

Consider a real-valued stochastic process {Xt, t ∈ Z}. Let Ft be the sigma-field generated

by {Xu, u ≤ t}. Assume a parametric form for the conditional mean :

E (Xt | Ft−1) =λ (Xt−1, Xt−2, ...; θ0) = λt (θ0) = λt, t ∈ Z. (1.1)

Important classes of count time series models, in particular the Poisson INteger GARCH

(INGARCH), the Negative Binomial INGARCH and the INteger AR (INAR), that will be

considered in Section 3 below, have a conditional mean of the form (1.1). The most frequent,

and maybe most natural, specification for λt is the INGARCH(p, q)-type equation

λt = ω0 +

q∑

i=1

α0iXt−i +

p∑

j=1

β0jλt−j. (1.2)

For the INAR models, the conditional mean has also the parametric form (1.2), with p = 0.

In (1.2) the unknown parameter is θ0 = (ω0, α01, . . . , β0p). For modeling positive time series,

such as durations or volumes, Engle and Russell (1998) proposed the ACD model of the form

Xt = λtzt, (1.3)

where (λt) satisfies (1.2) and (zt) is an iid sequence of positive variables of mean 1, for

instance of exponential distribution of rate parameter 1. Standard ARMA models are also

of the form Xt = λt + ǫt with (ǫt) an iid noise and λt satisfying (1.2).

Time series models with linear conditional mean (1.2) are thus very frequent. A drawback

of this linear specification is that it is very sensitive to large ”outliers” in Xt−i. Following

Creal, Koopman and Lucas (2011, 2013), Harvey (2013) and Blasques, Koopman, Lucas

(2015), Generalized Autoregressive Score (GAS) alternative updating equations can be con-

sidered. For example, by assuming that zt in (1.3) follows the square of a Student distribution
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of degree of freedom ν0 > 2, standardized in such a way that Ez2t = 1, the GAS approach

developed in Harvey and Chakravarty (2008) leads to the Beta-t-ACD model1 in which

λt = ω0 + β0λt−1 + α0
ν0 + 1

ν0 − 2 + Xt−1

λt−1

Xt−1. (1.4)

When ν0 is large, this equation is close to an INGARCH(1,1), but when ν0 is small or

moderate, λt is less sensitive to an extreme value of Xt−1 in Model (1.4) than in Model (1.2),

which can be a highly desirable robustness property. As far as possible, we thus prefer to

consider the general model (1.1) than the linear specification (1.2).

Estimating θ0 is obviously of primary importance, in particular for predicting Xt+h given

Ft for h ≥ 1. The maximum-likelihood estimator (MLE) is often readily computable – except

for parameter-driven models like the INAR model (see Cox, 1981) – but it requires to specify

a conditional distribution. Each parametric specification of the conditional distribution

function (cdf) leads to a parameterization of the conditional variance (when existing)

Var (Xt | Ft−1) =υ (Xt−1, Xt−2, ...; ξ0) = υt (ξ0) = υt. (1.5)

In practice, the choice of the cdf is an issue. There exists actually no natural choice for

the cdf, or even for the conditional variance (1.5). For example, for count time series, the

choice of the Poisson distribution with intensity λt entails υt = λt, and is thus questionable

since it has been empirically observed that numerous count time series exhibit conditional

overdispersion (see e.g Christou and Fokianos, 2014). For positive observations, the ACD

model (1.3) entails a conditional variance proportional to the square of the conditional mean,

υt = λ2
t (Ez2t −1). An additive ARMA-type model of the form Xt = λt+ ǫt entails a constant

conditional variance υt = Eǫ2t . In practice, one can easily conceive that the conditional

variance may have other forms. Obviously, the choice of a wrong cdf may affect the efficiency,

or even the consistency, of the misspecified MLE.

In the present work, we focus on the estimation of the parameter θ0 of the conditional

mean (1.1), without assuming a specific form for the cdf Fθ of the observations. In particular,

1The original version of this model was proposed for GARCH, but the ACD version is direct because an

ACD is nothing else than the square of a GARCH.
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we are interested in estimators that could be consistent even if the conditional variance (1.5)

is misspecified. Since the works of Wedderburn (1974) and Gouriéroux, Monfort and Trognon

(1984), it is known that, under general regularity conditions, a MLE is a QMLE – that is a

MLE based on a cdf Fθ which remains consistent when the true cdf is not Fθ – if and only

if Fθ is a particular member of the linear exponential family (defined by (2.19) below). For

positive observations X1, . . . , Xn, an example of such misspecification-consistent estimator

is the Exponential QMLE (EQMLE), defined by

θ̂E = argmin
θ∈Θ

n∑

t=1

{
Xt/λ̃t (θ) + log λ̃t (θ)

}
, (1.6)

where Θ denotes the parameter space and λ̃t(θ) = λ(Xt−1, . . . , X1, X̃0, X̃−1, . . . ; θ) for given

initial values X̃0, X̃−1, . . . This estimator coincides with the MLE when the cdf of the obser-

vations is the exponential distribution of parameter rate 1, but the EQMLE is consistent and

asymptotically normal (CAN) for a much broader class of cdf’s (see Aknouche and Francq,

2019). Another example of QMLE is the Poisson Quasi-MLE (PQMLE), defined by

θ̂P = argmax
θ∈Θ

n∑

t=1

{
Xt log

(
λ̃t (θ)

)
− λ̃t (θ)

}
. (1.7)

This estimator, which coincides with the MLE when the cdf of the observations is Poisson

Pλt
, is CAN for the mean parameter of count time series (see Ahmad and Francq, 2016)

or duration-type (see Aknouche and Francq, 2019) models. However, this estimator is in

general inefficient when υt 6= λt. Motivated by the existence of overdispersed series for which

υt > λt, Aknouche, Bendjeddou and Touche (2018) studied the profile Negative Binomial

QMLE (NBQMLE), defined by

θ̂NB = argmax
θ∈Θ

n∑

t=1

Xt log

(
λ̃t (θ)

r + λ̃t (θ)

)
− r log

{
r + λ̃t (θ)

}
, (1.8)

where the parameter r is fixed. An intuition for the CAN of the QMLEs is obtained by

looking at the first order conditions. Any QMLE θ̂ satisfies

sn(θ̂) = 0, sn(θ) =
n∑

t=1

Xt − λ̃t (θ)

υ̃t(θ)

∂λ̃t(θ)

∂θ
, (1.9)
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where υ̃t(θ) is an approximation of the conditional variance υt of a given member of the

exponential family. For the Exponential, Poisson and Negative Binomial QMLE, we have

respectively υ̃t(θ) = λ̃2
t (θ), υ̃t(θ) = λ̃t(θ) and υ̃t(θ) = λ̃t(θ)(1 + λ̃t(θ)/r). Each of these

estimators is optimal within the class of the QMLEs when the conditional variance υt is well

specified. The possible value of υt is however restricted by the fact that it must match the

conditional variance of an exponential family distribution. For example, it is not possible to

have υt = λt or υt = λ2
t when the support of the observations is R (see Table 1 in Morris,

1982).

The aim of this paper is to propose and study alternative estimators which enjoy the

same consistency property as the QMLEs when the cdf is misspecified, but gain in efficiency

when υt is well specified.

Given a theoretical weight function wt = w(Xt−1, Xt−2, . . . ), where w is a measurable

function from R
∞ to (0,∞), and its observation-proxy

w̃t = w(Xt−1, . . . , X1, X̃0, X̃−1, . . . ) ≥ w > 0, (1.10)

a first weighted least square estimator (WLSE) is defined by

θ̂1WLS = argmin
θ∈Θ

L̃n (θ, w̃) , (1.11)

where

L̃n (θ, w̃) =
1

n

n∑

t=1

l̃t (θ, w̃t) with l̃t (θ, wt) =
(Xt−λ̃t(θ))

2

wt
. (1.12)

The role of the weighting sequence w̃ = (w̃t)t≥1 is twofold: it allows the WLSE to be CAN

without too strong moment conditions, and it may reduce the asymptotic variance of the

estimator.

As will be seen in Section 2, the optimal choice of w̃ is (proportional to) υ = (υt)t≥1. In

practice, the actual value of υt is generally unknown. Assuming for the conditional variance

a parametric specification of the form

υ∗ (Xt−1, Xt−2, ...; ξ
∗
0) = υ∗

t (ξ
∗
0) , (1.13)
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the optimal sequence of weights may be estimated by

{ŵt,n}t , ŵt,n = υ∗
(
Xt−1, Xt−2, ..., X1, X̃0, X̃−1, . . . ; ξ̂n

)
, (1.14)

where ξ̂n is a first-step estimator of ξ∗0 (which is often function of the estimator θ̂1WLS of

θ0, and possibly of estimates of some extra parameter ς0). This leads to a two-stage WLSE,

defined by

θ̂2WLS = argmin
θ∈Θ

L̃n

(
θ, {ŵt,n}t

)
. (1.15)

We will see that, even when the conditional variance is misspecified (i.e. υ∗
t (ξ

∗
0) 6= υt), the

two-stage estimator θ̂2WLS is a consistent estimator of θ0 under mild regularity conditions.

For an informal comparison with the QMLEs, note that the first order conditions entail

sn(θ̂2WLS) = 0, sn(θ) =
n∑

t=1

Xt − λ̃t (θ)

υ̂t

∂λ̃t(θ)

∂θ
, (1.16)

where υ̂t = ŵt,n is a first-step estimator of υt. The main difference with (1.9) is that there is

particular constraint on the conditional variance. We will see that this can lead to efficiency

gains of the WLSE compared to QMLEs.

The rest of the paper is organized as follow. Section 2 provides general regularity con-

ditions for CAN of the WLS estimators and compares these estimators with the MLE and

QMLEs. In Section 3, more explicit CAN conditions are given for particular time series mod-

els. Section 4 proposes a method to select one estimator within a set of possible WLSEs.

Monte Carlo experiments and illustrations on real data sets are presented in Section 5. Proofs

are collected in Section 6.

2 Asymptotic behavior of the WLS estimators

Using a WLSE of the form (1.11), we assume that λ : R∞ × Θ → (−∞,∞) is a known

measurable function satisfying (1.1), with θ0 an unknown parameter belonging to some

compact parameter space Θ ⊂ R
m. The WLSEs are semi-parametric estimators in the sense

that, except for the mean, they are totally agnostic about the cdf of the observations.
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2.1 CAN of the estimators

The CAN of the WLSE can be shown under the following assumptions.

A1 There exists a strictly stationary and ergodic process {Xt, t ∈ N} satisfying (1.1).

A2 Letting at = supθ∈Θ

∣∣∣λ̃t (θ)− λt (θ)
∣∣∣, a.s. limt→∞ {supθ∈Θ |λt (θ) |+ |Xt|+ 1} at = 0.

A3 λt (θ) = λt (θ0) a.s. if and only if θ = θ0.

A4 Almost surely, as t → ∞

|wt − w̃t|
{
1 +X2

t + sup
θ∈Θ

λ2
t (θ)

}
→ 0.

A5 E
(

υ1
w1

)
< ∞ with υt = Var (Xt | Ft−1).

A6 The matrices I (θ0, w) = E
(

υt
w2

t

∂λt(θ0)∂λt(θ0)
∂θ∂θ′

)
and J (θ0, w) = E

(
1
wt

∂λt(θ0)∂λt(θ0)
∂θ∂θ′

)
exist

and J (θ0, w) is invertible.

A7 Almost surely, the function λt(·) admits continuous second-order derivatives in a

neighbourhood V (θ0) of θ0, and we have Ew−1
t sup

θ∈V (θ0)

{Xt − λt(θ)}2 < ∞,

Ew−1
t sup

θ∈V (θ0)

∥∥∥∥
∂2λt(θ)

∂θ∂θ′

∥∥∥∥
2

< ∞ and Ew−1
t sup

θ∈V (θ0)

∥∥∥∥
∂λt(θ)

∂θ

∂λt(θ)

∂θ′

∥∥∥∥ < ∞. (2.1)

A8 Letting bt = supθ∈Θ

∥∥∥∂λ̃t (θ) /∂θ − ∂λt (θ) /∂θ
∥∥∥, the sequences

bt

{
|Xt|+ sup

θ∈Θ
|λt(θ)|

}
, at sup

θ∈Θ

∥∥∥∥
∂λt(θ)

∂θ

∥∥∥∥ , |wt − w̃t| sup
θ∈Θ

∥∥∥∥
∂λt(θ)

∂θ

∥∥∥∥
{
|Xt|+ sup

θ∈Θ
|λt(θ)|

}

are a.s. of order O (t−κ) for some κ > 1/2.

A9 The true parameter θ0 belongs to the interior
◦

Θ of Θ.

Assumptions A1–A3 are used by Ahmad and Francq (2016) for showing the consistency of

the PQMLE in the case of count time series. Assumptions A2 and A4 are used to show that

the initial values X̃0, X̃−1, . . . are asymptotically unimportant. The choice of the weight

function wt is guided by A5. If υt is assumed to be (bounded by) a linear function of

|Xt−1|, . . . , |Xt−r|, then A5 is automatically satisfied if, for instance, wt = 1 +
∑r

i=1 |Xt−i|.
If wt is chosen to be constant then the moment condition EX2

t < ∞ is required. These

assumptions will be made more explicit in specific examples discussed in Section 3 below.

Right now, it has to be emphasized that A9 is less restrictive for WLSE than for the QMLEs.
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Remark 2.1 (The WLS estimators avoid boundary problems) Consider the case of

positive observations (for instance (Xt) represents a time series of counts or volumes). For

the estimators in (1.6)–(1.8) be well defined, it is necessary to be able to compute log
(
λ̃t (θ)

)

for all θ ∈ Θ. For this reason, the condition

λ : [0,∞)∞ ×Θ → [λ,∞) for some λ > 0 (2.2)

is imposed for these QMLEs. In the INGARCH case (1.2), the latter condition is satisfied

by imposing ω ≥ λ, αi ≥ 0 and βj ≥ 0. Indeed, if for instance α < 0 is allowed, then

λt(θ) := ω + αXt−1 + βλt−1(θ) can take negative values with non zero probability, and the

QMLEs may fail. When one or several coefficients in (1.2) are equal to zero, θ0 thus lies at

the boundary of Θ, and A9 is not satisfied. In this situation, appearing in particular when

testing the significance of the INGARCH coefficients, Ahmad and Francq (2016) showed that

the PQMLE has a non Gaussian asymptotic distribution, which entails serious practical

difficulties. For the WSLE, it is possible to have λ̃t (θ) < 0 for some values of θ—although

we must have λt(θ0) ≥ 0 for positive observations—and thus A9 may hold even if θ0 has

zero components (see Section 3.1).

Theorem 2.1 Under the assumptions A1-A5, and (1.10)

θ̂1WLS → θ0 a.s. as n → ∞. (2.3)

If in addition A6-A9 hold, as n → ∞

√
n
(
θ̂1WLS − θ0

)
d→ N (0,Σ) Σ = Σ (θ0, w) = J−1 (θ0, w) I (θ0, w) J

−1 (θ0, w) . (2.4)

Note that the consistency of the two-stage WLSE cannot be directly deduced from that

of the one-step WLSE because, contrary to wt, ŵt,n is not Ft-measurable. Let υ̃∗
t (ξ) =

υ∗

(
Xt−1, Xt−2, ..., X1, X̃0, X̃−1, . . . ; ξ

)
, so that ŵt,n = υ̃∗

t (ξ̂n), and let wt = υ∗
t (ξ

∗
0). From now

on, K denotes a generic positive constant, or a positive random variable F0-measurable, and

ρ a generic constant belonging to [0, 1). For consistency of the two-stage WLSE, we replace

A4 by the following assumption.
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A4∗ There exists σ > 0 such that, almost surely, wt > σ and ŵt,n > σ for n large

enough. Assume ξ̂n is a strongly consistent estimator of ξ∗0 , the function υ∗
t (·) is almost

surely continuously differentiable,

sup
ξ∈V (ξ∗

0
)

|υ̃∗
t (ξ)− υ∗

t (ξ)| ≤ Kρt and E
1

wt

sup
ξ∈V (ξ∗

0
)

∥∥∥∥
∂υ∗

t (ξ)

∂ξ

∥∥∥∥ sup
θ∈Θ

{Xt − λt(θ)}2 < ∞, (2.5)

where V (ξ∗0) is a neighborhood of ξ∗0 . Moreover, assume

E sup
θ∈Θ

|Xt − λt(θ)|s < ∞ for some s > 0. (2.6)

To show the asymptotic normality, we need to slightly modify other assumptions. First

of all, when υt is well specified, A6 simplifies as follows.

A6∗ The matrix I = E
(

1
υt

∂λt(θ0)∂λt(θ0)
∂θ∂θ′

)
exists and is invertible.

Let A7∗ be obtained by adding in A7 the assumption that
√
n
(
ξ̂n − ξ∗0

)
= OP (1) and

E
1

wt

sup
ξ∈V (ξ∗

0
)

∥∥∥∥
∂υ∗

t (ξ)

∂ξ

∥∥∥∥
2
[
1 + sup

θ∈V (θ0)

{Xt − λt(θ)}2
]
< ∞. (2.7)

Let A8∗ be the assumption obtained by replacing |w̃t − wt| by supξ∈V (ξ∗
0
) |υ̃t(ξ)− υt(ξ)| in

A8, for some neighborhood V (ξ∗0) of ξ
∗
0 .

The following theorem establishes the asymptotic distribution of the two-stage WLSE

when the conditional variance is well specified (i.e. υ∗
t (ξ

∗
0) = υt) or when it is misspecified,

and shows its relative efficiency with respect to the one-stepWLSE under correct specification

of υt.

Theorem 2.2 Under A1-A3, (1.10), A4∗ and A5 (which is satisfied when υt is well spec-

ified)

θ̂2WLS → θ0 a.s. as n → ∞. (2.8)

Under the previous assumptions and A6, A7∗, A8∗ and A9, as n → ∞,

√
n
(
θ̂2WLS − θ0

)
d→ N (0,Σ) Σ = Σ (θ0, w) = J−1 (θ0, w) I (θ0, w) J

−1 (θ0, w) . (2.9)
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If in addition the conditional variance is well specified up to a positive constant, that is (1.5)

and (1.13) hold with ξ∗0 = ξ0 and υ∗(·) = kυ(·) for some k > 0, then A6 can be replaced by

A6∗ and
√
n
(
θ̂2WLS − θ0

)
d→ N

(
0, I−1

)
as n → ∞. (2.10)

Moreover the matrix Σ− I−1 is positive semi-definite.

2.2 The linear conditional mean case

Assume that Xt ≥ 0 almost surely and that the conditional distribution of Xt given Ft−1,

denoted by Fλt
, depends on its conditional mean λt (and maybe of other fixed parameters).

Consider the case where λt follows the linear model (1.2). We assume that the stochastic

order of the cdf increases with its mean. More precisely, let Fλ be a family of cumulative

distribution functions indexed by the mean λ =
∫
ydFλ(y) ∈ [0,∞). Assume that, within

this family, the stochastic order is equal to the mean order, i.e.

λ ≤ λ∗ ⇒ Fλ(x) ≥ Fλ∗(x), ∀x ∈ R. (2.11)

Aknouche and Francq (2019) showed that if P (Xt ≤ x | Ft−1) = Fλt
(x) and λt satisfies (1.2),

then A1 holds true when {Fλ, λ ∈ (0,∞)} satisfies (2.11) and

q∑

i=1

α0i +

p∑

j=1

β0j < 1. (2.12)

Moreover, the solution is such that EXt < ∞. By Remark 2.1 in Ahmad and Francq (2016),

Assumption A2 is satisfied when

p∑

j=1

βj < 1 for all θ ∈ Θ. (2.13)

In the latter reference, it is also shown that A3 is satisfied if q > 0 and

Aθ0(z) :=

q∑

i=1

α0iz
i and Bθ0(z) := 1−

p∑

i=1

β0iz
i have no common root,

at least one α0i 6= 0 for i = 1, . . . , q, and β0p 6= 0 if α0q = 0. (2.14)
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Now suppose that the weighting sequence w̃ is defined by

w̃t = c+ aXt−1 + bw̃t−1

with c > 0, a > 0 and b ∈ (0, 1). We thus have wt =
∑∞

i=0 b
i (c+ aXt−i−1) and

wt − w̃t = bt−1 (w1 − w̃1) = bt−1

∞∑

i=0

bia
(
X−i − X̃−i

)

with, for instance, X̃t = 0 for t ≤ 0, and thus w̃1 = c. By the Borel-Cantelli lemma, it is

then easy to show that A4 holds true. It is also clear that A4 holds true for many other

forms of the weighting sequence w̃. Assumptions such as A5, as well as the choice of the

weighting sequence for the two-stage estimator, depend on the particular form of Fλ and are

thus discussed in Section 3 below.

Let us discuss the other assumptions in the case p = q = 1, the results extending to

general orders p and q with the same arguments but heavier notations. We have

λt(θ)− λ̃t(θ) = β
{
λt−1(θ)− λ̃t−1(θ)

}
= βt−1

∞∑

i=0

βiα
(
X−i − X̃−i

)

and

∂λt(θ)

∂θ
=




1

Xt−1

λt−1(θ)


+ β

∂λt−1(θ)

∂θ
.

This entails that

at ≤ Kρt, bt ≤ Ktρt, sup
θ∈Θ

|λt(θ)| ≤ K

∞∑

i=0

ρi {1 + |Xt−i|}

and

sup
θ∈Θ

∥∥∥∥
∂λt(θ)

∂θ

∥∥∥∥+ sup
θ∈Θ

∥∥∥∥
∂2λt(θ)

∂θ∂θ′

∥∥∥∥ ≤ K

∞∑

i=0

ρi
(
1 + |Xt−i|+ sup

θ∈Θ
|λt−i(θ)|

)
. (2.15)

It follows that, for all weighting sequence satisfying (1.10) and A4, Assumptions A7 is

satisfied whenever EX2
t < ∞. By the Borel-Cantelli lemma and Markov inequality, we also

deduce that, for weighting sequences satisfying

|wt − w̃t| ≤ Kρt, (2.16)

11



A8 is satisfied under the same moment condition. The existence of I(θ0, w) for any sequence

wt ≥ w > 0 is ensured by the moment condition EX4
t < ∞. By the arguments given

in Remark 2.3 of Ahmad and Francq (2016), J(θ0, w) is invertible under the identifiability

condition (2.14). Assumptions A6 is thus satisfied when EX4
t < ∞. When the weighting

sequence is optimally chosen, the moment conditions are weaker. In particular Assumptions

A6∗ is satisfied when EX2
t < ∞. Now let us further discuss Assumption A9, for simplicity

in the case p = q = 1. For the reasons given in Remark 2.1, for computing the PQMLE the

components of θ must be positively constrained, so that (2.2) holds true. The parameter

space of the PQMLE is thus typically chosen of the form

Θ = [ω, ω]× [0, α]× [0, β], (2.17)

with 0 < ω < ω, 0 < α and 0 < β < 1 (the last inequality ensuring (2.13)). The WLS esti-

mators can be computed without imposing any positivity constraints, so that the parameter

space can be chosen, for instance, of the form

Θ = [−ω, ω]× [−α, α]× [−β, β]. (2.18)

When Θ is like (2.17), Assumption A9 is quite restrictive because it precludes, in particular,

a parameter of the form θ0 = (ω0, α0, 0), i.e. the interesting situation where the DGP is an

Integer ARCH (see Section 3.4 below). On the contrary, for Θ of the form (2.18), Assumption

A9 is always satisfied, provided ω, α and β are chosen large enough.

2.3 Optimality of the 2WLSE

Under A1-A3, assumptions similar to A6-A8, and A9 with (2.2) (see Remark 2.1), Ahmad

and Francq (2016) established CAN of the PQMLE in the case of integer-valued observations.

They showed that

√
n
(
θ̂P − θ0

)
L→

n→∞
N (0,ΣP ) , ΣP = J−1

P IPJ
−1
P

with

IP = E
(

υt(θ0)

λ2
t (θ0)

∂λt(θ0)∂λt(θ0)
∂θ∂θ′

)
and JP = E

(
1

λt(θ0)
∂λt(θ0)∂λt(θ0)

∂θ∂θ′

)
.
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Note that IP = I(θ0, ω) and JP = J(θ0, ω) with ω = {λt}. In the same framework, Aknouche

et al. (2018) showed that under certain regularity conditions we have

√
n
(
θ̂NB − θ0

)
L→

n→∞
N (0,ΣNB) , ΣNB = Σ(θ0, ω), ω = {λt(1 + λt/r)} .

For positive observations Aknouche and Francq (2019) gave conditions for

√
n
(
θ̂E − θ0

)
L→

n→∞
N (0,ΣE) , ΣE = Σ(θ0, ω), ω =

{
λ2
t

}
.

Note that, as for the last one, the CAN of the first 2 QMLEs is valid not only for count

series but also for positive data in general (see Remark 4.1 in Aknouche and Francq, 2019).

The optimal WLSE is never asymptotically less efficient than a QMLE.

Corollary 2.1 Assume Xt ≥ 0 almost surely and the CAN of the WLSEs and QMLEs. If

the conditional variance is well specified, the two-stage WLSE is asymptotically more efficient

than the QMLEs, in the sense that the matrices ΣP − I−1, ΣNB − I−1 and ΣE − I−1 are all

positive semi-definite.

We now show that θ̂2WLS is asymptotically efficient when the true cdf of Xt belongs to the

versatile class of the linear exponential distributions. With respect to some σ-finite measure

µ (in general the Lebesgue measure or the counting measure), let fλ be the density of a real

random variable of mean λ =
∫
fλ(x)dµ(x). Let Λ be a nonempty open subspace of R. It is

said that the set {fλ, λ ∈ Λ} constitutes a one-parameter linear exponential family if for all

λ ∈ Λ

fλ(x) = h(x)eη(λ)x−a(λ), (2.19)

for some two times differentiable functions η(·) and a(·). For example fλ can be the Exponen-

tial density of rate parameter 1/λ = −η, or the Poisson distribution with intensity parameter

λ = eη, or the negative binomial distribution with parameters r and p = r/(λ+ r), assuming

that r is fixed.

Corollary 2.2 Assume A1 where λt(·) admits continuous second-order derivatives. Suppose

that A2, A3, A8 and A9 are satisfied. Assume also that the conditional distribution of Xt

13



given λt = λ has the linear exponential form (2.19), and that λt(θ0) belongs almost surely

to the interior of Λ. The optimal two-stage WLSE is then asymptotically as efficient as the

MLE of θ0.

To apply Theorem 2.2, it is necessary to estimate the matrix Σ involved in (2.9). This

can be done by using the empirical estimator Σ̂ = Ĵ−1Î Ĵ−1, where

Ĵ =
1

n

n∑

t=1

1

ŵt,n

∂λ̃t(θ̂2WLS)

∂θ

∂λ̃t(θ̂2WLS)

∂θ′
, (2.20)

Î =
1

n

n∑

t=1

{
Xt − λ̃t(θ̂2WLS)

}2

ŵ2
t,n

∂λ̃t(θ̂2WLS)

∂θ

∂λ̃t(θ̂2WLS)

∂θ′
. (2.21)

To estimate the matrix Σ involved in (2.4), it suffices to replace ŵt,n and θ̃2WLS by wt and

θ̃1WLS in the previous matrices.

3 Application to particular models

We now give primitive conditions ensuring CAN of the WLS estimators for some specific

count time series models, an ACD model and a GAS model. We compare the relative

asymptotic efficiency of the WLSE with respect to the MLE and QMLEs.

3.1 The Poisson INGARCH model

A leading example of count time series satisfying (1.1) is the Poisson Integer GARCH model

proposed by Heinen (2003), in which the distribution of Xt conditional on Ft−1 is Poisson

P (λt) with intensity parameter λt = λt(θ0) of the form (1.2), where ω0 > 0, α0i ≥ 0, β0j ≥ 0.

Ferland et al (2006) showed that under the condition (2.12) there exists a strictly stationarity

solution to the Poisson INGARCH model. The ergodicity of the solution has been shown by

Davis and Liu (2016). As discussed in Section 2.2, the result is not only true for the Poisson

cdf, but for any class of conditional distributions satisfying (2.11). Note also that under the

condition (2.12) we have EXr
t < ∞ for any r > 0 (see Christou and Fokianos, 2014). Since
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Eυt = Eλt < ∞ under (2.12), A5 is satisfied for any sequence of weight wt > 0. Using

Section 2.2 and Theorem 2.1, we thus have the following result.

Corollary 3.1 Assume that Xt | Ft−1 ∼ P(λt) where λt = λt(θ0) follows (1.2) with (2.12)

and (2.14). Assume θ0 ∈ Θ with (2.13). For any sequence of weights (wt) satisfying (1.10)

and (2.16), the WLSE is strongly consistent in the sense (2.3). When θ0 ∈
◦

Θ the estimator

is asymptotically normal, in the sense (2.4).

For the two-stage estimator, let us take the weighting sequence ŵt,n = λ̃t

(
θ̂1WLS

)
(which

satisfies (1.10) and (2.16)). We then set θ̂2WLS = θ̂
(P )
2WLS where

θ̂
(P )
2WLS = argmin

θ∈Θ

n∑

t=1

(
Xt − λ̃t (θ)

)2

ŵt,n

, ŵt,n = λ̃t

(
θ̂1WLS

)
. (3.1)

Using Section 2.2 and Theorem 2.2, it is easy to verify that we have the following result.

Corollary 3.2 Under the assumptions of Corollary 3.1, and if Θ is chosen sufficiently large

so that θ0 ∈
◦

Θ, the 2-stage WLSE θ̂
(P )
2WLS is CAN with asymptotic variance

Σ = E
(

1
λt(θ0)

∂λt(θ0)∂λt(θ0)
∂θ∂θ′

)−1

.

Note that, in accordance with Corollary 2.2, θ̂
(P )
2WLS has the same asymptotic distribution as

the (PQ)MLE under A9. When one or several coefficients α0i or β0j are equal to zero, the

CAN of the 2WLSE may still hold (if Θ is chosen large enough), whereas the asymptotic

distribution of the (PQ)MLE is more complicated (see the previous discussion and Ahmad

and Francq, 2016).

3.2 The Exponential ACD model

Denote by Exp(λ) the exponential distribution of mean λ, which has the density f(x) =

λ−1 exp(−x/λ)1x>0. Assume the standard ACD model (1.3) where λt follows (1.2) and

zt ∼ Exp(1). In this case, the optimal 2-stage WLSE is

θ̂
(E)
2WLS = argmin

θ∈Θ

n∑

t=1

(
Xt − λ̃t (θ)

)2

ŵt,n

, ŵt,n = λ̃2
t

(
θ̂1WLS

)
. (3.2)
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For simplicity the following result concerns the first-order model p = q = 1, but it could be

easily extended to higher-orders.

Corollary 3.3 Let the ACD model Xt | Ft−1 ∼ Exp(λt) where λt = λt(θ0) follows (1.2)

with p = q = 1 and θ0 = (ω0, α0, β0). Assume that E log(α0z1 + β0) < 0 and θ0 ∈ Θ

where Θ is a compact subset of (0,∞)2 × [0, 1). For any sequence of weights (wt) satisfying

(1.10), (2.16) and E(λ2
t/wt) < ∞, the WLSE is strongly consistent in the sense (2.3). If

(α0 + β0)
2 + α2

0 < 1, then the WLSE is strongly consistent for any sequence of weights (wt)

satisfying (1.10) and (2.16). When, moreover, θ0 ∈
◦

Θ and

24α4
0 + 24α3

0β0 + 12α2
0β

2
0 + 4α0β

3
0 + β4

0 < 1 (3.3)

the estimator is asymptotically normal, in the sense (2.4). The optimal 2-stage WLSE is

θ̂
(E)
2WLS. Under the previous assumptions, this estimator is CAN with asymptotic variance

Σ = E
(

1
λ2
t (θ0)

∂λt(θ0)∂λt(θ0)
∂θ∂θ′

)−1

. (3.4)

Comments similar to those in the last section can be made. The 2WLSE θ̂
(E)
2WLS has the same

asymptotic distribution as the MLE θ̂E, but does not suffer from boundary problems.

3.3 The Negative Binomial-S-INGARCH model

A random variable X follows a negative binomial, X ∼ NB (r, p), of parameters r > 0 and

p ∈ (0, 1) if

P (X = k) =
Γ(k + r)

k!Γ(r)
pr (1− p)k , k ∈ N.

The parameters are related to the first and second order moments by

EX =
(1− p)r

p
and Var(X) =

(1− p)r

p2
. (3.5)

Inspired by Cameron and Trivedi (1998, p. 73), we now introduced a dynamic version of the

negative binomial distribution with a particular parameterization for r = rt and p = pt. The

process {Xt, t ∈ Z} is said to follow a Negative Binomial-S-INGARCH (NB-S-INGARCH)

model if

Xt | Ft−1 ∼ NB (rt, pt) , pt =
rt

rt + λt

rt = ς0λ
2−S
t , (3.6)
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where S ∈ R, ς0 > 0 and, as in the Poisson INGARCH, λt follows (1.2). With this parame-

terization, in view of (3.5), we have (1.1) and (1.5) with

υt =
(1− pt) rt

p2t
= λt

(
1 +

λS−1
t

ς0

)
. (3.7)

Since υt > λt, the NB-S-INGARCH model can take into account the conditional overdis-

persion that is often observed in count time series (see Christou and Fokianos, 2014). The

cdf (3.6) was proposed by Cameron and Trivedi (1998) in the context of regression count

data (i.e when λt depends on exogenous variables, but not on lagged values of Xt). It is

clear from (3.7) that the parameter S plays a key role in the NB-S-INGARCH model. The

case S = 1, corresponding to the Negative Binomial-I-distribution proposed by Cameron

and Trivedi (1986), is close to the Poisson distribution when ς0 is large. Christou and

Fokianos (2014) and Ahmad and Francq (2016) considered the NB (r, pt) distribution with

pt = r/(r + λt), which corresponds to (3.6) with S = 2. Note that the NB-II distribution

{NB(r, r/(r + λ)), λ > 0} belongs to the linear exponential family (2.19), whereas this is not

the case for the NB-I distribution NB(p(1 − p)−1λ, p). We now detail these two particular

models, corresponding to S = 1 and S = 2.

3.3.1 The Negative Binomial-I-INGARCH

The NB-I-INGARCH model is obtained when S = 1 in (3.6), so that rt = ς0λt and pt =

ς0/(ς0 + 1) is constant. Note that υt = λt

(
1 + ς−1

0

)
is proportional to λt. Therefore an

asymptotically optimal two-stage WLSE is θ̂
(P )
2WLS defined by (3.1).

Corollary 3.4 Let the NB-I-INGARCH(1,1) model Xt | Ft−1 ∼ NB(ς0λt, ς0/(ς0 +1)) where

ς0 > 0, λt = λt(θ0) follows (1.2) with p = q = 1 and θ0 = (ω0, α0, β0). Assume α0 + β0 < 1

and θ0 ∈ Θ where Θ is a compact subset of (0,∞)2 × [0, 1). For any sequence of weights

(wt) satisfying (1.10) and (2.16), the WLSE is strongly consistent in the sense (2.3). When

θ0 ∈
◦

Θ the estimator is asymptotically normal, in the sense (2.4). An optimal 2-stage WLSE

is θ̂
(P )
2WLS. Under the previous assumptions, this estimator is CAN with asymptotic variance

Σ =

(
1 +

1

ς0

)
E
(

1
λt(θ0)

∂λt(θ0)∂λt(θ0)
∂θ∂θ′

)−1

.
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3.3.2 The Negative Binomial-II-INGARCH

In view of (3.7), when S = 2 in (3.6), an asymptotically optimal two-stage WLSE is

θ̂
(NB)
2WLS = argmin

θ∈Θ

n∑

t=1

(
Xt − λ̃t (θ)

)2

ŵt,n

, ŵt,n = λ̃t

(
θ̂1WLS

)(
1 +

λ̃t(θ̂1WLS)

r̂

)
, (3.8)

where r̂ is a consistent estimator of r = ς0. Noting that

E
(Xt − λt)

2 − λt

λ2
t

=
1

ς0
,

one can take the estimator proposed by Gouriéroux et al. (1984) in a static negative binomial

regression context:

r̂ =

(
1

n

n∑

t=1

(Xt − λ̂t)
2 − λ̂t

λ̂2
t

)−1

, λ̂t = λ̃t(θ̂1WLS). (3.9)

Corollary 3.5 Let the NB-II-INGARCH(1,1) model Xt | Ft−1 ∼ NB(ς0, ς0/(ς0 + λt)) where

ς0 > 0, λt = λt(θ0) follows (1.2) with p = q = 1 and θ0 = (ω0, α0, β0). Assume α0 + β0 < 1

and θ0 ∈ Θ where Θ is a compact subset of (0,∞)2× [0, 1). For any sequence of weights (wt)

satisfying (1.10), (2.16) and E(λ2
t/wt) < ∞, the WLSE is strongly consistent in the sense

(2.3). If

(α0 + β0)
2 +

α2
0

ς0
< 1, (3.10)

then the WLSE is strongly consistent for any sequence of weights (wt) satisfying (1.10) and

(2.16). If in addition θ0 ∈
◦

Θ and

(α0 + β0)
4 +

6α2
0(α0 + β0)

2

ς0
+

α3
0(11α0 + 8β0)

ς20
+

6α4
0

ς30
< 1, (3.11)

the estimator is asymptotically normal, in the sense (2.4). An optimal 2-stage WLSE is

θ̂
(NB)
2WLS. Under the previous assumptions, this estimator is CAN with asymptotic variance

Σ =
1

ς0
E
(

1
λt(θ0)(ς0+λt(θ0))

∂λt(θ0)∂λt(θ0)
∂θ∂θ′

)−1

.

Note that, as Corollary 2.2 implies, θ̂
(NB)
2WLS has the same asymptotic distribution as the

(Q)MLE θ̂NB (when r is estimated by (3.9), see Aknouche et al., 2018, Theorem 3.3). There-

fore, the two-stage WLSE is asymptotically efficient.
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3.4 INARCH models

An INARCH model is a particular INGARCH, obtained when λt satisfies (1.2) with p = 0.

In this case, the conditional mean function is linear in θ. Indeed, we have λt (θ) = θ′χt with

χt = (1, Xt−1, ..., Xt−q)
′. A numerically attractive feature of the WLS estimators is that they

have explicit forms for estimating INARCH parameters. More precisely, we have

θ̂1WLS =

(
n∑

t=1

χtχ
′
t

wt

)−1 n∑

t=1

Xtχt

wt

. (3.12)

If the weight function is chosen of the form ŵt,n = χ′
tθ̂1WLS, we obtain the two-stage WLSE

θ̂2WLS = θ̂
(P )
2WLS, with

θ̂
(P )
2WLS =

(
n∑

t=1

χtχ
′
t

χ′
tθ̂1WLS

)−1 n∑

t=1

Xtχt

χ′
tθ̂1WLS

. (3.13)

When the cdf of Xt is P(λt), the estimator θ̂
(P )
2WLS is efficient, in the sense that it has exactly

the same asymptotic distribution as the MLE. More generally, i.e. when the cdf of Xt

is not necessarily Poisson, the estimator θ̂
(P )
2WLS has the same asymptotic distribution as

the Poisson QMLE. The two-stage WLSE is however numerically simpler than the Poisson

(Q)MLE because it does not require any numerical optimization.

Assuming a conditional variance equal (or proportional) to that of a NB-II-INGARCH,

we obtain the two-stage WLSE θ̂2WLS = θ̂
(NB)
2WLS, where

θ̂
(NB)
2WLS =




n∑

t=1

χtχ
′
t

χ′
tθ̂1WLS

(
1 +

χ′

tθ̂1WLS

r̂

)




−1
n∑

t=1

Xtχt

χ′
tθ̂1WLS

(
1 +

χ′

tθ̂1WLS

r̂

) (3.14)

where r̂ is defined by (3.9). Numerical experiments showed that the two estimators θ̂
(P )
2WLS and

θ̂
(NB)
2WLS have similar behaviours when the data generating process (DGP) is INGARCH with

Poisson or NB-II cdf. For other cdf’s (such as the Double-Poisson considered in Section 5

below) the optimal weights can be proportional to the inverse of the conditional mean, which

leads to set θ̂2WLS = θ̂
(Inv)
2WLS with

θ̂
(Inv)
2WLS =

(
n∑

t=1

χ′
tθ̂1WLSχtχ

′
t

)−1 n∑

t=1

χ′
tθ̂1WLSXtχt. (3.15)
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3.5 The INAR(p) model

The p-th order integer-valued autoregressive (INAR(p)) model proposed by Du and Li (1991)

is given by the following equation

Xt = α01 ◦Xt−1 + ...+ α0p ◦Xt−p + εt, t ∈ Z, (3.16)

where {εt, t ∈ Z} is an iid sequence of non-negative integer-valued random variables with

mean E (εt) = ω0 > 0 and variance Var (εt) = σ2
0 > 0. The symbol ◦ denotes the binomial

thinning operator (cf. Steutel and Van Harn, 1979) defined for any non-negative integer-

valued random variable X by α ◦X =
∑X

i=1 Yi, where {Yi, i ∈ N} is an iid Bernoulli random

sequence which is independent of X with P (Yi = 1) = α ∈ [0, 1]. It is assumed that condi-

tionally on Ft−1, the sequence {α0i ◦Xt−i, 1 ≤ i ≤ p} is independent. Clearly, the INAR(p)

model (3.16) is a particular case of (1.2) since

E (Xt | Ft−1) = ω0 + α01Xt−1 + ....+ α0pXt−p = λt = χ′
tθ0, (3.17)

where θ0 = (ω0, α
′
0)

′, α0 = (α01, ..., α0p)
′ and χt = (1, Xt−1, ..., Xt−p)

′. The conditional mean

χ′
tθ0 is linear in the parameter θ0 and the conditional variance υt = Var (X | Ft−1) is given

by (cf. Zheng et al, 2006, p. 413)

υt = Var (Xt | Ft−1) =

p∑

i=1

α0i (1− α0i)Xt−i + σ2
0 := υt

(
α0, σ

2
0

)
. (3.18)

That conditional variance depends on the mean parameter α0 and on the nuisance parameter

σ2
0. Note that a similar INAR(p) specification has been earlier proposed by Alzaid and Al-

Osh (1990), but in which {α0i ◦Xt−i, 1 ≤ i ≤ p} is not a sequence of independent variables.

From Du and Li (1991), Model (3.16) admits a strictly stationary and ergodic solution if

α01 + α02 + ...+ α0p < 1. (3.19)

Thus under this condition A1 holds. Moreover, the unconditional mean of the model is

given by E (Xt) = ω0/ (1−
∑p

i=1 α0i) . Since σ2
0 > 0 then A3 is satisfied. Assumption A5 is

obviously satisfied by taking a weighting function of the form

wt = c0 +

p∑

i=1

cjXt−i, (3.20)
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for some positive constants c0, ..., cp and w̃t = wt for t ≥ p+1. Assumptions A2 and A4 are

then satisfied. This completes the proof of the consistency of θ̂1WLS defined by (3.12). Let

ŵt,n = υt

(
θ̂1WLS, σ̂

2
)
=

p∑

i=1

α̂i (1− α̂i)Xt−i + σ̂2,

where θ̂1WLS = (ω̂1, α̂1, ..., α̂p)
′ and σ̂2 is a consistent estimate of σ2

0, for example

σ̂2 =
1

n− p

n∑

t=p



(
Xt − ω̂ −

p∑

i=1

α̂iXt−i

)2

−
p∑

i=1

α̂i (1− α̂i)Xt−i


 . (3.21)

An optimal WLSE of the INAR model is then

θ̂
(INAR)
2WLS =

(
n∑

t=1

χtχ′

t∑p
j=1

α̂j(1−α̂j)Xt−j+σ̂2

)−1 n∑

t=1

Xtχt∑p
j=1

α̂j(1−α̂j)Xt−j+σ̂2 .

We then obtain the following result.

Corollary 3.6 Let the INAR model (3.16). Assume (3.19) and (3.20). If θ0 ∈ Θ, the

WLSE is consistent. If θ0 ∈
◦

Θ and Eǫ4t < ∞, this estimator is asymptotically normal and

satisfies (2.4). An optimal 2-stage WLSE is θ̂
(INAR)
2WLS , which is CAN.

3.6 The GAS Beta-t-ACD model

The equation (1.4) is a Stochastic Recursive Equation (SRE) of the form

λt = ω0 + a(zt−1)λt−1, a(z) = α0
ν0 + 1

ν0 − 2 + z
z + β0.

Bougerol (1993) and Straumann and Mikosch (2006) developed a general theory of SRE.

From these works, or simply by using the Cauchy root test for convergence of positive series,

it is known that when E log a(z1) < 0 there exists a stationary solution, explicitly given by

λt = ω0

{
1 +

∞∑

i=1

a(zt−1) · · · a(zt−i)

}
.

For practical use, λt needs to be written as function of past observations, as in (1.1). When

λt (θ) = λ (Xt−1, Xt−2, ...; θ) is well defined for all θ ∈ Θ the model is said to be uniformly
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invertible. The condition (2.13) ensures the uniform invertibility of the linear INGARCH

model. For a non linear model of the form (1.4), finding invertibility conditions is much more

difficult. The problem has been investigated by Blasques, Gorgi, Koopman andWintenberger

(2018). Given a starting value λ̃1(θ), we approximate λt(θ) of model (1.4) by

λ̃t(θ) = ω + βλ̃t−1(θ) + α
ν + 1

ν − 2 + Xt−1

λ̃t−1(θ)

Xt−1, t ≥ 2.

Under non explicit conditions on Θ, θ0 and the distribution of z1, it is known that there

exists a stationary solution {λt (θ)} to the filter

λt(θ) = ω + βλt−1(θ) + α
ν + 1

ν − 2 + Xt−1

λt−1(θ)

Xt−1, t ∈ Z,

and that there exits ρ ∈ (0, 1) such that

1

ρt
sup
θ∈Θ

∣∣∣λ̃t(θ)− λt(θ)
∣∣∣→ 0 a.s. as t → ∞, (3.22)

for all λ̃1(θ) belonging to some fixed set of initial values.

Corollary 3.7 Let the ACD model (1.3) where λt satisfies the Beta-t updating equation

(1.4). Assume E log a(z1) < 0, the support of the distribution of z1 contains at least 3 points,

(3.22) and θ0 = (ω0, α0, β0, ν0)
′ ∈ Θ ⊂ (0,∞)2 × [0, 1)× (2,∞). For any sequence of weights

(wt) satisfying (1.10), (2.16) and E(λ2
t/wt) < ∞, the WLSE is strongly consistent in the

sense of (2.3). If Ea2(z1) < 1 then the WLSE is strongly consistent for any sequence of

weights (wt) satisfying (1.10) and (2.16). If in addition θ0 ∈
◦

Θ, Ea4(z1) < 1 and (3.22)

holds when λ̃t(θ) and λt(θ) are replaced by their partial derivatives, the estimator is asymp-

totically normal, in the sense (2.4). An optimal 2-stage WLSE is θ̂
(E)
2WLS, which is CAN with

asymptotic variance (3.4).

4 Data driven choice of the optimal WLSE

We have seen that an asymptotically optimal two-stage WLSE is obtained by taking a

sequence of weights (ŵt,n) such that, as n → ∞, ŵt,n converges to a weight of the form

wt = cυt with c > 0 and υt = E {(Xt − λt)
2 | Ft−1}.
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In other words, up to a positive multiplicative constant c, the optimal weighting sequence

is the conditional variance, that is the best predictor of (Xt − λt)
2. It is then natural to

select the weighting sequence ŵt,n by minimizing in (ŵt,n) the MSE-like loss

MSEn(ŵt,n) = min
c

1

n

n∑

t=1

{(
Xt − λ̂t

)2
− cŵt,n

}2

=
1

n

n∑

t=1

{(
Xt − λ̂t

)2
− ĉnŵt,n

}2

,

with

ĉn =

∑n
t=1

(
Xt − λ̂t

)2
ŵt,n

∑n
t=1 ŵ

2
t,n

.

Inspired by Patton (2011), we also investigate the method that selects the two-stage WLSE

by minimizing the QLIKE loss

QLIKn(ŵt,n) =
1

n

n∑

t=1





(
Xt − λ̂t

)2

ĉnŵt,n

+ log (ĉnŵt,n)





, ĉn =
1

n

n∑

t=1

(
Xt − λ̂t

)2

ŵt,n

.

The general theoretical justification for using these two loss functions is that

EZ = argmin
m∈R

E(Z −m)2 = argmin
m>0

E
Z

m
+ logm, (4.1)

where the fist equality requires a random variable Z such that EZ2 < ∞ and the second

one requires Z ≥ 0 and 0 < EZ < ∞. In agreement with Patton (2011), we found that

the method based on the QLIKE loss works much better in practice than that based on the

MSE. In accordance with (4.1) and the following asymptotic result, the fact that the MSE

selection method does not work very well in practice, is certainly related to the requirement

of higher order moments.

Proposition 4.1 Assume A1 where λt(·) has the linear form (1.2) with (2.12) and (2.14).

Assume θ0 ∈
◦

Θ with (2.13) and set λ̂t = λ̃t(θ̂), where θ̂ is a consistent estimator of θ0. Let

wt = υ∗
t (ξ

∗
0) ∈ Ft−1 be an assumed parametric specification of the conditional variance of Xt,

and let its estimation ŵt,n = υ̃∗
t (ξ̂n). Assume there exists σ > 0 such that, almost surely,

wt > σ, the estimator ξ̂n converges almost surely to ξ∗0 , the function υ∗
t (·) is almost surely

continuously differentiable,

sup
ξ∈V (ξ∗

0
)

|υ̃∗
t (ξ)− υ∗

t (ξ)| ≤ Kρt, E sup
ξ∈V (ξ∗

0
)

υ∗2
t (ξ) < ∞, E sup

ξ∈V (ξ∗
0
)

∥∥∥∥
∂υ∗

t (ξ)

∂ξ

∥∥∥∥
2

< ∞, (4.2)
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for some neighbourhood V (ξ∗0) of ξ∗0 . Let another sequence of weights (w∗
t ) and its approxi-

mation (ŵ∗
t,n) satisfying the same assumptions (for another potential parametric specification

of the conditional variance).

If EX4
t < ∞ and

0 < MSE(wt) < MSE(w∗
t ), MSE(wt) := min

c
E
{
(Xt − λt)

2 − cwt

}2
,

then, almost surely

(ŵt,n) = argmin{MSEn(ŵ
∗
t,n),MSEn(ŵt,n)} for n large enough.

If E(υt/wt) < ∞ and Ews
t < ∞ for some s > 0, the last two conditions in (4.2) are

replaced by

∥∥∥∥
X2

t

wt

∥∥∥∥
p1

+

∥∥∥∥∥
1

wt

sup
ξ∈V (ξ∗

0
)

∥∥∥∥
∂υ∗

t (ξ)

∂ξ

∥∥∥∥

∥∥∥∥∥
p2

+

∥∥∥∥∥ sup
ξ∈V (ξ∗

0
)

wt

υ∗
t (ξ)

∥∥∥∥∥
p3

< ∞, (4.3)

∥∥∥∥
Xt√
wt

∥∥∥∥
p4

+

∥∥∥∥∥
1√
wt

sup
θ∈V (θ0)

∥∥∥∥
∂λt(θ)

∂θ

∥∥∥∥

∥∥∥∥∥
p5

< ∞ (4.4)

∥∥∥∥
Xt√
wt

∥∥∥∥
p6

+

∥∥∥∥∥
1√
wt

sup
θ∈V (θ0)

‖λt(θ)‖
∥∥∥∥∥
p7

+

∥∥∥∥∥
1

wt

sup
ξ∈V (ξ∗

0
)

∥∥∥∥
∂υ∗

t (ξ)

∂ξ

∥∥∥∥

∥∥∥∥∥
p8

+

∥∥∥∥∥ sup
ξ∈V (ξ∗

0
)

wt

υ∗
t (ξ)

∥∥∥∥∥
p9

< ∞,

(4.5)
∥∥∥∥∥
1

wt

sup
θ∈V (θ0)

‖λt(θ)‖2
∥∥∥∥∥
p10

+

∥∥∥∥∥
1

wt

sup
ξ∈V (ξ∗

0
)

∥∥∥∥
∂υ∗

t (ξ)

∂ξ

∥∥∥∥

∥∥∥∥∥
p11

+

∥∥∥∥∥ sup
ξ∈V (ξ∗

0
)

wt

υ∗
t (ξ)

∥∥∥∥∥
p12

< ∞, (4.6)

∥∥∥∥∥
1√
wt

sup
θ∈V (θ0)

‖λt(θ)‖
∥∥∥∥∥
p13

+

∥∥∥∥∥
1√
wt

sup
θ∈V (θ0)

∥∥∥∥
∂λt(θ)

∂θ

∥∥∥∥

∥∥∥∥∥
p14

< ∞ (4.7)

for some neighbourhood V (θ0) of θ0 and some neighbourhood V (ξ∗0) of ξ
∗
0 , where the pi’s are

positive numbers such that
∑3

i=1 pi =
∑5

i=4 pi =
∑9

i=6 pi =
∑12

i=10 pi =
∑14

i=13 pi = 1, and

0 < QLIK(wt) < QLIK(w∗
t ), QLIK(wt) := min

c>0
E

{
(Xt − λt)

2

cwt

+ log(cwt)

}
,

then, almost surely

(ŵt,n) = argmin{QLIKn(ŵ
∗
t,n),QLIKn(ŵt,n)} for n large enough.
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Remark 4.1 (Moments for the QLIK-based weight selection method) Note that the

moment conditions (4.3)–(4.7) are quite mild when wt is well chosen. As for a Poisson IN-

GARCH model, assume that Xt ≥ 0 and

υ∗
t (ξ) = c0(ξ) +

∞∑

i=1

ci(ξ)Xt−i, ξ 7→ ci(ξ) ∈ (0,∞) continuous uniformly in i,

with infξ c0(ξ) > σ > 0 and ci(ξ) ∼ Kρi as i → ∞, where K > 0 and ρ ∈ (0, 1). Using the

inequality x/(1 + x) ≤ xs for all x ≥ 0 and s ∈ (0, 1), we have

sup
ξ∈V (ξ∗

0
)

wt

υ∗
t (ξ)

≤ c0(ξ
∗
0)

σ
+

∞∑

i=1

ci(ξ
∗
0)

ci(ξ)

ci(ξ)Xt−i

σ

1 + ci(ξ)Xt−i

σ

≤ c0(ξ
∗
0)

σ
+

∞∑

i=1

ci(ξ
∗
0)

ci(ξ)

csi (ξ)X
s
t−i

σs
.

Assuming only EXs0
t < ∞ for some s0 > 0, we have ‖Xs

t ‖p < ∞ whenever s is chosen

small enough (i.e. s < s0/p). If ρ is sufficiently close to ρ∗, where ρ∗ ∈ (0, 1) such that

ci(ξ
∗
0) ∼ Kρ∗i, we have

∥∥∥∥
ci(ξ

∗
0)

ci(ξ)
csi (ξ)X

s
t−i

∥∥∥∥
p

∼ K

(
ρ∗ρs

ρ

)i

,
ρ∗ρs

ρ
< 1.

It follows that, for any p ≥ 1,
∥∥∥supξ∈V (ξ∗

0
)

wt

υ∗

t (ξ)

∥∥∥
p
< ∞ when V (ξ∗0) is sufficiently small.

Assuming, as it is the case when the power series
∑∞

i=1 ci(ξ)z
i is the ratio of two polynomials,

that ∥∥∥∥
∂ci(ξ)

∂ξ

∥∥∥∥ ≤ Kρi,

the previous arguments show that for any p ≥ 1,
∥∥∥∥∥
1

wt

sup
ξ∈V (ξ∗

0
)

∥∥∥∥
∂υ∗

t (ξ)

∂ξ

∥∥∥∥

∥∥∥∥∥
p

< ∞

when V (ξ∗0) is sufficiently small. It follows that, in this situation, conditions (4.3)–(4.7) can

be considerably weakened.

Note that, applying (4.1) with Z ∼ Xt | Ft−1, under the assumptions of Proposition 4.1,

we have MSE(υt) ≤ MSE(wt) and QLIK(υt) ≤ QLIK(wt) for any weighting sequence wt.

Therefore, provided the moments and the other regularity conditions hold, the optimal 2-

stage WLSE will be asymptotically found by minimizing either MSEn or QLIKn over a finite
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of possible weighting sequence for which one of them converges to cυt, c > 0. When the set of

the potential weighting sequences does not contain such an optimal sequence, Proposition 4.1

guarantees that some kind of sub-optimality is however asymptotically found. The following

example illustrates that point, as well as the moment conditions required with the MSE and

QLIK losses.

Example 4.1 Consider an ACD model of the form Xt = λtzt where (zt) is iid with distri-

bution Exp(1). Assume that EX4
t < ∞. Noting that

argmin
c

E
{
(Xt − λt)

2 − cwt

}2
=

E(Xt − λt)
2wt

Ew2
t

=
Eλ2

twt

Ew2
t

,

we have

MSE(wt) = 9Eλ4
t −

(Eλ2
twt)

2

Ew2
t

.

It follows that

MSE(λ2
t ) = 8Eλ4

t ≤ MSE(λt) = 9Eλ4
t −

(Eλ3
t )

2

Eλ2
t

≤ MSE(1) = 9Eλ4
t − (Eλ2

t )
2 (4.8)

where the inequalities are strict in general (in particular, when λt is not degenerated). If the

set of the potential weighting sequences contains ŵt,n = λ̂2
t and the assumptions of Propo-

sition 4.1 are satisfied, the optimal WLSE is found when n is large enough by minimising

either the MSEn or the QLIKn criterion. If we have only the two potential weighting se-

quences ŵt,n = λ̂t and ŵt,n = 1, the MSEn criterion will select asymptotically the first

sequence. We do not know what would be the choice of the QLIKn criterion in the same

situation because

QLIK(wt) = 1 + logE
λ2
t

wt

+ E logwt

does not seem to be explicitly computable.

Recall that the existence of the MSEs in (4.8) require EX4
t < ∞. Assume that λt =

ω0 + α0Xt−1 + β0λt−1. Standard computations show that, in the ACD(1,1) case, EX4
t < ∞

if and only if

µ4α
4
0 + 4µ3α

3
0β0 + 6µ2α

2
0β

2
0 + 4µ1α0β

3
0 + β4

0 < 1
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where µn = n!. This condition entails strong restrictions on α0 and β0. The condition for

the existence of a strictly stationary solution to the ACD model is γ := E log(α0z1+β0) < 0.

Figure 1 shows that the region of strict stationarity is much wider than that of the existence

of fourth-order moments. Under γ < 0, it is know that EXs
t < ∞ for some s > 0, and

thus E log λk
t < ∞ for any k. It follows that QLIK(λ2

t ) is finite whenever γ < 0, and that

QLIK(λt) < ∞ (respectively QLIK(1) < ∞) iff Eλt < ∞ (respectively Eλ2
t < ∞).

0.0 0.5 1.0 1.5 2.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Regions of existence of Xt and E(Xt
4)
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β 0

γ <0
E(X

t

4) < ∞

Figure 1: Region of strict stationarity γ < 0 and region of existence of the fourth-order

moment for the ACD process Xt = λtzt where zt ∼ Exp(1) and λt = ω0 + α0Xt−1 + β0λt−1.

5 Numerical illustrations

In this section we first present a small Monte Carlo experiment that compares the finite

sample performance of different estimators of θ0. We then applied our methodology for

predicting a realized volatility series. Other numerical illustrations are available from the

authors.
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5.1 A simulation study

We simulated N = 1000 independent replications of length n = 500 and n = 2000 of

INARCH(q) models, and compared the finite-sample performance of the following estimators:

the PQMLE (1.7), the NBQMLE (1.8) with r=1, the WLSE (1.11) with w̃ ≡ 1, and the two-

stage WLS estimators (3.13), (3.14) and (3.15). For choosing between the different versions

of the two-stage WLSE, we used the data-driven methods presented in Section 4. Since the

criterion based of the QLIK loss works much better than that based of the MSE, we only

present the estimator selected by the former (denoted by θ̂∗2WLS).

When the cdf is Poisson or Negative Binomial, there is no much difference between

the estimators (thus we do not present these results). Table 1 displays the results for an

INARCH(3) with parameter θ0 = (ω0, α01, α02, α03) = (1, 0.3, 0.1, 0.5), when the cdf is the

Double-Poisson of Efron (1986) of parameters such that the conditional variance is s/λt with

s = 50.2 As expected, the version θ̂
(Inv)
2WLS of the two-stage WLSE clearly outperforms the

other estimators, both in terms of bias and Root Mean Square Error (RMSE) of estimation.

Interestingly, the data-chosen WLSE θ̂∗2WLS always coincides with the optimal two-stage

WLSE.

Of course, we made other numerical experiments, that we do not present here to save

space. In particular, we compared the computation time of the different estimators on

INARCH(q) models for increasing values of q. We found that, when the number q + 1

of parameters becomes large the computation time of the QMLEs tends to be prohibitive

because these estimators require numerical optimizations, which is not the case for the WLS

estimators. We also performed Monte Carlo experiments showing that, for all the estimators,

the estimated standard errors based on the asymptotic theory, using the estimators (2.20)

and (2.21), are close to the observed RMSEs on simulations of INGARCH models.

2For small values of s the variance is small and, as a consequence, the weighting sequence wt has little

effect on the estimator.
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Table 1: Bias and RMSE of estimators of the mean parameters when the DGP is a Double-

Poisson INARCH(3).

ω α1 α2 α3

Bias RMSE Bias RMSE Bias RMSE Bias RMSE

n = 500

θ̂E 1.178 1.354 -0.046 0.086 -0.016 0.072 -0.054 0.094

θ̂P 0.836 0.960 -0.029 0.057 -0.011 0.053 -0.039 0.065

θ̂NB 1.130 1.294 -0.044 0.080 -0.016 0.069 -0.053 0.089

θ̂1WLS 0.462 0.596 -0.014 0.042 -0.006 0.043 -0.022 0.047

θ̂
(E)
2WLS 1.438 1.890 -0.052 0.101 -0.031 0.100 -0.064 0.114

θ̂
(P )
2WLS 0.851 0.984 -0.029 0.057 -0.013 0.055 -0.039 0.066

θ̂
(NB)
2WLS 1.006 1.200 -0.034 0.071 -0.019 0.070 -0.044 0.080

θ̂
(Inv)
2WLS 0.248 0.479 -0.006 0.038 -0.004 0.041 -0.012 0.041

θ̂∗2WLS 0.248 0.479 -0.006 0.038 -0.004 0.041 -0.012 0.041

n = 2000

θ̂E 1.246 1.306 -0.051 0.065 -0.020 0.050 -0.054 0.068

θ̂P 0.773 0.813 -0.029 0.039 -0.009 0.031 -0.034 0.043

θ̂NB 1.164 1.221 -0.047 0.060 -0.018 0.047 -0.051 0.064

θ̂1WLS 0.333 0.371 -0.011 0.023 -0.003 0.022 -0.015 0.025

θ̂
(E)
2WLS 0.333 0.371 -0.011 0.023 -0.003 0.022 -0.015 0.025

θ̂
(P )
2WLS 0.778 0.820 -0.029 0.039 -0.009 0.031 -0.034 0.044

θ̂
(NB)
2WLS 0.906 0.960 -0.035 0.047 -0.012 0.037 -0.039 0.051

θ̂
(Inv)
2WLS 0.115 0.217 -0.003 0.019 -0.001 0.021 -0.006 0.020

θ̂∗2WLS 0.115 0.217 -0.003 0.019 -0.001 0.021 -0.006 0.020
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Table 2: WLS estimation results for the CAT series.

ω̂ α̂ β̂ QLIK

θ̂1WLS 0.147
(0.0912)

0.380
(0.0878)

0.580
(0.0895)

3.357

θ̂
(E)
2WLS 0.093

(0.0197)
0.342
(0.0233)

0.632
(0.0238)

1.870

θ̂
(P )
2WLS 0.099

(0.0331)
0.357
(0.0364)

0.616
(0.0383)

2.189

θ̂
(NB)
2WLS 0.090

(0.0200)
0.345
(0.0235)

0.631
(0.0243)

1.884

θ̂
(Inv)
2WLS 0.298

(0.185)
0.349
(0.135)

0.595
(0.148)

5.231

5.2 Predicting a realized volatility series

Considerable interest has been paid in recent years to modeling and forecasting daily realized

volatility, which is defined as an integrate variability of high frequency intra-day asset returns

(see e.g. Barndorff-Nielsen and Shephard, 2002). We consider in this subsection the daily

series of Caterpillar Inc. (CAT) realized volatility, from 01/04/1999 to 31/12/2008, which

corresponds to the sample size n = 2489. On this series, we fitted an ACD model with

linear conditional mean (1.2). We found that the first orders p = q = 1 are sufficient

(for larger orders, the usual information criteria AIC and BIC are not smaller, and the

estimated additional parameters are not significantly different from zero). To estimate the

mean parameter of the ACD model, we used the previously described five WLSEs. Table 2

shows that the estimated values of the parameters are close, while their estimated standard

deviations (in parentheses) vary more. The QLIK criterion of Section 4 selects θ̂
(E)
2WLS as the

best WLSE. Note also that θ̂
(E)
2WLS and θ̂

(NB)
2WLS (now calculated while replacing the estimate

in (3.9) by the value 1) provide almost the same results.

We also compared the performance of the different WLSEs by means of out-of-sample

forecasts. Consider the first nc observations on which we calculate the five WLSEs. The
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realized volatility forecast at time t > nc (and horizon 1)

X̂t = λ̂t = ω̂ +

q∑

i=1

α̂iXt−i +

p∑

j=1

β̂jλ̂t−j

is compared to the actual value Xt, for t = nc + 1, ..., n. We used seven loss functions

considered in Paton (2011): the mean square error prediction, the mean absolute error

prediction, the mean QLIKE, the mean square log-error prediction, the mean absolute log-

error prediction, the mean square root error prediction, and the mean absolute root error

prediction, respectively defined by

MSEP =
1

n

n∑

t=nc+1

(
Xt − λ̂t

)2
, MAEP =

1

n

n∑

t=nc+1

∣∣∣Xt − λ̂t

∣∣∣ , MQLIK =
1

n

n∑

t=nc+1

log λ̂t +
Xt

λ̂t

,

MSLEP =
1

n

n∑

t=nc+1

(
logXt − log λ̂t

)2
, MALEP =

1

n

n∑

t=nc+1

∣∣∣logXt − log λ̂t

∣∣∣ ,

MSREP =
1

n

n∑

t=nc+1

(√
Xt −

√
λ̂t

)2

, MAREP =
1

n

n∑

t=nc+1

(√
Xt −

√
λ̂t

)2

.

Table 3 displays the loss functions when the learning sample size is nc = 500. Very similar

results have been obtained for nc = 1000 and nc = 1500. Using the R package MCS developed

by Bernardi and Catania (2014), which implements the Model Confidence Set procedure of

Hansen, Lunde, and Nason (2011), we found that the models estimated by θ̂
(E)
2WLS and θ̂

(NB)
2WLS

generally constitute the so-called Superior Set Models. These results comfort those obtained

in-sample: the best estimator is θ̂
(E)
2WLS, closely followed by θ̂

(NB)
2WLS.

6 Proofs of the main results

Proof of Theorem 2.1 Let Ln(θ, w) and lt(θ, wt) be the random variables obtained by

replacing λ̃t(θ) by λt(θ) in L̃n(θ, w) and l̃t(θ, wt). In view of A4 and (1.10), one can assume
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Table 3: Loss functions for out-of-sample predictions of the CAT realized volatility.

θ̂
(P )
2WLS θ̂

(NB)
2WLS θ̂

(Inv)
2WLS θ̂1WLS θ̂

(E)
2WLS

MSEP 12.7204 12.6798 12.8184 12.7693 12.6741

MAEP 1.5669 1.5552 1.5785 1.5784 1.5518

MQLIK 1.9122 1.9100 1.9143 1.9144 1.9094

MSLEP 0.3736 0.3660 0.3792 0.3807 0.3636

MALEP 0.5024 0.4966 0.5067 0.5077 0.4948

MSREP 0.2752 0.2719 0.2787 0.2784 0.2710

MAREP 0.3992 0.3950 0.4027 0.4032 0.3937

without loss of generality that wt ≥ w > 0. We have

sup
θ∈Θ

∣∣∣lt(θ, wt)− l̃t(θ, w̃t)
∣∣∣

=sup
θ∈Θ

∣∣∣∣∣∣

{
λ̃t(θ)− λt(θ)

}{
λt(θ) + λ̃t(θ)− 2Xt

}

w̃t

+
(wt − w̃t) {Xt − λt(θ)}2

wtw̃t

∣∣∣∣∣∣

≤ sup
θ∈Θ

∣∣∣λt(θ)− λ̃t(θ)
∣∣∣ 2
w

{
1 + |Xt|+ sup

θ∈Θ
|λt(θ)|

}
+ |wt − w̃t|

2

w2

{
X2

t + sup
θ∈Θ

λ2
t (θ)

}
(6.1)

for t large enough. Therefore, under A2 and A4, by Cesàro’s lemma we have

sup
θ∈Θ

∣∣∣L̃n(θ, w̃)− Ln(θ, w)
∣∣∣→ 0 a.s. as n → ∞. (6.2)

Now, noting that {wt, λt(θ), Xt} is a stationary and ergodic process, limn→∞ Ln(θ, w) =

Elt(θ, wt) ∈ [0,∞] a.s. Moreover

Elt(θ0, wt) = E
(Xt − λt)

2

wt

= E

{
E

(
(Xt − λt)

2

wt

| Ft−1

)}
= E

υt
wt

< ∞

under A5. Obviously, A3 then implies Elt(θ0, wt) ≤ Elt(θ, wt) with equality if and only if

θ = θ0.

The rest of the proof of the consistency (2.3) follows from standard arguments (see e.g.

the proof of Theorem 2.1 in Ahmad and Francq, 2016).
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We now show that the choice of the initial values does not modify the asymptotic distri-

bution of the estimator. Indeed, we have

√
n sup

θ∈Θ

∥∥∥∥∥
∂L̃n(θ, w̃)

∂θ
− ∂Ln(θ, w)

∂θ

∥∥∥∥∥

≤ 2√
n

n∑

t=1



at
w

+

|wt − w̃t|
{
|Xt|+ at + sup

θ∈Θ
|λt(θ)|

}

w2


 sup

θ∈Θ

∥∥∥∥
∂λt

∂θ

∥∥∥∥+
bt

{
|Xt|+ at + sup

θ∈Θ
|λt(θ)|

}

w
,

which tends to zero almost surely, by A8. Now noting that {et,Ft}t, where et = Xt−λt(θ0),

is a stationary martingale difference sequence, under A6 we have

√
n
∂Ln(θ0, w)

∂θ
=

−2√
n

n∑

t=1

et
wt

∂λt(θ0)

∂θ

d→ N {0, 4I (θ0, w)} as n → ∞. (6.3)

Using Taylor expansions and standard arguments (see e.g. the proof of Theorem 2.2 in

Ahmad and Francq, 2016), the convergence in law (2.4) is then proven by showing

∂2Ln(θn, w)

∂θ∂θ′
→ 2J (θ0, w) as n → ∞ (6.4)

for any sequence θn tending to θ0 as n → ∞. The convergence result (6.4) can be shown by

using the ergodic theorem, the dominated convergence theorem, the continuity of the second

order derivatives of lt(·, wt) and A7 (see the proof of Theorem 2.2 where, in a more complex

framework, this part of the demonstration is detailed). �

Proof of Theorem 2.2 First note that (2.5) entails that for n large enough

|ŵt,n − wt| ≤ Kρt +
∣∣∣υ∗

t (ξ̂n)− υ∗
t (ξ

∗
0)
∣∣∣ ≤ Kρt + ‖ξ̂n − ξ∗0‖Zt

where Zt = supξ∈V (ξ∗
0
) ‖∂υ∗

t (ξ)/∂ξ‖. Therefore, in view of (6.1) and A4∗, we have

sup
θ∈Θ

∣∣∣lt(θ, wt)− l̃t(θ, ŵt,n)
∣∣∣

≤2at
σ

{
1 + |Xt|+ sup

θ∈Θ
|λt(θ)|

}
+

2(Kρt + ‖ξ∗0 − ξ̂n‖Zt)

σwt

sup
θ∈Θ

{Xt − λt(θ)}2 .

Under (2.6) with s < 2, we have

E

{
∞∑

t=1

ρt sup
θ∈V (θ0)

{Xt − λt(θ)}2
}s/2

≤
∞∑

t=1

ρts/2E sup
θ∈V (θ0)

|Xt − λt(θ)|s < ∞.
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Therefore, in the left-hand side of the previous non-strict inequality, the sum into brackets

is almost surely finite. It follows that the analogue of (6.2) holds true under A2 and A4∗.

Therefore (2.8) follows as in the proof of Theorem 2.1.

The asymptotic irrelevance of the initial values is shown as in Theorem 2.1, using A8∗.

Using the lightened notation θ̂ = θ̂2WLS, under A9 we thus have

0 =
1√
n

n∑

t=1

Xt − λ̃t(θ̂)

υ̃t
∗(ξ̂n)

∂λ̃t(θ̂)

∂θ
=

1√
n

n∑

t=1

Xt − λt(θ̂)

υ∗
t (ξ̂n)

∂λt(θ̂)

∂θ
+ op(1)

as n → ∞. Taylor expansions then yield

oP (1) =
1√
n

n∑

t=1

et

υ∗
t (ξ̂n)

∂λt(θ0)

∂θ
+ J∗

n

√
n(θ̂2WLS − θ0), (6.5)

where the element of the i-th row and j-th column of J∗
n is

1

n

n∑

t=1

Xt − λt(θ
∗)

υ∗
t (ξ̂n)

∂2λt(θ
∗)

∂θi∂θj
− 1

n

n∑

t=1

1

υ∗
t (ξ̂n)

∂λt(θ
∗)

∂θi

∂λt(θ
∗)

∂∂θj
=: an(θ

∗) + bn(θ
∗),

for some θ∗ between θ̂2WLS and θ0. Let

a∗n(θ) =
1

n

n∑

t=1

Xt − λt(θ)

wt

∂2λt(θ)

∂θi∂θj
, b∗n(θ) = − 1

n

n∑

t=1

1

wt

∂λt(θ)

∂θi

∂λt(θ)

∂∂θj
.

A Taylor expansion and the convergence of ξ̂n to ξ∗0 show that, for n large enough,

sup
θ∈V (θ0)

|an(θ)− a∗n(θ)| ≤
‖ξ∗0 − ξ̂n‖

n

n∑

t=1

supξ∈V (ξ∗
0
)

∥∥∥∂vt(ξ)
∂ξ

∥∥∥
kσwt

sup
θ∈V (θ0)

∣∣∣∣{Xt − λt(θ)}
∂2λt(θ)

∂θi∂θj

∣∣∣∣ .

By (2.1) and (2.7), the Cauchy-Schwarz inequality entails

E
1

wt

sup
ξ∈V (ξ∗

0
)

∥∥∥∥
∂vt(ξ)

∂ξ

∥∥∥∥ sup
θ∈V (θ0)

∣∣∣∣{Xt − λt(θ)}
∂2λt(θ)

∂θi∂θj

∣∣∣∣ < ∞.

Using also the ergodic theorem and the strong consistency of ξ̂n, it follows that

sup
θ∈V (θ0)

|an(θ)− a∗n(θ)| → 0.

Now, note that the ergodic theorem, the Lebesgue-dominated convergence theorem and A7∗

entail that for any ǫ > 0

lim
n→∞

sup
θ∈V (θ0)

|a∗n(θ)− a∗n(θ0)| ≤ E sup
θ∈V (θ0)

∣∣∣∣
Xt − λt(θ)

wt

∂2λt(θ)

∂θi∂θj
− et

wt

∂2λt(θ0)

∂θi∂θj

∣∣∣∣ < ǫ
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if V (θ0) is small enough. The ergodic theorem also entails a∗n(θ0) → 0 a.s. By similar

arguments, it can be shown that limn→∞ bn(θ
∗) = limn→∞ b∗n(θ0) = −J(θ0, w)(i, j). We thus

have shown that J∗
n → −J(θ0, w). In view of (6.5), it remains to show that

1√
n

n∑

t=1

et

υ∗
t (ξ̂n)

∂λt(θ0)

∂θ

d→ N (0, I(θ0, w)) . (6.6)

For i ∈ {1, . . . , d}, we have

1√
n

n∑

t=1

et

υ∗
t (ξ̂n)

∂λt(θ0)

∂θi
=

1√
n

n∑

t=1

et
wt

∂λt(θ0)

∂θi
+ λ′

n(ξn)
√
n
(
ξ̂n − ξ0

)

where ξn is between ξ̂n and ξ∗0 , and

λn(ξ) =
−1

n

n∑

t=1

et
v∗2t (ξ)

∂λt(θ0)

∂θi

∂v∗t (ξ)

∂ξ
.

Noting that Eλn(ξ) = 0 and using the consistency of ξ̂n, already used arguments show that

λn(ξn) → 0 a.s. Since
√
n
(
ξ̂n − ξ0

)
= OP (1), we have

1√
n

n∑

t=1

et

v∗t (ξ̂n)

∂λt(θ0)

∂θ
=

1√
n

n∑

t=1

et
wt

∂λt(θ0)

∂θ
+ oP (1),

and (6.6) follows from the CLT for stationary square integrable martingale differences.

To complete the proof, notice that

Var

(
J−1 (θ0, w)

1√
n

n∑

t=1

et
wt

∂λt(θ0)

∂θ
− I−1 1√

n

n∑

t=1

et
υt

∂λt(θ0)

∂θ

)
= Σ− I−1. �

Proof of Corollary 2.1. This is a consequence of the last result of Theorem 2.2, noting

that ΣE, ΣP and ΣP are each equal to the matrix Σ(θ0, w) for some particular w. �

Proof of Corollary 2.2. Recall that a random variable X with mean λ and density fλ

belonging to a regular exponential family satisfies

a′(λ) = η′(λ)λ, a′′(λ) = η′′(λ)λ+ η′(λ), a′′(λ) = {η′(λ)}2 Var(X) + η′′(λ)λ.

These well-known equalities are respectively obtained from

0 =
∂

∂λ

∫
fλ(x)dµ(x) =

∫
h(x)eη(λ)x−a(λ) {xη′(λ)− a′(λ)} dµ(x) = η′(λ)λ− a′(λ),
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the derivative of the previous equality, and

0 =
∂2

∂λ2

∫
fλ(x)dµ(x) =

∫
h(x)eη(λ)x−a(λ) {xη′(λ)− a′(λ)}2 dµ(x) + η′′(λ)λ− a′′(λ).

It follows that

η′(λ) = {η′(λ)}2 Var(X) =
1

Var(X)
.

Note that the conditional log-likelihood of Xt given Ft−1 is

ℓt(θ) = log fλt(θ)(Xt) = η {λt(θ)}Xt − a {λt(θ)} .

Under the assumed regularity conditions, as n → ∞, the MLE of θ0 satisfies

√
n
(
θ̂n − θ0

)
d→ N

(
0, I−1

)
,

with

I = E
∂ℓt(θ0)

∂θ

∂ℓt(θ0)

∂θ′
= E {η′(λt)}2 (Xt − λt)

2∂λt

∂θ

∂λt

∂θ′
= E

1

Var(Xt)

∂λt

∂θ

∂λt

∂θ′
.

We conclude by noting that I is the inverse of the asymptotic variance of the two-stage

WLSE, as defined in A6∗. �

Proof of Corollary 3.3. By the Cauchy root test, when E log(α0z1 + β0) < 0, the ACD

equation admits the stationary and ergodic solution

Xt = λtzt, λt = ω0

{
1 +

∞∑

i=1

i∏

j=1

(α0zt−j + β0)

}
.

It follows that A1 is satisfied. Moreover the condition E log(α0z1+β0) < 0 entails E|Xt|s <
∞ for some s > 0 (see e.g. Corollary 2.3 in Francq and Zakoian, 2019). We also have

at ≤ Kρt because supθ=(ω,α,β)∈Θ β < 1. Assumptions A2 and A4 follow. Because α0 > 0

and the law of zt is not degenerated, the identfiability assumption A3 holds true. Since

υt = λ2
t , and EX2

t < ∞ when (α0 + β0)
2 + α2

0 < 1 (see e.g. Example 2.3 in Francq and

Zakoian (2019), arguing that an ACD is the square of a GARCH), A5 is satisfied under the

conditions on (wt), and the consistency results hold. Under the assumption (3.3) entailing

EX4
t < ∞, Section 2.2 shows that A6-A8 are also satisfied. The conclusion follows. �

Proof of Corollary 3.4. It is shown in Aknouche and Francq (2019, Lemma 2.1) that

the family {NB(p(1 − p)−1λ, p), λ > 0} satisfies (2.11). Therefore, when λt follows the
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INGARCH equation (1.2), Assumption A1 is satisfied under (2.12). By the arguments given

in Section 3.1, Assumptions A2 and A3 are satisfied under (2.13)–(2.14). In Aknouche and

Francq (2019, Example 3.2) it is also shown that, in the first order case p = q = 1, Xt admits

moments of any order under (2.12). Therefore, in view of Section 2.2, A4–A7 hold. The

CAN follows from Theorem 2.1. For the two stage estimator, note that υt = λt

(
1 + ς−1

0

)
is

proportional to λt. Therefore the weighting sequence ŵt,n = λ̃t

(
θ̂1WLS

)
is asymptotically

optimal. The CAN of θ̂
(P )
2WLS is obtained without additional constraint. �

Proof of Corollary 3.5. The proof of the CAN of the WLSE is similar to those of the

previous corollaries, using the fact that EX2
t < ∞ if and only if (3.10) and EX4

t < ∞ if and

only if (3.11) (see Ahmad and Francq (2016) and the references therein). �

Proof of Corollary 3.6. The proof uses already given arguments, after showing that (3.19)

and Eǫrt < ∞ imply EXr
t < ∞, for all r > 0 (we did not find a reference for this technical

result, which should already be known, but a proof is available from the authors). For the

consistency of σ̂2, note that the strong convergence of θ̂1WLS to θ0 shows that

σ̂2 = σ2
0 +

1

n

n∑

t=1

ut + o(1) = σ2
0 + o(1)

a.s. since

ut =

(
Xt − ω0 −

p∑

i=1

α0iXt−i

)2

− σ2
0 −

p∑

i=1

α0i (1− α0i)Xt−i

= (Xt − E (Xt | Ft−1))
2 − Var (Xt | Ft−1)

is a martingale difference with finite second moment (see Csörgö, 1968). �

Proof of Corollary 3.7. Given Ft−2, let the constants a = α(ν+1)λt−1, a0 = α0(ν0+1)λt−1,

b = ν−2, b0 = ν0−2 and c = ω−ω0+βλt−1(θ)−β0λt−1. Given Ft−2, the equation λt = λt(θ)

a.s. is equivalent to
a0z

b0 + z
− az

b+ z
= c

for almost all z belonging to the support S of the distribution of zt−1. This is equivalent to

z2(a− a0 + c) + z(ab0 − a0b+ c(b0 + b)) + cbb0 = 0.
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Since S contains at least 3 points, the 3 coefficients of that second order polynomial are

equal to 0. We thus have c = 0, a0 = a and b = b0 (since a0 6= 0), that is

βλt−1(θ)− β0λt−1 = ω0 − ω, α0(ν0 + 1)λt−1 = α(ν + 1)λt−1(θ), ν = ν0,

which entails θ = θ0 when λt = λt(θ) a.s. If follows that the identifiability condition A3

holds true. It can be shown that, under the strict stationarity condition E log a(z1) < 0,

there exists s > 0 such that EXs
t < ∞ and Eλs

t < ∞ (see the proof of Corollary 3.3). Noting

that

λt(θ) ≤ ω + α
ν + 1

ν − 2
Xt−1 + βλt−1(θ) ≤

∞∑

i=0

βi

(
ω ++α

ν + 1

ν − 2
Xt−i−1

)
,

and Θ is compact, we also have E supθ∈Θ λs
t(θ) < ∞. This entails that A2 and A4 hold

true. The consistency of the WLSE follows. The rest of the proof is shown by already given

arguments, noting that, for r ≥ 1, EXr
t < ∞ when ‖a(z1)‖r < 1. �

Proof of Proposition 4.1 Note that it suffices to show that

MSEn(ŵt,n)−MSE(wt) → 0 and QLIKn(ŵt,n)−QLIK(wt) → 0 a.s. (6.7)

Indeed, since the assumptions on the two sequences of weights are the same, the convergences

(6.7) hold when ŵt,n and wt are replaced by ŵ∗
t,n and w∗

t , and the conclusion follows. Since

MSEn(ŵt,n) =
1

n

n∑

t=1

(Xt − λ̂t)
4 − ( 1

n

∑n
t=1(Xt − λ̂t)

2ŵt,n)
2

1
n

∑n
t=1 ŵ

2
t,n

,

MSE(wt) =E(Xt − λt)
4 − (E(Xt − λt)

2wt)
2

Ew2
t

,

the first convergence in (6.7) is obtained by showing

1

n

n∑

t=1

X4−i
t λ̂i

t → EX4−i
t λi

t,
1

n

n∑

t=1

X2−j
t λ̂j

t ŵt,n → EX2−j
t λj

twt,
1

n

n∑

t=1

ŵ2
t,n → Ew2

t (6.8)

for i = 0, 1, . . . , 4 and j = 0, 1, 2. Let us show the second convergence for j = 1. First

consider the initial values. By the first inequalities of (2.5) and (2.15), and the consistency

of ξ̂n, for n large enough we have

∣∣∣Xtλ̂tŵt,n −Xtλt(θ̂)υ
∗
t (ξ̂n)

∣∣∣ ≤ Kρtu1,t, u1,t = |Xt|
(

sup
ξ∈V (ξ∗

0
)

υ∗
t (ξ) + sup

θ∈Θ
λt(θ) + 1

)
.
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Now Taylor expansions yield

∣∣∣Xtλt(θ̂)υ
∗
t (ξ̂n)−Xtλtwt

∣∣∣ ≤ u2,t

∥∥∥θ̂ − θ0

∥∥∥+ u3,t

∥∥∥ξ̂n − ξ∗0

∥∥∥ .

with

u2,t = |Xt| sup
ξ∈V (ξ∗

0
)

υ∗
t (ξ) sup

θ∈Θ

∥∥∥∥
∂λt(θ)

∂θ

∥∥∥∥ , u3,t = |Xt||λt| sup
ξ∈V (ξ∗

0
)

∥∥∥∥
∂υ∗

t (ξ)

∂ξ

∥∥∥∥ .

Since, for i = 1, 2, 3, the processes (ui,t)t are stationary and ergodic processes with finite first

order moments, we have

lim
n→∞

1

n

n∑

t=1

Xtλ̂tŵt,n = lim
n→∞

1

n

n∑

t=1

Xtλtwt = EXtλtwt a.s.

The other convergences in (6.8) are shown by the same arguments, and the first result in

(6.7) follows.

For the second result, noting that

QLIKn(ŵt,n) =1 + log
1

n

n∑

t=1

(Xt − λ̂t)
2

ŵt,n

+
1

n

n∑

t=1

log ŵt,n,

QLIK(wt) =1 + logE
(Xt − λt)

2

wt

+ E logwt = 1 + logE
υt
wt

+ E logwt,

we have to show that

1

n

n∑

t=1

X2−j
t λ̂j

t

ŵt,n

→ E
X2−j

t λj
t

wt

and
1

n

n∑

t=1

log ŵt,n → E logwt (6.9)

for j = 0, 1, 2. Let us detail the proof of the first convergence for j = 1, that is

lim
n→∞

1

n

n∑

t=1

Xtλ̂t

ŵt,n

= E
Xtλt

wt

= E
λ2
t

wt

. (6.10)

The initial values are treated as previously. We thus show (6.10) by the ergodic theorem,

noting that Taylor expansions entail that for n large enough

1

n

n∑

t=1

∣∣∣∣∣
Xtλt(θ̂)

υ∗
t (ξ̂n)

− Xtλt

wt

∣∣∣∣∣ ≤
∥∥∥θ̂ − θ0

∥∥∥ 1

n

n∑

t=1

u4,t +
∥∥∥ξ̂n − ξ∗0

∥∥∥ 1

n

n∑

t=1

u5,t,

where

u4,t =
|Xt| supθ∈V (θ0)

∥∥∥∂λt(θ)
∂θ

∥∥∥
wt

, u5,t =
|Xt| supθ∈V (θ0) |λt(θ)| supξ∈V (ξ∗

0
)

∥∥∥∂υ∗

t (ξ)

∂ξ

∥∥∥
w2

t

sup
ξ∈V (ξ∗

0
)

wt

υ∗
t (ξ)

,
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admit finite expectations in view of (4.4) and (4.5). The first convergence in (6.9) for j = 0

is shown similarly, using (4.3). The convergence for j = 2 is shown by using (4.6) and(4.7).

The last convergence in (6.9) also comes by doing a Taylor expansion, noting that

E sup
ξ∈V (ξ∗

0
)

∥∥∥∥
1

υ∗
t (ξ)

∂υ∗
t (ξ)

∂ξ

∥∥∥∥ < ∞

is entailed by (4.6). The proof is complete. �

7 Conclusion

We proposed a class of WLS estimators for the conditional mean of a time series, which

do not require the whole knowledge of the cdf of the observations. The asymptotic and

finite sample properties of these estimators have been studied. Compared to the QMLEs,

the WLSE presents the advantages of: 1) being of higher efficiency in some situations;

2) be asymptotically efficient when the cdf belongs to the linear exponential family; 3)

have a standard asymptotic normal distribution even when one or several coefficients of

the conditional mean are equal to zero; 4) be explicit and do not require any optimisation

routine in INARCH models. We applied our general results to standard count and duration

models. We studied selection methods of the optimal WLSE based on the MSE and QLIK

loss functions, and demonstrated the theoretical and empirical superiority of the QLIK-based

approach.

References

[1] Ahmad, A. and Francq, C. (2016). Poisson qmle of count time series models. Journal

of Time Series analysis, 37, 291-314.

[2] Aknouche, A., Bendjeddou, S. and Touche, N. (2018). Negative Binomial Quasi-

Likelihood Inference for General Integeral Integer-Valued Time Series Models. Journal

of Time Series Analysis, 39, 192-211.

40



[3] Aknouche, A. and Francq, C. (2019). Count and duration time series with equal condi-

tional stochastic and mean orders. MPRA Working paper No. 90838.

[4] Al-Osh, M.A. and Alzaid, A.A. (1987). First-order integer-valued autoregressive

(INAR(1)) process. Journal of Time Series Analysis, 8, 261-275.

[5] Alzaid, A.A. and Al-Osh, M.A. (1990). An integer-valued pth-order autoregressive struc-

ture (INAR(p)) process. Journal of Applied Probability, 27, 314-324.

[6] Barndorff-Nielsen, O.E., Shephard, N. (2002). Econometric analysis of realized volatility

and its use in estimating stochastic volatility models. Journal of the Royal Statistical

Society, 64, 253-280.

[7] Bernardi, M., and Catania, L. (2014). The model confidence set package for R. arXiv

preprint arXiv:1410.8504v1.

[8] Blasques, F., Gorgi, P., Koopman, S.J., and Wintenberger, O. (2018). Feasible invert-

ibility conditions and maximum likelihood estimation for observation-driven models.

Electronic Journal of Statistics, 12, 1019-1052.

[9] Blasques, F., Koopman, S.J. and Lucas, A. (2015). Information-theoretic optimality of

observation-driven time series models for continuous responses. Biometrika, 102, 325-

343.

[10] Bougerol, P. (1993). Kalman filtering with random coefficients and contractions. SIAM

Journal on Control and Optimization, 31, 942-959.

[11] Cameron, A.C. and Trivedi P.K. (1986). Econometric models based on count data: com-

parisons and applications of some estimators and tests. Journal of Applied Econometrics,

1, 29-53.

[12] Cameron, C. and Trivedi, P. (1998). Regression analysis of count data. Cambridge Uni-

versity Press, New York.

41



[13] Christou, V. and Fokianos, K. (2014). Quasi-likelihood inference for negative binomial

time series models. Journal of Time Series Analysis, 35, 55-78.

[14] Cox, D.R. (1981). Statistical analysis of time series: Some recent developments. Scan-

dinavian Journal of Statistics, 8, 93-115.

[15] Creal, D., Koopman, S.J. and Lucas, A. (2011). A dynamic multivariate heavy-tailed

model for time-varying volatilities and correlations. Journal of Business and Economic

Statistics, 29, 552-563.

[16] Creal, D., Koopman, S.J. and Lucas, A. (2013). Generalized autoregressive score models

with applications. Journal of Applied Econometrics, 28, 777-795.
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