
Munich Personal RePEc Archive

Trans-Boundary Air Pollution Spillovers:

Physical Transport and Economic Costs

by Distance

Fu, Shihe and Viard, Brian and Zhang, Peng

Xiamen University, Cheung Kong Graduate School of Business, The

Chinese University of Hong Kong, Shenzhen

14 August 2019

Online at https://mpra.ub.uni-muenchen.de/102438/

MPRA Paper No. 102438, posted 15 Aug 2020 14:41 UTC



 

 

 

 

Trans-Boundary Air Pollution Spillovers: 

Physical Transport and Economic Costs by Distance* 

 

Shihe Fu 
Xiamen University 

fushihe@xmu.edu.cn 

V. Brian Viard 
Cheung Kong Graduate School of Business 

brianviard@ckgsb.edu.cn  

Peng Zhang 
The Chinese University of Hong Kong, Shenzhen 

jumpersdu@gmail.com 

 

This version: 8/15/2020 

Abstract 

The economic costs of trans-boundary pollution spillovers versus local effects is a necessary input in 

evaluating centralized versus decentralized environmental policies. Directly estimating these for air 

pollution is difficult because spillovers are high-frequency and vary with distance while economic 

outcomes are usually measured with low-frequency and local pollution is endogenous. We develop an 

approach to quantify local versus spillover effects as a flexible function of distance utilizing 

commonly-available pollution and weather data. To correct for the endogeneity of pollution, it uses a 

mixed two-stage least squares method that accommodates high-frequency (daily) pollution data and 

low-frequency (annual) outcome data. This avoids using annual pollution data which generally yields 

inefficient estimates. We apply the approach to estimate spillovers of particulate matter smaller than 

10 micrograms (PM10) on manufacturing labor productivity in China. A one μg/m3 annual increase in 

PM10 locally reduces the average firm’s annual output by CNY 45,809 while the same increase in a 

city 50 kilometers away decreases it by CNY 16,248. The spillovers decline quickly to CNY 2,847 at 

600 kilometers and then slowly to zero at about 1,000 kilometers. The results suggest the need for 

supra-provincial environmental policies or Coasian prices quantified under the approach. 
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1. Introduction 

Since the seminal work of Oates (1972) on fiscal federalism, there has been a debate 

on whether centralized or decentralized policies can achieve the most efficient 

outcome. Local authorities have better information about costs and benefits and can 

better tailor local policies than central authorities whose policies tend to be overly 

uniform. However, local jurisdictions generally ignore the effects of their policies on 

other jurisdictions unless these are internalized administratively. Clear and 

enforceable assignment of property rights followed by Coasian bargaining can also 

solve these externalities even under decentralized control (Coase, 1960) but require 

knowledge and quantification of the extra-territorial damages incurred as a function 

of distance. 

Despite this, we are not aware of any studies that quantify trans-boundary spillovers 

relative to local effects for any kind of pollution. Previous papers show that trans-

boundary pollution spillovers exist and that they affect extra-territorial economic 

well-being1 but they do not quantify how spillovers compare to local effects as a 

function of distance. Our paper aims to fill this gap by providing an approach for 

estimating an air pollution spillover gradient including local effects for endogenous 

economic outcomes. 

Air pollution is a prototypical example of the fiscal federalism debate with serious 

welfare implications. High levels of air pollution in developing countries have led to 

adverse effects on health, economic output, and physical and mental comfort. 

Ninety-two percent of all air pollution-related deaths are estimated to occur in low- 

and middle-income countries and ambient air pollution is estimated to have cost 4.4% 

of global GDP in 2016 (Ostro, et al., 2018). Air pollution levels far exceed the social 

optimum because spillovers, including trans-boundary, are not internalized. 

Developed countries also recognize the need to manage cross-boundary pollution to 

address these externalities. For example, the U.S. Clean Air Act Section 126 allows a 

downwind state to petition the Environmental Protection Agency to take action 

against an upwind state that impedes its ability to comply with smog standards.2 

Regardless of the method used to correct the externality, a necessary input is the 

magnitude and geographic extent of the spillovers by distance. Centralized decision-

making to internalize spillovers requires knowledge of how far spillovers extend at 

significant levels. Alternatively, assigning property rights and allowing for 

decentralized Coasian bargaining requires a method for the parties to estimate the 

                                                           
1 These include Sigman (2002), Sigman (2005), Zheng et al. (2014), Bošković (2015), Kahn et al. (2015), 
Cai et al. (2016), Altindag et al. (2017), Jia and Ku (2017), Lipscomb and Mobarak (2017), Sheldon and 
Sankaran (2017), and Goodkind et al. (2019). We comment more on these below. 
2 Described at https://www.epa.gov/ground-level-ozone-pollution/ozone-national-ambient-air-
quality-standards-naaqs-section-126. 
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origin of spillovers and their damage. To estimate air pollution spillovers requires 

estimating not just the quantity of pollution that drifts as a function of distance but 

also the economic costs that it imposes upon arrival. Finally, a quantification of local 

effects is required to determine whether the spillovers are important in relative 

terms. 

If pollution, weather, and outcome data are available on a daily basis estimating the 

effect of spillovers on the outcome is straightforward: a reduced form estimate of 

imported pollution on local economic outcomes. However, many economic 

outcomes are measured at a lower frequency (e.g., annual) and air pollution 

spillovers occur according to daily wind patterns. Aggregating data to the annual 

level and directly relating economic outcomes to imported pollution is likely to 

involve significant efficiency losses as we show occurs in our application. In addition, 

reduced-form estimates do not quantify the local causal effects. We develop an 

approach to overcome this and demonstrate it by estimating effects of air pollution 

spillovers on annual manufacturing labor productivity in China. 

Our approach relies on the fact that there are two determinants of the trans-

boundary effect of pollution on an outcome: how much air pollution is physically 

transported across cities (the pollution spillover) and the causal effect of this 

pollution on the outcome upon its arrival in the destination city. We wish to estimate 

the pollution spillover flexibly to allow for a highly nonlinear gradient. However, 

the causal effect requires instruments for pollution and is therefore constrained to 

linear estimating equations. To accomplish this, we proceed in two steps. In the first 

step, we estimate the pollution spillover (which we call the spillover decay function) 

of nearby- on focal-city pollution flexibly as a function of distance using daily data 

conditional on wind blowing toward the focal city. In the second step, we estimate 

the causal effect of focal-city air pollution on the economic outcome. Multiplying the 

spillover decay effects from the first step by the causal effect from the second step is 

equivalent to a reduced-form approach3 and allows us to estimate spillovers on the 

outcome flexibly over a range of distances and compare them to the local effect. 

When we estimate the causal effect of pollution in the second step, we instrument for 

the endogeneity of focal-city air pollution using the air quality of the nearest nearby 

city conditional on wind blowing toward the focal city. When wind blows toward 

the focal city, imported pollution from the nearby city degrades focal-city air quality. 

Although other instruments could be used in this step, using nearby-city pollution is 

convenient because the required data (daily pollution and wind measures) are 

                                                           
3 Although the spillover decay function is estimated at the daily level, the effects can be interpreted as 
the annual effects of a sustained and uniform increase in nearby-city pollution on all days of the year 
if wind blew toward focal cities on all days. Since the wind blows toward focal cities roughly half the 
time on average, annual spillovers are roughly half the daily effect as we describe in our results. 
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commonly available and are already used to estimate the pollution decay function in 

the first step. The exogeneity of this instrument requires high-frequency data for two 

reasons. First, to capture wind direction shifts precisely enough and, second, to 

preclude confounding factors affecting both nearby-city pollution and focal-city 

economic outcomes that might occur over longer time periods (in particular inter-

regional economic shocks).4 We provide evidence that daily data are frequent 

enough but higher levels of aggregation are not. 

To combine the daily instrumenting data with the annual outcome data, we employ 

mixed two-stage least squares (M2SLS) (Dhrymes and Lleras-Muney, 2006), a 

methodology for implementing 2SLS with different levels of aggregation in the two 

stages. While the daily instrumenting data can be annualized (conditional on wind 

direction) to use Wald 2SLS, we show in our application that this results in very 

inefficient estimates relative to M2SLS. This is likely to be the case in estimating the 

effect of pollution on other annual outcomes because of the information loss that 

occurs when daily data is averaged to the annual level in the first stage. 

We demonstrate this approach by estimating the effect of trans-city drifts of 

particulate matter less than 10 micrograms in diameter (PM10) on short-run 

manufacturing labor productivity in China using a large firm-level data set from 

2001 to 2007. A one μg/m3 annual increase in PM10 in a city within 50 kilometers 

decreases the average firm’s annual labor productivity by CNY 16,248 (0.106%).5 

This effect declines quickly to CNY 2,847 (0.019%) for nearby cities at 550-600 

kilometers after which it declines slowly to zero at about 1,000 kilometers compared 

to a local effect of CNY 45,809 (0.300%). Thus, the spillover is roughly 35.5% of the 

local effect at 50 kilometers, falling to 6.2% at 550 kilometers, and zero at 1,000 

kilometers and beyond. While we demonstrate the estimation approach with PM10 

and productivity, it can be easily tailored to estimate the spillovers for other 

pollutants and other annual outcomes such as GDP, morbidity, and mortality. 

This paper contributes to three strands of literature. First, we quantify the magnitude 

of spillovers as a function of distance relative to local effects, a key input in choosing 

centralized versus decentralized environmental policies (Oates and Schwab, 1988; 

Ogawa and Wildasin, 2009; Banzhaf and Chupp, 2012; Eichner and Runkel, 2012; 

Williams, 2012; Fell and Kaffine, 2014). Extant work on trans-boundary spillovers 

either shows that trans-boundary pollution spillovers exist (Sigman, 2002; Sigman, 

2005; Kahn et al., 2015; Cai et al., 2016; Lipscomb and Mobarak, 2017) or that they 

affect extra-territorial economic well-being (Zheng et al., 2014; Bošković, 2015; 

                                                           
4 Exogeneity also requires that wind direction is random with respect to nearby-city pollution 
conditional on control variables. We provide evidence that this is the case. 
5 This estimate is for the average city given average weather. 
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Altindag et al., 2017; Sheldon and Sankaran, 2017; Jia and Ku 2019) but do not 

quantify their extensiveness or size relative to local effects. 

Second, we develop an approach based on M2SLS that allows high-frequency 

variation in wind direction to be used as an instrument for high-frequency air 

pollution in estimating its causal effect on low-frequency outcomes. There are two 

approaches to using wind direction as an instrument. One approach is to use 

dominant wind direction alone without measures of non-local pollution sources 

(Deryugina et al., 2019; Freeman et al., 2019; Herrnstadt et al., 2019; Anderson, 2020). 

This is convenient because the instrument is valid without the need to measure non-

local pollution. The downside, as Deryugina et al. (2019) points out, is that the 

monitoring stations that measure local pollution must be geographically dense 

enough to avoid measurement error and confounding effects from local pollution 

sources.6 The second approach combines wind direction with the extra identification 

from non-local pollution. The advantage of this is that it is not confounded by local 

sources of pollution and can be used in the absence of a dense network of local 

monitoring stations. The downside is that non-local pollution sources must be 

measured and must be orthogonal to local sources. Previous papers that use this 

approach (Schlenker and Walker, 2016; Rangel and Vogel, 2019)7 use discrete, 

exogenous events that shift non-local pollution. Our paper takes this approach but 

extends it to use a continuous measure of non-local pollution and allow for the 

instrument to be of higher frequency than the endogenous variable. 

Third, our paper adds to the growing literature on estimating air pollution’s effect 

on labor productivity (Graff Zivin and Neidell, 2012; Chang et al., 2016; Fu et al., 2018; 

Chang et al., 2019; He et al., 2019). These papers estimate the effect of an increase in 

local air pollution on local firms’ productivity. In contrast to previous papers, we 

distinguish the effect of local and imported pollution sources on productivity and 

show that spillovers can contribute significantly to productivity losses. 

We find that pollution exerts a substantial negative effect on productivity even at 

relatively far distances. Twenty-two percent of PM10 produced from a city within 300 

kilometers is imported into a focal city when the wind blows directly toward it. 

From a policy perspective, to internalize this would require centralized control of 

                                                           
6 As they explain, having a dense network of monitors locally averages out the effects of local 
pollution sources so that they do not bias estimates. Slightly modifying their example (page 14) 
imagine a smokestack in the middle of a city. If there is a single monitor on the east side of the city 
then the monitor will detect the pollution from the smokestack when the wind is blowing from the 
west but not when it blows from the east and the wind direction instrument is correlated with local 
pollution. However, if there is a dense network of monitors on all sides of the smokestack then a local 
pollution measure averaged across all monitors will reduce, and in the limit, eliminate this correlation. 
7 Schlenker and Walker (2016) also use wind speed which provides further variation besides wind 
direction to ensure exogeneity. 
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administrative areas that are 300 kilometers in radius or 283-thousand square 

kilometers. This is greater in size than many medium-sized provinces in China such 

as Hunan, Shaanxi, Hebei, Jilin, Hubei, and Guangdong (Ministry of Civil Affairs, 

2017). Thus, the results indicate that environmental policies need to be coordinated 

at the supra-provincial level to internalize spillovers. The other major policy 

application of our method is in calculating Coasian prices as a decentralized solution 

to air pollution externalities. Our estimates allow a quantification of the 

compensation that one city must make to another to internalize inter-city pollution 

damage given the distance between the two cities, the annual wind-direction 

distribution, and annual levels of the economic outcome of interest. We provide an 

example in our results. 

The scientific literature uses an alternative approach for the first step of our 

procedure, chemical-transport models or CTMs, to relate source emissions to 

receptor concentrations (Moussiopoulos, et al. (1996); Seigneur and Moran (2004); 

Seigneur and Dennis (2011)). CTMs that estimate this relationship over long 

distances such as we do are grid-based models that relate locations defined by three-

dimensional grids that are normally one kilometer or larger in size.8 The 

relationships are based on detailed mathematical models of atmospheric processes 

using detailed weather and emissions data. As an alternative for the first step of our 

procedure, CTMs offer advantages and disadvantages relative to our approach. 

CTMs quantify the spillovers from original emissions and is unaffected by their 

displacement unlike our approach which relies on concentrations (hence the need for 

daily wind data to identify spillovers in our estimation). On the other hand, detailed 

emissions data are often not available while concentrations are more readily 

available. Relatedly, CTMs require highly disaggregated data on weather and 

pollution which is often not available, especially in developing economies. CTMs 

realistically model the processes of concentration formation and movement; 

however this greater complexity involves longer solutions times and many more 

assumptions. In a policy context, agreeing upon these assumptions can require 

significant effort and resources.9 In contrast, our approach can be estimated quickly 

and its transparency requires agreement on fewer assumptions. 

Our results have specific implications for the role of China’s governance system in 

air pollution spillovers. China’s reforms have succeeded in part because of its 

                                                           
8 The other approach, known as source-specific models, identify specific emissions sources  that 
contribute to ambient concentrations but are applicable up to only about 150 kilometers between 
source and receptor locations. 
9 For example, the EPA devotes significant resources in choosing which models meet their standards 
via conferences, technical analyses, and regulatory reports. A recent example is detailed in Federal 
Register (2017). 
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regionally decentralized system in which the central government provides incentives 

to local governments based primarily on local GDP to the exclusion of other criteria 

(Jin et al., 2005; Li and Zhou, 2005; Xu, 2011) such as environmental quality. Our 

results indicate that these incentives exacerbate the negative implications of air 

pollution spillovers on manufacturing productivity. This complements Jia (2017) 

which provides empirical evidence that these incentives result in more pollution. 

Including local environmental quality in local government officials’ performance 

valuation is not enough; cross-boundary pollution spillovers must be considered too. 

The remainder of the paper proceeds as follows. The next section describes the data 

we use to illustrate the estimation approach and Section 3 the approach. Section 4 

provides the results, and Section 5 concludes. 

 

2. Data 

We estimate pollution spillovers on labor productivity for manufacturing firms in 

China from 2001 to 2007 in two steps. The first step (estimating the pollution decay 

function) requires daily pollution and weather data. The second step of the 

procedure (estimating the causal effect of air pollution on productivity) requires 

daily data for the instrument to address the endogeneity of pollution and 

accommodates annual data on productivity. 

2.1 Pollution data 

The highest-frequency pollution data available with significant geographic coverage 

during our sample period is the daily Air Pollution Index (API) published by the 

Ministry of Ecology and Environment. This is available at the city level and only for 

larger cities. The number of cities reporting API data increases over time in the 

sample. The sample includes 60 unique cities (Appendix A shows their location). 

The API ranges from 0 to 500 with higher values indicating higher pollution 

concentrations and more harmful health effects (Andrews, 2008). During the sample 

period, a city’s daily API reports the worst of three pollutants: particulate matter 

(PM10), nitrogen dioxide (NO2), and sulfur dioxide (SO2) whose concentrations are 

measured at multiple monitoring stations within the city. Each is rescaled as an API 

measure to make them comparable and the pollutant with the maximum API is 

reported.10 The identity of the maximal pollutant is reported if the API exceeds 50. 

                                                           
10 Each monitoring station records the concentrations of the three pollutants multiple times a day. 
Each of these intra-day measurements is rescaled to an API index. A daily mean API for each 
pollutant across all stations in a city is then calculated and the maximum of these three means is the 
city-level API for that day. 
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The API is potentially subject to manipulation by those who collect and report the 

data. Using 2001 to 2010 data, Ghanem and Zhang (2014) find a discontinuity in the 

API distribution around 100 which suggests that self-reported data is manipulated 

by local officials who are evaluated on the annual number of “Blue Sky” days (those 

below 100). Also consistent with this, Andrews (2008) finds that a significant number 

of days in 2006 and 2007 with reported API values between 96 and 100 would fall in 

the range 101 to 105 if calculated using the underlying monitoring station data. To 

avoid any possible bias in the estimates we exclude days when the API is between 95 

and 105 in either the focal or nearby city in the main estimates but show that it is 

robust to including these. 

We use PM10 in the analysis rather than the API index because we wish to use 

physical pollution levels in quantifying spillovers and PM10 is overwhelmingly the 

worst of the three pollutants (about 90% of days). We drop days in which PM10 is not 

the maximal pollutant and for the remaining days infer its value from the API based 

on the piecewise-linear relationship between PM10 and the API (Appendix B). 

Although we do not observe the worst pollutant when the API is below 50 we 

assume it is PM10 in the baseline estimates because at these low levels air quality is 

assumed to be safe regardless of pollutant. The results are robust to dropping these 

days. 

2.2 Wind and weather data 

We require daily wind data for estimating the spillover decay function and to 

instrument pollution when estimating its effect on productivity. We use station-level 

wind direction data from the World Weather Records Clearinghouse collected by the 

U.S. National Oceanic and Atmospheric Administration (NOAA).11 The data provide 

a direction from which the wind is blowing stated in degrees clockwise from true 

North in each three-hour period of each day in each city. We use a “unit-vector” 

average method defined by the NOAA to arrive at an average daily wind direction 

for each city.12 For wind direction we use data for the focal not the nearby city. 

Regardless of the wind direction in the nearby city, pollution cannot be imported if 

the wind in the focal city is not blowing from the nearby city’s direction. 

                                                           
11 Data available at: http://www.ncdc.noaa.gov/data-access. 
12 In each three-hour period, we convert the direction for each monitoring station to a unit vector with 
coordinates 〈𝑢𝑢, 𝑣𝑣〉. The 𝑢𝑢-component is the North-South wind direction and 𝑣𝑣 the East-West. We 
average the two coordinates separately across the periods of each day and all stations to yield 𝑢𝑢�  and 𝑣̅𝑣. 
We then translate the direction into a 0 to 360 degree scale based on the signs of 𝑢𝑢�  and 𝑣̅𝑣: 180 − 𝜃𝜃 if 𝑢𝑢� < 0 and 𝑣̅𝑣 > 0, 𝜃𝜃 − 180 if 𝑢𝑢� < 0 and 𝑣̅𝑣 < 0, 360 − 𝜃𝜃 if 𝑢𝑢� > 0 and 𝑣̅𝑣 < 0, and 𝜃𝜃 if 𝑢𝑢� < 0 and 𝑣̅𝑣 > 0 
where 𝜃𝜃 = (180 𝜋𝜋⁄ ) ∗ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑢𝑢� 𝑣̅𝑣⁄ ). This is method 1 described at: 
http://www.ndbc.noaa.gov/wndav.shtml. 
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To control for weather conditions that affect the transport of pollution and 

productivity we use daily weather (humidity, windspeed, and temperature) data 

downloaded from the Weather Underground.13 

2.3 Firm productivity data 

Our firm-level output and characteristics data are from annual surveys of 

manufacturing firms conducted by China’s National Bureau of Statistics (NBS). The 

survey includes all state-owned enterprises (SOEs) regardless of size and all non-

SOEs whose annual sales exceed CNY 5 million (USD 0.8 million).14 The survey also 

contains detailed information on firm location, accounting measures, and firm 

characteristics. Before we match with the pollution data this captures 90.7% of 

China’s total manufacturing output during the sample period (Brandt et al., 2012). 

We follow Brandt et al. (2012) in matching firms over time to form an unbalanced 

panel and in converting nominal into real values using industry-level price indices. 

To be consistent with the previous literature, we drop observations with missing or 

unreliable data (Cai and Liu, 2009; Brandt et al., 2012; Yu, 2014) and winsorize the 

top and bottom 0.5% of data based on each of the values of output, value added, 

employment, and capital (Cai and Liu, 2009). 

We measure output as value added per worker which is common in the productivity 

(Syverson, 2011; Brandt et al., 2012) and temperature-productivity literature (Hsiang, 

2010; Dell et al., 2012). Firms report value added directly in the data and it equals 

total production (including both sales and inventory) of all goods produced in the 

year valued at their market prices less the cost of all intermediate inputs employed 

in producing them. Using aggregate measures of productivity requires that prices do 

not reflect market power in either the primary or upstream input markets. We 

cannot guarantee this; however, nearby-city pollution is independent of firm-level 

market power in the focal city allowing us to consistently estimate pollution’s effect 

on productivity via instrumented pollution. The mix of products is also not 

discernible from firm-level value added and may be correlated with local pollution 

levels. However, our instrumenting strategy also addresses this issue: nearby-city 

pollution is uncorrelated with the product-mix decisions of a firm in the focal city 

thereby removing any bias in the instrumented results. 

As explained below, we impose a maximum distance of 1,800 kilometers in 

estimating the spillover decay function and 300 kilometers in the causal estimates of 

productivity effects. After merging the productivity, API, and weather data for the 

spillover estimates, the data include 60 focal cities that represent 26% of China’s 

population. The total annual output of these cities is CNY 2.02 trillion (11.7% of 

                                                           
13 Available at www.wunderground.com. 
14 A 2007 exchange rate of 7.6 is used throughout the paper. 
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China’s annual GDP and 29% of China’s manufacturing sector).15 For the casual 

estimates, the data includes 88,716 firms in 47 focal cities with total annual output of 

CNY 1.35 trillion (7.8% of China’s annual GDP and 20% of China’s manufacturing 

sector). Although the sample of cities is not comprehensive these are major cities 

representing a significant fraction of manufacturing output and population. 

 

3. Estimation 

3.1 Overview of estimation approach 

As we show below, reduced-form estimation of spillover effects on productivity 

produces inefficient estimates. This will also not provide estimates of the local causal 

effects to compare with. To overcome these two issues, we rely on the fact that the 

reduced-form effect equals the intensity of treatment (the effect of nearby- on focal-

city pollution) multiplied by the causal effect of focal-city pollution on focal-city 

productivity. We call the effect of nearby- on focal-city pollution the “pollution 

decay function” since we allow it to vary as a function of distance. Letting 𝑃𝑃𝑛𝑛 

represent nearby-city pollution, 𝑃𝑃𝑓𝑓 focal-city pollution, and 𝑌𝑌𝑓𝑓 the focal-city outcome 

(in our case productivity): 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠𝑎𝑎 𝑠𝑠𝑜𝑜 𝑃𝑃𝑛𝑛𝑠𝑠𝑎𝑎 𝑌𝑌𝑓𝑓 =

(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑢𝑢𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎 𝑑𝑑𝑠𝑠𝑎𝑎𝑎𝑎𝑑𝑑 𝑜𝑜𝑢𝑢𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎: 𝑠𝑠𝑜𝑜𝑜𝑜𝑠𝑠𝑎𝑎𝑎𝑎 𝑠𝑠𝑜𝑜 𝑃𝑃𝑛𝑛 𝑠𝑠𝑎𝑎 𝑃𝑃𝑓𝑓)  ×  (𝑎𝑎𝑎𝑎𝑢𝑢𝑠𝑠𝑎𝑎𝑠𝑠 𝑠𝑠𝑜𝑜𝑜𝑜𝑠𝑠𝑎𝑎𝑎𝑎 𝑠𝑠𝑜𝑜 𝑃𝑃𝑓𝑓  𝑠𝑠𝑎𝑎 𝑌𝑌𝑓𝑓).     (1) 

This follows because the causal effect estimated via 2SLS using nearby-city pollution 

as an instrument is (Angrist and Pischke, 2015: 107): 

𝑎𝑎𝑎𝑎𝑢𝑢𝑠𝑠𝑎𝑎𝑠𝑠 𝑠𝑠𝑜𝑜𝑜𝑜𝑠𝑠𝑎𝑎𝑎𝑎 𝑠𝑠𝑜𝑜 𝑃𝑃𝑓𝑓  𝑠𝑠𝑎𝑎 𝑌𝑌𝑓𝑓 =
�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑓𝑓 𝑃𝑃𝑛𝑛 𝑠𝑠𝑛𝑛 𝑌𝑌𝑓𝑓��𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑛𝑛 𝑑𝑑𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓𝑝𝑝𝑛𝑛𝑑𝑑𝑝𝑝𝑠𝑠𝑠𝑠𝑛𝑛: 𝑠𝑠𝑓𝑓𝑓𝑓𝑠𝑠𝑑𝑑𝑝𝑝 𝑠𝑠𝑓𝑓 𝑃𝑃𝑛𝑛 𝑠𝑠𝑛𝑛 𝑃𝑃𝑓𝑓�.     (2) 

We therefore proceed in two steps. In the first step we estimate the pollution decay 

function using daily data. We allow the effect to vary at different distances with 

controls for weather and seasonality. In the second step we employ the M2SLS 

method to estimate the causal effect of focal-city pollution on focal-city productivity 

using annual data, instrumenting daily focal-city pollution with daily nearby-city 

pollution conditional on wind direction. This step estimates the local average 

treatment effect of pollution on productivity. We then multiply the estimates for the 

spillover decay function obtained in the first step by the instrumental variable 

coefficient from the second step to yield the spillover effect of nearby-city pollution 

on focal-city productivity according to Equation (1). We bootstrap to compute 

standard errors that account for estimation error across both steps. The spillover 

                                                           
15 China’s average annual real GDP over the seven-year sample period is CNY 17.27 trillion. The 
manufacturing sector accounts for roughly 40% of China’s GDP. 
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decay function is estimated at the city level because pollution is measured at that 

level while the causal effects of pollution on productivity are estimated at the firm 

level because productivity is measured and occurs at the firm level. 

An additional advantage of separating these two steps is that the first step relating 

nearby- to focal-city pollution can involve very complicated relationships that 

depend on pollution, wind patterns, and weather in highly nonlinear ways while 

preserving the linear relationship necessary for instrumenting in the second step. 

The next subsection describes the first step of the approach (estimating the pollution 

decay function) and the following subsection the second step (estimating the causal 

effect). 

3.2 Step one: estimating the pollution decay function 

The pollution decay function isolates the physical transport of PM10 between nearby 

and focal cities. If wind direction is orthogonal to omitted factors that jointly affect 

both nearby- and focal-city pollution, relating the two during periods when wind 

blows toward the focal city identifies these spillovers. We offer evidence that wind 

direction is orthogonal to these omitted factors when we present the results. It is also 

necessary to isolate time periods in which the wind blows toward the focal city 

versus away. In the sample, wind direction changes by more than 90 degrees in 

absolute value (and therefore blows in the opposite direction) from day-to-day on 

more than 25% of days (Appendix C shows the full distribution of the change in 

wind direction across days). Averaging over a longer time period risks mingling 

periods in which the wind blows toward and away from the focal city. Thus, it is 

imperative to use daily data to isolate imported from local pollution.  

We follow the concentric rings approach from the urban economics literature to 

estimate the pollution decay function.16 This approach estimates the spillover 

between a location and each of several concentric rings radiating outward from that 

location. We use a piecewise linear regression to implement this, allowing the slope 

and intercept to differ for each of the concentric rings. We define rings at every 50 

kilometers indexed by 𝑏𝑏 = 1,2,3, … ,𝐵𝐵 and identify all the nearby cities within each 

ring (if at least one exists) for each focal city. That is, all nearby cities within 0 to 50, 

50 to 100, . . . , (𝐵𝐵 − 1)*50 to 𝐵𝐵*50 kilometers. We expand 𝐵𝐵 far enough to ensure the 

decay function has plateaued or hit zero (𝐵𝐵 = 36 or 1,800 kilometers). 

Having identified these focal-nearby city pairs, we then estimate the impact of 

nearby city 𝑎𝑎’s PM10 on focal city 𝑜𝑜’s PM10 level on day 𝑑𝑑 of month 𝑚𝑚 in year 𝑎𝑎 by 

                                                           
16 The urban economics literature documents the spatial decay effects of agglomeration economies 
and knowledge spillovers (Rosenthal and Strange, 2003; Fu, 2007; Henderson, 2007; Arzhagi and 
Henderson, 2008; Rosenthal and Strange, 2008). 
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estimating the following equation conditional on the wind blowing from the nearby 

to the focal city: 𝑃𝑃𝑝𝑝𝑑𝑑𝑓𝑓 = Ι𝑏𝑏�𝜆𝜆1𝑏𝑏 + 𝜆𝜆2𝑏𝑏𝑎𝑎𝑏𝑏𝑠𝑠�𝑎𝑎𝑠𝑠𝑠𝑠�𝜃𝜃𝑎𝑎𝑑𝑑𝑜𝑜𝑎𝑎��𝑃𝑃𝑝𝑝𝑑𝑑𝑛𝑛 � + 𝜆𝜆3𝑊𝑊𝑝𝑝𝑑𝑑𝑓𝑓 + 𝜔𝜔𝑓𝑓 + 𝜅𝜅𝑠𝑠𝑝𝑝𝑟𝑟 + 𝜀𝜀𝑝𝑝𝑑𝑑𝑓𝑓𝑛𝑛,  ∀𝑜𝑜,𝑎𝑎 ∈ ℱ,𝑎𝑎 ≠ 𝑜𝑜,∀𝑏𝑏 = 1,⋯𝐵𝐵, (3) 

where ℱ is the set of all cities in the data, 𝑃𝑃𝑝𝑝𝑑𝑑𝑓𝑓  and 𝑃𝑃𝑝𝑝𝑑𝑑𝑛𝑛  are the pollution levels of focal 

city 𝑜𝑜 and nearby city 𝑎𝑎 on day 𝑑𝑑 of year 𝑎𝑎, and 𝑊𝑊𝑝𝑝𝑑𝑑𝑓𝑓  are daily weather controls that 

affect pollution in the focal city. The indictor variable Ι𝑏𝑏 is set to one for distance 

band 𝑏𝑏 if nearby city 𝑎𝑎 is within distance band 𝑏𝑏. 𝜆𝜆1𝑏𝑏 allows the intercept to vary for 

each distance band. 𝜆𝜆2𝑏𝑏 are the coefficients of interest and capture the average 

physical transport of nearby-city pollution to the focal city within each band. An 

observation in this regression is a focal-nearby city pair on a particular day. We form 

all possible pairings of focal and nearby city cities within 1,800 kilometers. Since each 

focal city may have more than one nearby city across or even within bands this is a 

stacked regression with potentially multiple observations per focal city. 

We follow Schlenker and Walker (2016) in weighting nearby-city pollution by the 

absolute value of the cosine of the angle.17 This angle �𝜃𝜃𝑝𝑝𝑑𝑑𝑓𝑓𝑛𝑛� is the difference between 

the wind direction and the direction of the ray from the nearby to the focal city on 

day 𝑑𝑑 of year 𝑎𝑎. For example, in Figure 1 where the focal city lies at an angle of 21° 

from the nearby city, if the wind is blowing at −19° then 𝜃𝜃𝑝𝑝𝑑𝑑𝑓𝑓𝑛𝑛 = −40° or if the wind is 

blowing at 43° then 𝜃𝜃𝑝𝑝𝑑𝑑𝑓𝑓𝑛𝑛 = 22°. We include a day in estimation as long as the wind 

blows within a 90° arc on either side of the ray connecting the nearby to the focal city. 

This is illustrated in the shaded area of Figure 1 for the example in which the focal 

city lies at an angle of 21° from the nearby city. In this example a day is included as 

long as −69° < 𝜃𝜃𝑝𝑝𝑑𝑑𝑓𝑓𝑛𝑛 < 111°. The pollution decay function is therefore identified from 

variation along two dimensions: distance between focal and nearby city and wind 

direction angle. 

[Insert Figure 1] 𝑊𝑊𝑝𝑝𝑑𝑑𝑓𝑓  includes daily averages of relative humidity and wind speed, daily total 

precipitation, and temperature bins as described below. We include focal-city fixed 

                                                           
17 We weight by the angle because more nearby-city pollution is imported the more directly wind 

blows toward the focal city. Using data for −90° ≤ 𝜃𝜃 ≤ 90° for the nearest nearby-city within 300 
kilometers, the correlation between 𝑎𝑎𝑠𝑠𝑠𝑠(𝜃𝜃) and residuals from regressing focal-city pollution on 
nearby-city pollution and focal-city weather is 0.046 significant at better than the 0.01% level. This 

means that if nearby-city pollution is increased by one 𝜇𝜇g/m3 while 𝜃𝜃 is moved from 90° 

(perpendicular to the focal city) to 0° (directly toward the focal city), imported pollution increases by 
0.046 𝜇𝜇g/m3 (21% of the total 0.216 𝜇𝜇g/m3 spillover at 300 kilometers shown in Appendix G). 
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effects (𝜔𝜔𝑓𝑓) to control for any time-persistent unobserved factors affecting the 

pollution drift to a focal city. Region-by-year-by-month fixed effects (𝜅𝜅𝑠𝑠𝑝𝑝𝑟𝑟) control 

for seasonal factors that affect pollution drift in a region such as wind patterns. We 

follow Zhang et al. (2018) in grouping the provinces into each of seven regions as 

described in Appendix D. The error term (𝜀𝜀𝑝𝑝𝑑𝑑𝑓𝑓𝑛𝑛) captures any unobserved factors 

affecting drift between the focal-nearby city pair on day 𝑑𝑑 of year 𝑎𝑎. We cluster 

standard errors at the focal-city level to allow for serial correlation across time 

within a focal city. This also allows for heteroscedasticity introduced by focal cities 

having different numbers of nearby cities. 

3.3 Step two: estimating causal effect of pollution on productivity 

In the second step we estimate the causal effect of focal-city pollution on focal-city 

productivity. In the short run, high air pollution concentrations can lead to 

decreased lung function, irregular heartbeat, increased respiratory problems, 

nonfatal heart attacks, and angina.18 Long-run cumulative exposure may lead to 

cardiopulmonary diseases, respiratory infections, lung cancer (EPA, 2004), and 

asthma (Neidell, 2004) that can surface in the short run. All of these health 

conditions may decrease physical stamina and lead to missed work days. Workers 

may also be absent from work to care for the young and elderly affected by pollution 

(Chay and Greenstone, 2003; Hanna and Oliva, 2015; Deryugina et al., 2019; Aragόn 

et al., 2017). Increased mortality (Chen et al., 2013; Ebenstein et al., 2017) can lead to 

experienced workers being replaced by less experienced ones. Air pollution can also 

have psychological effects including lowering cognitive ability, altering emotions, 

and increasing anxiety (Levinson, 2012; Lavy et al., 2014; Pun et al., 2016; Chen et al., 

2018) which would affect both physical and mental performance. While the 

estimates are unable to distinguish between these various channels they capture the 

effect of all of them. 

3.3.1 Step two: identification 

We focus here on identification issues related to productivity but the identification 

arguments apply to endogeneity issues that arise from outcomes more broadly. OLS 

estimates are subject to simultaneity and omitted variable biases. Even without any 

effect of pollution on productivity, cities with more output will produce more 

pollution. If pollution does lower productivity, the lower productivity will result in 

less pollution. Firms may also respond to the lowered labor productivity by 

substituting from labor to alternative inputs. 

Omitted-variable biases due to local, time-varying conditions are also possible (firm 

fixed effects absorb any time-invariant effects). For example, high-productivity firms 

may implement advanced, lower-polluting technologies over time while low-

                                                           
18 See the EPA website: https://www.epa.gov/pm-pollution. 
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productivity firms do not. Spatial sorting could introduce spurious correlations. 

Firms may choose to enter in or relocate to cities with less severe pollution because it 

will raise their productivity or in cities with more severe pollution because they have 

lax environmental regulations and impose fewer costs (Becker and Henderson, 2000; 

Greenstone, 2002; Brunnermeier and Levinson, 2004). Governments may force firms 

to relocate and pollution inflow from other cities may affect these decisions (for 

example, moving firms away from areas that are typically upstream of densely-

populated areas). Firm exit may be endogenous due to the reduced productivity that 

pollution brings. Workers may also systematically sort across cities. High-skilled 

workers generally have a higher willingness-to-pay for clean air which would lead 

to low-skilled workers being located disproportionately in dirtier cities (Chen et al., 

2017; Lin, 2017). The inclusion of firm fixed effects means that only migrations of 

firms or workers during the sample period will bias the results. 

We address these issues using nearby-city pollution that drifts to the focal city as an 

instrumental variable to identify the causal effect of local pollution on local 

productivity. To ensure exogeneity, we condition on the wind blowing from the 

nearby to the focal city.19 Exogeneity also requires that wind direction timing is 

random with respect to nearby-city air pollution, conditional on controls, which we 

confirm below. 

The inclusion restriction requires that the nearby city is close enough that significant 

amounts of pollution can drift from it to the focal city. To ensure this, we include 

only focal cities that have a nearby city sufficiently close. We consider maximum 

distance cutoffs ranging from 150 to 300 kilometers (our pollution decay function 

estimates confirm significant transport at these distances) and find robust results. 

There is a tradeoff in increasing the distance: it increases the available data but 

weakens the instrument’s power. To also increase the instrument’s power we 

include only the nearest nearby city for each focal city. As a result, even with a 

maximum distance of 300 kilometers the average distance between focal and nearby 

cities is only 106.5 kilometers. 

The exogeneity condition requires that unobserved determinants of focal-city 

productivity are uncorrelated with the nearby city’s pollution. This requires high-

frequency data for two reasons. First, periods in which the wind imports pollution 

from outside must be isolated from those when it does not. To ensure this, in the 

instrumenting equation we condition on the wind blowing from the nearby to the 

focal city on a particular day. We offer evidence when we present the results that 

daily data succeeds in isolating periods when wind blows toward the focal city. 

                                                           
19 When the wind blows toward the nearby city its pollution is not exogenous because greater focal-
city output increases the nearby city’s air pollution. 
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Conveniently, this high-frequency instrument is already available as it is required to 

estimate the pollution decay function. 

Second, high-frequency data is required to ensure that common shocks do not affect 

both focal- and nearby-city output. Positive regional shocks to productivity could 

raise both cities’ output thereby increasing nearby-city pollution as well. 

Alternatively, if focal- and nearby-city production are substitutes in output markets 

then output growth in a focal city will reduce nearby-city output and pollution. 

While common regional shocks are likely to induce correlated actions across cities 

over a long time period, they are unlikely to do so over a short time frame due to 

lags in shock propagation and delays in responses to those shocks. With the use of 

daily data, violating the exogeneity condition would require that shocks affect focal- 

and nearby-city productivity on a daily basis. 

This addresses each of the potential endogeneity biases. Nearby-city pollution is 

uncorrelated with focal-city output in the absence of common regional shocks that 

are propagated and responded to on a daily basis. Trends in pollution and 

productivity would need to be correlated across the focal and nearby city on a daily 

basis to bias the estimates. Substitution away from labor and toward other inputs in 

response to imported pollution would need to occur on a daily basis. Similarly, firm 

entry, exit, or relocations and worker migrations in response to imported pollution 

would need to occur on a daily basis.20 

This instrumenting strategy can be implemented using either M2SLS with daily data 

in the first stage or Wald 2SLS with annual averages in the first stage (in either case 

conditioning on wind direction). Appendix E shows formally that either approach 

produces unbiased estimates in the presence of a common shock to focal- and 

nearby-city output as long as it is of lower than daily frequency. However, there are 

two important differences between the two estimation approaches. M2SLS produces 

unbiased estimates in the first stage because intra-year common regional shocks to 

pollution (as opposed to output) can be controlled for using fixed effects while Wald 

2SLS may produce biased estimates.21 Second, M2SLS produces more efficient 

second-stage estimates as we demonstrate below. These two differences are also 

shown formally in Appendix E. 
                                                           
20 For example, suppose a factory moved from a focal city to a nearby city mid-year. For the first half-
year, the local pollution it produces would lower productivity but this would not affect our estimates 
since this pollution is uncorrelated with nearby-city pollution conditional on wind direction. In the 
second half-year, this would increase the pollution that drifts to the focal city from the nearby city. It 
would also decrease productivity in the focal city in the last half-year due to spillovers. Our estimates 
would capture this since we condition on wind direction. 
21 For M2SLS, these are controlled for by region-by-year-by-month fixed effects in the first stage. For 
Wald 2SLS the first stage is biased by these effects; however, the second stage remains unbiased 
because the predicted values from the first stage are uncorrelated with the common shocks to output 
that may be present in the second stage. 
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In the results we assess the effects of aggregating the instrument to lower and lower 

frequencies. Consistent with theoretical predictions in Appendix E, the first-stage 

coefficient becomes increasingly biased at lower frequencies due to common shocks 

to focal- and nearby-city pollution and the second-stage coefficient is less and less 

precise. 

3.3.2 Step two: implementation 

The outcome that we wish to estimate (productivity) is measured annually while the 

pollution instrument is daily. A standard way of proceeding is to estimate Wald 

2SLS using annualized values (conditional on wind direction in the first stage). We 

show below that these estimates are very inefficient. Instead, we employ M2SLS 

which provides estimates that are consistent and asymptotically normal (Dhrymes 

and Lleras-Muney, 2006) provided that the groupings are independent of the 

structural error as they are when the grouping is a primitive (in our case grouping 

daily observations into years).22 Theoretically, M2SLS can be more or less efficient 

but we show in our setting that it is much more efficient. 

The first-stage equation predicts air pollution for firm 𝑠𝑠 located in focal city 𝑜𝑜 of 

region 𝑎𝑎 on day 𝑑𝑑 in month 𝑚𝑚 of year 𝑎𝑎 conditional on the wind blowing from the 

nearby to the focal city. While the spillover equation in step one uses city data, this 

equation uses firm data to be consistent with the firm data used in the second stage: 𝑃𝑃𝑠𝑠𝑝𝑝𝑑𝑑𝑓𝑓 = 𝛾𝛾1𝑎𝑎𝑏𝑏𝑠𝑠 �𝑎𝑎𝑠𝑠𝑠𝑠 �𝜃𝜃𝑠𝑠𝑎𝑎𝑑𝑑𝑜𝑜𝑁𝑁∗��𝑃𝑃𝑠𝑠𝑝𝑝𝑑𝑑𝑁𝑁∗ + 𝛾𝛾2𝑊𝑊𝑠𝑠𝑝𝑝𝑑𝑑𝑓𝑓 + 𝛼𝛼𝑠𝑠 + 𝜅𝜅𝑠𝑠𝑝𝑝𝑟𝑟 + 𝜖𝜖𝑠𝑠𝑝𝑝𝑑𝑑𝑓𝑓 , (4) 

where 𝑃𝑃𝑠𝑠𝑝𝑝𝑑𝑑𝑓𝑓  is the pollution in firm 𝑠𝑠’s focal city 𝑜𝑜 on day 𝑑𝑑 of year 𝑎𝑎, 𝜃𝜃𝑠𝑠𝑝𝑝𝑑𝑑𝑓𝑓𝑁𝑁∗
 is the wind 

direction relative to the ray from the nearest nearby city to firm 𝑠𝑠’s focal city on day 𝑑𝑑 of year 𝑎𝑎, and 𝑃𝑃𝑠𝑠𝑝𝑝𝑑𝑑𝑁𝑁∗  is the pollution level on that same day in focal city 𝑜𝑜’s nearest 

nearby city 𝑁𝑁∗ ∈ ℱ within a maximum radius distance. If no nearby city is available 

for a focal city it is dropped from the estimation. Every nearby city is also a focal city 

although it might be paired with a different nearby city that is closer. We test the 

sensitivity of the results to maximum distance cutoffs ranging from 150 to 300 

kilometers.23 𝑊𝑊𝑠𝑠𝑝𝑝𝑑𝑑 is a vector of daily weather variables faced by firm 𝑠𝑠 on day 𝑑𝑑 of 

year 𝑎𝑎. We include linear and quadratic functions of daily relative humidity, wind 

speed, and cumulative precipitation. We allow for a flexible, nonlinear function of 

temperature following Deschênes and Greenstone (2011) and Zhang et al. (2018) 

since it has been found to affect productivity (Zhang et al., 2018). We construct 

                                                           
22 Lleras-Muney (2005) applies M2SLS to estimate the causal impact of education on health, Massa 
and Žaldokas (2014) to estimate international demand for US bonds, and Jordan (2016) to estimate 
local environmental preferences on mine closures. 
23 Distances below 150 kilometers yielded insufficient data and distances above 300 kilometers 
yielded a weak instrument as we demonstrate below. 
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indicator variables for the daily average temperature below 0°, 5° intervals from 0 to 

30°, and above 30° Celsius. 

In defining whether the wind blows toward the focal city, we impose more stringent 

criteria than in the pollution decay function estimation to ensure a sufficient quantity 

of pollution is imported from the nearby city. This is necessary for the instrument to 

be powerful.24 For the baseline estimates, we include a day if the wind passes within 

a 45° arc on either side of the ray connecting the two cities. We refer to this as the 

“middle” funnel. Figure 2 illustrates this for the example in which the focal city lies 

at an angle of 21° from the nearby city. In this case a day is included as long as −24° < 𝜃𝜃𝑝𝑝𝑑𝑑𝑓𝑓𝑛𝑛 < 66° (the shaded region of the figure). We check the robustness of the 

results to arcs of ±40° (“narrow” funnel) and ±50° (“broad” funnel). As in the 

pollution decay function estimation, the nearby-city’s pollution is weighted by the 

absolute value of the cosine of the angle. 

[Insert Figure 2 here] 

Firm fixed effects (𝛼𝛼𝑠𝑠) capture time-persistent unobservables that affect firm 𝑠𝑠’s 

pollution exposure. Since no firms switch focal cities or industries over the sample 

period, these also absorb city-specific and industry-specific time-invariant factors 

that affect local pollution. Region-by-year-by-month fixed effects (𝜅𝜅𝑠𝑠𝑝𝑝𝑟𝑟) control for 

any year-month specific unobservables affecting the pollution in a region. We cluster 

standard errors at the focal-city level to allow for spatial correlation for all firms 

within each focal city and serial correlation across days within a focal city over time. 

This equation differs from the pollution decay function (Equation (3)) in two ways. 

First, in order to ensure the power of the instrument, Equation (4) restricts estimation 

to shorter distances (a maximum of 300 kilometers), it utilizes only the nearest 

nearby city, and includes only days when the wind direction is within a funnel 

rather than within a half-circle. This maximizes the potential for the nearby city’s 

pollution to drift to and affect the focal city. The objective of Equation (3) is to 

estimate spatial decay and it therefore utilizes all of the nearby cities to a focal city, 

utilizes all days of wind direction within a half-circle, and extends the measurement 

of these spillovers to a much greater distance. Second, Equation (3) also allows for a 

much more flexible functional form for estimating the spillover decay function than 

the linear restriction that 2SLS imposes on Equation (4). 

Using the results from estimating Equation (4), we compute predicted values 𝑃𝑃�𝑠𝑠𝑝𝑝𝑑𝑑𝑓𝑓  for 

each day included in the estimation (wind blowing toward the focal city) and 

                                                           
24 Footnote 18 provides evidence that nearby-city pollution is a stronger instrument when the wind 
blows more directly in the direction of the focal city. 
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average them over days within each firm-year to obtain instrumented pollution for 

the second-stage: 𝑃𝑃��𝑠𝑠𝑝𝑝𝑓𝑓. The second-stage equation is: 

ln�𝑌𝑌𝑠𝑠𝑝𝑝𝑓𝑓� = 𝛽𝛽1𝑃𝑃��𝑠𝑠𝑝𝑝𝑓𝑓 + 𝛾𝛾2𝑊𝑊�𝑠𝑠𝑝𝑝𝑓𝑓 + 𝛼𝛼𝑠𝑠 + 𝛿𝛿𝑠𝑠𝑝𝑝 + 𝜂𝜂𝑠𝑠𝑝𝑝𝑓𝑓 , (5) 

where 𝑌𝑌𝑠𝑠𝑝𝑝𝑓𝑓 is value added per employee for firm 𝑠𝑠 in the focal city 𝑜𝑜 in year 𝑎𝑎 and 𝑊𝑊�𝑠𝑠𝑝𝑝𝑓𝑓 

contains the weather controls from the first stage averaged over all days within each 

firm-year (i.e., averages of the linear and quadratic functions of non-temperature 

variables and temperature bins containing the fraction of days in which the average 

temperature is below 0°, in 5° intervals from 0 to 30°, and above 30° Celsius).25 

Firm fixed effects 𝛼𝛼𝑠𝑠 capture time-persistent firm attributes that affect labor 

productivity. Region-by-year fixed effects (𝛿𝛿𝑠𝑠𝑝𝑝) capture time-varying, regional shocks 

to firm output. The error term (𝜂𝜂𝑠𝑠𝑝𝑝) includes time-varying, firm-level shocks to 

productivity. We cluster standard errors at the focal-city level to allow for serial 

correlation within each firm over time and spatial correlation within each city. We 

adjust for the error introduced in the first-stage estimation using a block bootstrap as 

in Schlenker and Walker (2016) with 100 iterations. 

 

4. Results 

Before we show the results of our approach we establish that a straightforward 

reduced-form regression of focal-city productivity on nearby-city pollution produces 

inefficient estimates. To do so, we aggregate the nearby-city pollution to the annual 

level conditional on wind direction, weighted by the cosine of the wind-direction 

angle, and including control variables corresponding to those in the M2SLS 

procedure.26 Appendix F graphs the results converting them to their monetary 

impact. It shows the effects of a one 𝜇𝜇g/m3 annual increase in nearby-city PM10 

within a distance band (holding all others constant) on the average firm’s annual 

productivity along with the 95% confidence interval in red, dashed lines. All the 

effects except for the 0-50 kilometer distance band are close to zero and almost all are 

insignificant. Given this lack of precision, we now turn to our approach. 

                                                           
25 To ensure the exclusion restriction is met, the first-stage equation must include the non-averaged 
values of all the exogenous variables from the second stage. The weather controls in the second stage 

(𝑊𝑊�𝑠𝑠𝑝𝑝𝑓𝑓) are yearly averages of the linear and quadratic terms of all non-temperature variables in the first 

stage. For the temperature variable, the bins in the second stage are annual averages of the daily 
indicator variables included in the first stage. The firm fixed effects remain the same as in the first 
stage. Finally, the region-by-year fixed effects included in the second stage are averages of the region-
by-year-by-month fixed effects in the first stage. 
26 An alternative reduced-form approach would be to regress annual productivity on daily nearby-
city pollution but this would involve over two billion observations in order to estimate as a nonlinear 
function of distance. 
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We report the first-step estimates (pollution decay function) followed by the second-

step estimates (causal effects of focal-city air pollution on focal-city productivity) and 

then combine the results from these two steps to calculate the spillover effects of 

nearby-city pollution on focal-city productivity. After this, we demonstrate the 

advantage of the M2SLS procedure. In particular, we show that estimating causal 

effects using Wald 2SLS with annual data produces insignificant second-stage results 

and biased first-stage results. We offer supporting evidence that this is due to 

aggregating the high-frequency data to a lower frequency. 

4.1 Pollution decay function 

To estimate the pollution decay function we include all focal cities with at least one 

nearby city within 1,800 kilometers. This distance was chosen because it was far 

enough that the spillover effects were indistinguishable from zero.27 We use all cities 

that have daily API and weather data available from 2001 to 2007. This yields 60 

unique cities in a panel which is unbalanced because API data was not reported for 

some cities in the earlier years. There are some days with missing API or wind data 

but these are limited (all cities have at least 335 days of data in each year) and we 

believe are due to random non-reporting. 

Table 1 shows the summary statistics for the pollution spillover data. There are 2,586 

focal-nearby-city pairs (about 43 nearby cities for each focal city). If city B is a focal 

city for A then A is also a focal city for B. The focal cities’ PM10 levels average 97.5 

and exhibit significant variation. Wind blows toward the focal city on 52.1% of the 

days and PM10 is the dominant pollutant on 92% of the days for the focal cities. The 

mean distance between cities (1,004 kilometers) is about one-half the maximum 

allowed distance. 

[Insert Table 1 here] 

The solid, black line in Appendix G shows the 𝜆𝜆2𝑏𝑏 coefficients from estimating 

Equation (3) along with the 95% confidence interval in red, dashed lines. These are 

the effects of a one μg/m3 increase in PM10 in nearby cities conditional on wind 

blowing directly toward the focal city �𝜃𝜃𝑝𝑝𝑑𝑑𝑓𝑓𝑛𝑛 = 0�. The effect in each distance band is 

conditional on holding PM10 in other bands constant. Roughly 45% of pollution 

drifts from nearby cities that are within 50 kilometers and more than 18% at 400 

kilometers. 

The solid, black line in Figure 3 plots the effect of a one 𝜇𝜇g/m3 annual increase in 

nearby-city PM10 along with the 95% confidence interval in red, dashed lines (for 

                                                           
27 Re-estimating with a maximum radius of 1,200 kilometers (just above the point at which the effects 
hit zero) yields almost identical coefficients and standard errors. 
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clarity we plot only to a distance of 1,200 kilometers). This adjusts the coefficients 

using the empirical distribution of 𝜃𝜃𝑝𝑝𝑑𝑑𝑓𝑓𝑛𝑛. That is, for the fact that the wind blows 

toward the average focal city on only 52.1% of days in a year and does not always 

blow directly towards the focal city. Again, this is the effect of increasing PM10 in the 

distance band conditional on holding pollution constant in all other bands.28 The 

spillover effect within 50 kilometers is 0.355. That is, a one 𝜇𝜇g/m3 annual increase in 

PM10 in all nearby cities within 50 kilometers, but not in any other distance band, 

increases annual focal city pollution by 0.355 𝜇𝜇g/m3. Similarly, a one 𝜇𝜇g/m3 annual 

increase in PM10 in all nearby cities within 50 to 100 kilometers, but not in any other 

band, increases annual focal city pollution by 0.185 𝜇𝜇g/m3. A similar analysis applies 

to all the further distance bands. These effects are for the average focal city in the 

sample given average weather. Spillovers drop somewhat quickly and smoothly 

from 0.355 at 50 kilometers to 0.062 at 600 kilometers after which they fall more 

slowly to zero at about 1,000 kilometers. 

[Insert Figure 3 here] 

4.2 Randomness of daily wind data 

Before estimating the causal effect of pollution on productivity, we check the 

randomness of wind direction with respect to pollution. To ensure that the 

instrument is exogenous we must exclude days in which the wind does not blow 

from the nearby to the focal city. If wind direction is not randomly distributed with 

respect to the distribution of nearby-city air quality, conditional on control variables, 

this may bias the coefficients.29 Appendix H compares cumulative distribution 

functions (cdfs) of nearby-city air pollution conditional on the control variables used 

in the first stage of the M2SLS procedure for all days versus excluded days using the 

150-, 200-, 250-, and 300-kilometer distance cutoffs in choosing nearby cities. The cdfs 

are very similar for all cutoffs.30 

                                                           
28 It would be useful to compare the local effect to spillovers from raising pollution in all nearby cities 
simultaneously. However, to do so using our estimates requires making arbitrary assumptions about 
the degree to which pollution from a nearby city affects other nearby cities that are between it and the 
focal city. Alternatively, one could estimate spillovers including interaction effects between each 
distance band and all closer distance bands to estimate these “pass-through” effects. However, the 
number of independent variables required makes this infeasible with more than a few distance bands. 
29 This highlights the importance of the control variables. For example, in northern regions of China 
air quality is worse in the winter than in other seasons. If wind directions are systematically different 
in winter than other times of the year this will introduce bias in the absence of control variables. In 
this example, the region-by-year-by-month fixed effects capture this region-specific seasonality. 
30 A two-sample Kolmogorov-Smirnov test rejects the null hypothesis of the equality of distributions 
for three of the radius cutoffs; however, the magnitude of the differences is very small. For the 200-
kilometer radius the difference is significant at the 1.8% level but the maximum difference is only 
0.016. For the 250-kilometer radius the difference is significant at the 3.0% level but the maximum 
difference is only 0.014 and for the 300-kilometer radius the difference is significant at the 3.9% level 
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4.3 Effect of local air pollution on local labor productivity 

In this subsection we estimate the causal effect of focal-city pollution on focal-city 

labor productivity using nearby-city pollution as an instrument. In choosing which 

nearby cities to include, we check robustness to maximum distances from the focal 

city of 150, 200, 250, and 300 kilometers. There is a tradeoff as this distance increases. 

There are more data available to identify the effects thereby increasing their 

precision; however, the instrument is weaker because nearby-city pollution has less 

effect on focal-city pollution. Below 150 kilometers there were insufficient data to 

identify effects and we show that beyond a distance of 300 kilometers the instrument 

is no longer powerful. Unlike the spillover estimates, we choose the nearest nearby 

city to the focal city, if one exists, within the maximum distance to maximize the 

instrument’s power. 

Table 2 shows summary statistics for the main variables for the 150- and 300-

kilometer radiuses. The top panel summarizes the first-stage data which are at the 

firm-day level. The summary statistics are fairly similar across the two distance 

cutoffs. The PM10 levels are high enough to potentially affect productivity. The 

annual mean is 112 µg/m3 compared to a World Health Organization (WHO) 

recommended guideline of 20 µg/m3 annual average and many days exceed the 

WHO guideline of 25 µg/m3 for a 24-hour average (World Health Organization, 

2006). As the cutoff increases from 150 to 300 kilometers, the number of focal cities 

increases from 30 to 47. The average distance between nearby and focal cities does 

not increase much because we use the nearest nearby city for each focal city. The 

bottom panel summarizes the second-stage data which are at the firm-year level. The 

data exhibit significant variation in value-added per employee. Appendix I shows 

summary statistics for the 200- and 250-kilometer radiuses which are similar. 

[Insert Table 2 here] 

Panel A of Table 3 shows OLS results that do not address the endogeneity of air 

pollution. The firm-year data included here correspond to those included in the 

second stage of M2SLS estimation described below. For all four distance cutoffs, the 

coefficients on PM10 are insignificantly different from zero and for all but the 150-

kilometer the point estimates themselves are close to zero. 

We now turn to M2SLS estimates. Panel B shows the results of estimating the first-

stage equation (Equation (4)) using PM10 of the focal city’s nearest nearby city as an 

instrument conditional on wind blowing toward the focal city within the middle 

                                                                                                                                                                                     

but the maximum difference is only 0.013. For a 150-kilometer radius the difference is not quite 
significant (10.8%) but the maximum difference is only 0.014. This is an example of Simpson’s 
Paradox in which a large amount of data (for the 200-kilometer radius there are 55,088 observations) 
results in statistical significance for even small differences. 
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funnel. This estimation is at the firm-day level and the wind is within the middle 

funnel on about one-fourth of the days. The results reveal a strong instrument. A one 

µg/m3 increase in a nearby city’s PM10 increases the focal city’s PM10 by between 

0.70 and 0.72 with a high level of significance.31 This is not too far from the 

theoretical upper bound of 1.0 because it uses only the nearest nearby city and 

pertains to days when the wind is blowing directly toward the focal city�𝜃𝜃𝑝𝑝𝑑𝑑𝑓𝑓𝑁𝑁∗ = 0�. 
The physical transport of pollution is lower when the wind is not blowing directly 

toward the focal city or from nearby cities that are further away. The Kleibergen-

Paap Wald rk (KP) F-statistic (Kleibergen and Paap, 2006) for weak identification 

significantly exceeds the Stock-Yogo critical value of 16.38 for all four cutoffs.32 

Panel C shows the second-stage estimates of Equation (5) at the firm-year level using 

the average values of the predicted pollution from the first stage as an instrument 

and controlling for weather and region-by-year fixed effects. The estimated 

coefficients of PM10 are negative and significant for all but the 150-kilomoter cutoff. 

The estimates become more significant as the cutoff increases consistent with more 

data used in estimation. The coefficients are fairly consistent across the four cutoffs 

and imply that a one µg/m3 annual increase in PM10 decreases productivity by 0.26 

to 0.34%. Evaluated at the mean focal-city PM10 in each subsample, these estimates 

imply elasticities of labor productivity with respect to air pollution of -0.29 to -0.35.33 

These results are consistent with the instrument attenuating an upward endogeneity 

bias. The results also imply that improving air quality generates substantial 

productivity benefits. Using the 300-kilometer cutoff data and estimates, a 1% 

reduction in PM10 increases per-firm productivity for the average firm by CNY 

47,700 (USD 6,276) annually. Throughout the remainder of the paper we use the 300-

kilometer estimate as our preferred since it is the most significant and is close to the 

midpoint of the estimates from the three significant cutoffs. 

[Insert Table 3 here] 

Column 2 of Appendix J reports results of a counterfactual test of the instrument. It 

uses M2SLS with the middle funnel and a 300-kilometer radius but conditions on 

wind blowing away from the focal city in instrumenting for focal-city PM10. The first 

stage results (shown in Panel A) are nearly identical to those using the baseline 

model (reproduced in Column 1). This is not surprising: focal-city pollution should 

                                                           
31 These coefficients exceed the estimates even at 50 kilometers in the spillover decay function (0.45 
from Appendix G) because here we estimate using a funnel that is twice as narrow. 
32 Stock and Yogo (2005) critical values apply when model errors are independent and identically 
distributed. No critical values are available for the case when the model allows for standard errors 
that are robust to heteroskedasticity and clustering. 
33 Mean annual PM10 (unconditional on wind direction) in the second-stage data is 104.1 for 150-, 
111.3 for 200-, 103.1 for 250-, and 104.1 for 300-kilometer radius. 
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have the same effect on nearby-city pollution when wind is blowing toward the 

nearby city as vice-versa. The second-stage results (shown in Panel B) are very 

different than the baseline results. The coefficient is much lower in magnitude and 

insignificant consistent with the instrument not addressing endogeneity bias. In fact, 

the estimates are similar to the OLS results in Panel A of Table 3. 

Appendix J contains other robustness checks of the estimates using the 300-kilometer 

cutoff. Column 3 uses a narrow funnel (an 80° arc). The point estimate is slightly 

smaller and is significant only at the 16% level due to the loss of data in the first 

stage. Employing a broad funnel (a 100° arc) with more data in Column 4 produces a 

somewhat more significant and larger effect than the baseline estimate. Dropping 

days with API below 50, for which the major pollutant is unknown, lowers the 

coefficient somewhat (Column 5). This is presumably due to years with a relatively 

high number of low-pollution days corresponding to years with a relatively high 

proportion of high-productivity days. Column 6 shows the importance of including 

weather controls. Without them, the coefficient is lower and no longer significant 

either because of their effect on the instrumented values or as a control for factors 

affecting productivity. Including the potentially manipulated range of API (Column 

7) produces almost identical results to the baseline. Including year-by-month rather 

than region-by-year-by-month fixed effects in the first stage (Column 8) yields 

similar results to the baseline but even more significant while including region-by-

year fixed effects in the first stage results in somewhat different estimates with less 

significance (Column 9).34 Therefore, the estimates are sensitive to controlling for 

overall seasonality more so than region-specific effects. 

Appendix K provides supporting evidence for the choice of 300 kilometers as the 

maximum distance for the nearest nearby city to include as an instrument. Column 1 

reproduces the baseline estimates. Column 2 estimates M2SLS using as an 

instrument pollution in the nearest nearby city for each focal city that is further than 

300 but less than 350 kilometers away and using the middle funnel in defining 

whether wind blows toward the focal city. Columns 3 through 5 expand the data by 

increasing the range of distances for the nearest nearby cities. The average distance 

between the focal and nearby cities increases from 106.5 kilometers in the baseline 

estimates compared to more than 323.9 kilometers in the counterfactual estimates. 

The first-stage results in Panel A reflect the reduced power of the instrument 

compared to the baseline. The coefficient is about half that in the baseline estimates 

and the KP F-statistic is much lower. The second-stage coefficients (Panel B) are all 

insignificant consistent with a weak instrument. 

                                                           
34 We experimented with using province-by-year-by-month fixed effects but the model was too 
saturated. There is an average of only 1.5 cities per province in the data. 
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4.4 Spillover effect of nearby-city pollution on focal-city labor productivity 

As shown in Section 2.1, multiplying the first-step spillover decay function by the 

second-step causal effects yields the spillover effects of nearby-city pollution on 

focal-city productivity. To obtain appropriate standard errors clustered at the city 

level for these spillover effects we employ a block bootstrap with 100 iterations.35 We 

estimate this using a 300-kilometer cutoff and middle funnel for the instrument in 

the M2SLS estimation. 

Figure 4 summarizes the results converting them to the monetary impact for the 

average firm’s annual productivity on an average weather day. The solid, black line 

shows the effect of a one μg/m3 annual increase in nearby-city PM10 in that distance 

band (holding pollution in all other bands constant) on focal-city productivity with 

95% confidence intervals shown in dashed, red lines. Since these are annual 

productivity effects this assumes a one μg/m3 increase in nearby-city PM10 for the 

entire year and adjusts for the empirical distribution of wind direction during the 

year. The costs are CNY 16,248 (USD 2,138) for nearby cities within 50 kilometers 

and decline fairly quickly and smoothly to CNY 2,847 (USD 375) for nearby cities at 

550 to 600 kilometers. Beyond this, the spillovers decline slowly to approach zero at 

about 1,150 kilometers (for clarity we plot only to 1,200 kilometers). In comparison 

the effect of local sources of PM10 on productivity is CNY 45,809 (USD 6,028). 

[Insert Figure 4 here] 

While the spillover decay function estimates alone tell us the relative tradeoff 

between local and extra-territorial effects, they do not tell us the absolute amounts at 

stake. This requires both steps of the procedure. For example, if PM10 increases by 

one μg/m3 annually in both a focal city and a nearby city located at 90 kilometers, 

productivity falls by CNY 45,809 annually for the average firm due to local sources 

of pollution and another CNY 8,494 due to imported pollution. The latter is smaller 

because pollution dissipates as it drifts and the wind blows directly toward the focal 

city only part of the time. These absolute costs can be used to determine the 

geographic scope of environmental regulation necessary to internalize externalities 

that are above a given cost. 

These results can also be used to calculate Coasian prices. Consider Tianjin which is 

located 107 kilometers from Beijing and let 𝜃𝜃𝑝𝑝𝑑𝑑𝐵𝐵𝐵𝐵 be the angle of the wind relative to 

the ray from Tianjin to Beijing. If each city were assigned rights to keep its city free 

of other cities’ air pollution, Tianjin would have to compensate Beijing CNY 

                                                           
35 Specifically, for each iteration we draw (with replacement) a block bootstrap by city. In the first step 
(spillover decay function) we use all days in all years for these cities. In the second step (causal effects) 
we use all firms and all days in all years for the sampled cities. 
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35*𝑎𝑎𝑏𝑏𝑠𝑠[𝑎𝑎𝑠𝑠𝑠𝑠(𝜃𝜃𝑝𝑝𝑑𝑑𝐵𝐵𝐵𝐵)] times the number of firms in Beijing on each day when −90° ≤𝜃𝜃𝑝𝑝𝑑𝑑𝐵𝐵𝐵𝐵 ≤ 90°, where 35 is the 𝜆𝜆2𝑏𝑏 coefficient from Equation (3) multiplied by the annual 

causal effect converted to a daily cost.36 Similarly, on days when the wind blows 

toward Tianjin, Beijing would have to compensate Tianjin 35*𝑎𝑎𝑏𝑏𝑠𝑠[𝑎𝑎𝑠𝑠𝑠𝑠(𝜃𝜃𝑝𝑝𝑑𝑑𝐵𝐵𝐵𝐵)] times 

the number of firms in Tianjin for each μg/m3 of PM10 that Beijing produces on a day 

when the wind blows between −90° ≤ 𝜃𝜃𝑝𝑝𝑑𝑑𝐵𝐵𝐵𝐵 ≤ 90°where 𝜃𝜃𝑝𝑝𝑑𝑑𝐵𝐵𝐵𝐵 is the angle of the wind 

relative to the ray from Beijing to Tianjin. Some of the pollution blowing from Beijing 

to Tianjin may have originated in other cities before being passed on to Tianjin. 

These other cities would compensate Beijing using the same approach so that 

Beijing’s net payment would correspond only to the pollution that it originated. 

4.5 Wald 2SLS estimates 

An alternative to the M2SLS procedure is to combine the first-step estimates of the 

pollution decay function using daily data with causal estimates based on Wald 2SLS. 

Estimating Wald 2SLS requires aggregating the first-stage data to match the annual 

data used in the second stage. We aggregate the first-stage data by taking firm-year 

averages conditional on wind blowing toward the focal city (i.e., computing mean 

values of focal-city pollution and cosine-weighted nearby-city pollution using only 

days when the wind blows toward the focal city). We also include weather controls, 

firm and region-by-year fixed effects, and cluster standard errors by focal city to be 

consistent with the M2SLS estimates. Table 4 shows the results at the different 

distance cutoffs using the middle funnel. 

The coefficients for the first-stage results (Panel A) are all significant but are opposite 

of the expected sign. This is because when there is variation within groups, grouped 

estimation identifies parameters that differ from those in ungrouped estimation 

(Angrist and Pischke, 2011: 314). Appendix L shows scatter plots that relate focal-city 

PM10 conditional on first-stage control variables and nearby-city PM10 for daily 

values versus annual average values along with fitted regression lines. In both cases 

we condition on wind blowing toward the focal city. The daily plot shows a clear 

positive relationship between the city pairs’ pollution values. The primary effect of 

aggregating to the annual level is a loss of precision in the relationship but the 

relationship also becomes negative. This results from common shocks to focal- and 

nearby-city pollution that are negatively correlated and occur at lower frequencies 

than daily. As a result, the first-stage coefficient is biased downward (see Equation 

                                                           
36 The 𝜆𝜆2𝑏𝑏 coefficient is 0.279 for nearby cities between 100 and 150 kilometers away. The annual 
causal effect is CNY 45,809 or CNY 125 daily. Multiplying these two numbers yields CNY 35. 
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(A10) of Appendix E for a formal exposition). The results also suggest weak 

instruments with all of the KP F-statistics below the critical value of 16.38.37 

As Appendix E shows, Wald 2SLS still produces unbiased second-stage estimates 

even with a biased first-stage coefficient. The first-stage fitted values from either 

Wald 2SLS or M2SLS reflect the component of focal-city pollution that is due to 

variation in nearby-city pollution. However, Wald 2SLS may be less efficient. M2SLS 

is more efficient because it uses disaggregated data in the first stage thereby utilizing 

more information; however, the grouping of the first-stage predicted values changes 

the nature of the first stage errors and their relationship to the second-stage errors 

which could decrease efficiency (Dhrymes and Lleras-Muney, 2006). Appendix E 

provides the formal statistical test of whether M2SLS is more efficient in our setting 

based on Dhrymes and Lleras-Muney (2006). The test statistic is 1,735.1 compared to 

a cutoff value of 1.64 for a 5% level of significance indicating M2SLS estimates are 

much more inefficient than Wald 2SLS. 

 [Insert Table 4 here] 

M2SLS is much more efficient in our setting because vastly more information is used 

in the first stage of M2SLS than in Wald 2SLS. This overwhelms any loss of efficiency 

due to correlations between the annualized first-stage and second-stage residuals. 

The same gain in efficiency is likely to be achieved when applying M2SLS to other 

outcomes because of the much greater information in daily data (using the middle 

funnel one-fourth of days are used implying 91 times as many observations with 

daily than annual data). Consistent with the lower efficiency of Wald 2SLS, the 

second-stage coefficients in Panel B of Table 4 are insignificant for all four cutoffs. 

We now investigate this loss of efficiency further. 

Table 5 shows how the level of aggregation in the first-stage affects the estimates of 

the causal effects of pollution on productivity (second-stage estimates are all at the 

firm-year level). These estimates use the 300-kilometer cutoff in choosing the 

nearest-nearby city, apply the middle funnel in choosing which days to include in 

the first-stage, and include the same controls as the baseline estimates except that 

region-year fixed effects are used rather than region-by-year-by-month.38 Column 1 

of the table uses firm-day data in the first stage conditional on wind blowing toward 

the focal city. This specification is the same as the baseline except that region-year 

fixed effects are used. As showed earlier, the causal effects are somewhat lower and 

                                                           
37 Consistent with a single instrument that is very significant, a standard Cragg-Donald (1993) test 
overwhelmingly rejects the null hypothesis of weak instruments (e.g., a test statistic of 64,400 for the 
estimates using a 300-kilometer radius). However, the KP tests which adjusts for correlation in the 
errors results in a much lower test statistic. 
38 Region-by-year-by-month fixed effects are not used since they cannot be included once data is 
aggregated for periods longer than one month. 
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less significant using region-by-year fixed effects than in the baseline estimates using 

region-by-year-by-month fixed effects. This highlights another advantage of using 

daily data: finer controls in the first stage can lead to more efficient estimates. 

Column 2 aggregates the first-stage data to the weekly level conditional on wind 

direction (i.e., averages all days when wind is blowing toward the focal city across 

each week). The first-stage coefficient remains similar and the second-stage 

coefficient is similar in magnitude but is significant only at the 11.0% level. Columns 

3 through 6 aggregate in a similar way to the monthly, quarterly, semiannual, and 

annual levels (the last is the Wald estimates discussed above). Fairly clear patterns 

emerge as the level of aggregation is increased. The first-stage coefficient declines in 

magnitude (and turns negative with annual aggregation) while the second-stage 

coefficients become less and less significant. These results suggest that daily data is 

necessary to generate sufficient variation for precise estimates. 

[Insert Table 5 here] 

 

5. Conclusion 

We provide a methodology for estimating the causal effect of air pollution spillovers 

on outcomes that are measured with lower frequency than pollution and weather 

data. Measuring air pollution spillovers requires high-frequency (such as daily) data 

to ensure that shifts in wind direction are properly captured, but outcome variables 

are often available on only an annual basis. 

We proceed by estimating the pollution decay function at high frequency separately 

from the causal effects and estimating the causal effects using a mixed two-stage 

least squares (M2SLS) procedure using high-frequency changes in imported 

pollution from nearby cities as an instrument. The M2SLS procedure allows high-

frequency data for the instrumenting in the first stage but low-frequency outcome 

data in the second stage. This estimation is a natural by-product of estimating the 

spillover decay function since this also requires high-frequency wind and pollution 

data. We show that typical Wald 2SLS fails in estimating causal effects due to the 

aggregation of pollution data over a long period and the resulting loss of efficiency. 

Use of high-frequency data also allows spillovers to be examined at relatively short 

distances while minimizing the chance of spurious correlation from regional and 

seasonal shocks to the outcome variable. This allows an examination of spillovers 

between cities that are geographically close but administratively distinct and 

therefore potentially suffer from a free-rider problem in pollution production. 
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While we apply our procedure to quantify spillover effects of PM10 on productivity, 

our procedure can easily be adapted to estimate the spillover effects for other 

pollutants and on any outcome for which data is of a lower frequency than the 

pollution and weather data. For example, if only annual health measures are 

available the instrumenting technique works as long as daily pollution and weather 

data are available. It is also potentially applicable to estimating outcomes over 

periods longer than one year. 

While previous papers document the presence of spillovers, our paper specifically 

quantifies how their intensity varies with distance— a necessary input for 

determining the scope of administrative control necessary to internalize externalities. 

PM10 spillovers in China are large and extend quite far suggesting the need to 

coordinate environmental policies at the supra-provincial level. 
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Figure 1: Example of wind directions between nearby and focal city included in pollution 

decay function estimation 

 

 

Figure 2: Example of wind directions included in estimating the causal effects of pollution 

on productivity (middle funnel) 
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Figure 3: Pollution decay function: effect of one μg/m3 annual increase in nearby-city PM10 within a distance band on annual focal-city PM10 as 

a function of distance 

   

Solid, black line shows effect of a one μg/m3 annual increase in nearby-city PM10 within a distance band (holding pollution in all other distance bands constant) on annual 

focal-city PM10 as a function of distance controlling for weather variables, focal-city fixed effects, and region-by-year-by-month fixed effects. Estimation allows for piecewise 

linear effects in increments of 50 kilometers. Effects are adjusted for the empirical distribution of wind directions during the year. Dashed, red lines show 95% confidence 

intervals estimated using 100 iterations of a block bootstrap by focal city. 
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Figure 4: Air pollution spillover effects from a one μg/m3 annual increase in nearby-city PM10 within a distance band on average annual labor 

productivity of focal-city firms as a function of distance 

   

Solid, black line shows effect of a one μg/m3 annual increase in nearby-city PM10 within a distance band (holding pollution in all other distance bands constant) on average 

annual productivity of focal-city firms as a function of distance estimated by the two-step procedure described in the text. Estimation allows for piecewise linear effects in 

increments of 50 kilometers. Effects are adjusted for the empirical distribution of wind directions during the year. Dashed, red lines show 95% confidence intervals estimated 

using 100 iterations of a block bootstrap by focal city. 
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Table 1: Summary statistics for pollution decay function estimation 2001 to 2007 (N = 988,320) 

 

 

 

(1) (2) (3) (4)

Mean Std. dev. Min Max

Focal city PM10 (μg/m3) 97.5           59.5           8.0              600.0         

Distance between focal/nearby city (km) 1,003.9      444.0         44.0           1,799.2      

Nearby cities per focal city 43.1           11.8           2.0              56.0           

Fraction of days wind toward focal city

Fraction of days API = PM10

# of focal/nearby cities
# of focal-nearby city-year pairs 2,586

60

52.1%

91.9%



 
 

Table 2: Summary statistics for M2SLS estimation 2001 to 2007 (150- and 300-kilometer maximum distances) 

    

(1) (2) (3) (4) (5) (6) (7) (8)

Mean Std. dev. Min Max Mean Std. dev. Min Max

First-stage sample (firm-day)

Focal city PM10 (μg/m3) 111.6         69.0           10.0           600.0         110.5         67.8           10.0           600.0         

Nearby city PM10 (μg/m3) 97.5           65.2           11.0           600.0         97.2           63.2           11.0           600.0         

Distance between focal/nearby city (km) 89.2           28.5           44.0           143.8         106.5         50.8           44.0           291.8         

# of city-years

# of focal cities

Second-stage sample (firm-year)

Value added (CNY1,000) 15,181.5   27,121.6   105.7         357,934.3 15,269.8   27,296.6   101.3         366,425.6 

Total workers 166.9         244.7         10.0           3,012.0      171.6         252.9         10.0           3,012.0      

Value added per worker (CNY1,000) 119.7         216.2         0.5              16,247.6   118.9         219.9         0.1              16,247.6   

# of firms

Summary statistics for data used in M2SLS estimation of causal effect of local air pollution on local firms' labor productivity. First-stage data is 

conditional on wind blowing toward the focal city.

150 kilometers proximity 300 kilometers proximity

166

47

(N = 291,339)

88,716

(N = 19,339,917)

75,390

(N = 243,368)

30

103

(N = 16,271,706)



 
 

Table 3: Causal effect of local PM10 on local labor productivity – OLS and M2SLS estimates 

using nearest-nearby city pollution within middle funnel and different maximum 

distances as an instrument 

   

(1) (2) (3) (4)

150 km 200 km 250 km 300 km

Panel A: OLS (firm-year sample)

Dependent variable:

Mean annual focal city PM10 -0.0015 -0.0003 -0.0005 -0.0005

(0.0014) (0.0014) (0.0013) (0.0013)

R2 0.0738 0.0777 0.0740 0.0839

Sample size 243,368 264,746 276,528 291,339

Panel B: M2SLS first stage (firm-day sample)

Dependent variable:

Daily nearby city PM10 0.7172*** 0.7025*** 0.7004*** 0.6959***

(0.0756) (0.0708) (0.0687) (0.0669)

Fraction of days wind toward focal city 0.246 0.248 0.250 0.246

KP F -statistic 90.0 98.4 104.0 108.1

# cities 30 40 44 47

Sample size 16,271,706 17,858,505 18,758,702 19,339,917

Panel C: M2SLS second stage (firm-year sample)

Dependent variable:

Mean annual predicted focal city PM10 -0.0019 -0.0026* -0.0034** -0.0030**

(0.0015) (0.0014) (0.0015) (0.0014)

Implied elasticity -0.198 -0.289 -0.351 -0.312

# firms 75,390 82,714 86,941 88,716

Sample size 243,368 264,746 276,528 291,339

Data included in Panel A corresponds to firm-year data included in Panel C. First stage 

models include firm and region-by-year-by-month fixed effects; linear and quadratic terms 

of daily humidity and wind speed; and categorial variables for temperature bins as 

described in the text. The OLS and second-stage models include firm and region-by-year 

fixed effects; annual averages of linear and quadratic terms of daily humidity and 

windspeed; and annual counts of the daily categorial variables for temperature (i.e., 

number of days in each temperature bin). OLS R2 is the "within" R2 from the fixed effects 

regression. Standard errors are clustered at the focal-city level in all models and reported 

in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Standard errors in Panel C are also adjusted 

for two-stage estimation using 100 block-bootstrap iterations.

ln(value added/worker)

Daily focal city PM10

ln(value added/worker)

Maximum distance cutoff



 
 

Table 4: Wald (2SLS) estimates of causal effect of local PM10 on local labor productivity using 

pollution of nearest-nearby city within middle funnel and different maximum distances 

as an instrument 

 

 

 

(1) (2) (3) (4)

150 km 200 km 250 km 300 km

Panel A: 2SLS first stage (firm-year sample)

Dependent variable:

Mean annual nearby city PM10 (conditional -0.2339** -0.2680*** -0.2435*** -0.2562***

     on wind blowing toward focal city) (0.1005) (0.0787) (0.0786) (0.0637)

KP F -statistic 5.4 11.6 9.6 16.2

# cities 30 40 44 47

Sample size 243,368 264,746 276,528 291,339

Dependent variable:

Mean annual predicted focal city PM10 0.0026 0.0052 0.0080 0.0065

(0.0038) (0.0032) (0.0055) (0.0040)

# firms 75,390 82,714 86,941 88,716

Sample size 243,368 264,746 276,528 291,339

All models include include firm and region-by-year fixed effects; annual averages of linear and 

quadratic terms of daily humidity and windspeed; and annual counts of the daily categorial 

variables for temperature (i.e., number of days in each temperature bin). Standard errors are 

clustered at the focal-city level in all models and reported in parentheses. *** p<0.01, ** p<0.05, 

* p<0.1. Standard errors in Panel B are also adjusted for two-stage estimation.

Panel B: 2SLS second stage (firm-year sample)

Maximum distance cutoffs

Mean annual focal city PM10

Focal city ln(value added/worker)



 
 

Table 5: M2SLS estimates of causal effect of local PM10 on local labor productivity at different levels of aggregation in the first stage 

    

(1) (2) (3) (4) (5) (6)

Panel A: First stage: Firm-Day Firm-Week

Firm-

Month

Firm-

Quarter

Firm-Semi-

Annual Firm-Year

M2SLS M2SLS M2SLS M2SLS M2SLS 2SLS

Dependent variable:

Nearby city PM10 0.7572*** 0.7262*** 0.7255*** 0.5954*** 0.5160*** -0.2562***

(0.0827) (0.0846) (0.1133) (0.0722) (0.0633) (0.0637)

Fraction of days wind toward focal city 0.246 0.246 0.246 0.246 0.246 0.246

KP F -statistic 83.9 73.6 41.0 68.0 66.5 16.2

# cities 47 47 47 47 47 47

Sample size 19,339,917 9,190,704 3,182,582 1,162,124 582,678 291,339

Panel B: second stage (firm-year sample)

Dependent variable:

Mean annual predicted focal city PM10 -0.0021* -0.0024 -0.0017 -0.0020 -0.0024 0.0065

(0.0012) (0.0015) (0.0015) (0.0017) (0.0019) (0.0040)

# firms 88,716 88,716 88,716 88,716 88,716 88,716

Sample size 291,339 291,339 291,339 291,339 291,339 291,339

Focal city PM10

ln(value added/worker)

All columns use the middle funnel in choosing days when wind blows toward focal city and 300-kilometer radius and exclude 

days when API is between 95 and 105. Columns 1 through 5 use M2SLS to estimate at different levels of aggregation in the first 

stage: daily in Column 1, weekly in Column 2, monthly in Column 3, quarterly in Column 4, and semi-annually in Column 5 - 

and data at the annual level in the second stage. Column 6 estimates using Wald 2SLS with data at the annual level in both 

stages. First-stage models include firm and region-by-year fixed effects; linear and quadratic terms of daily humidity and wind 

speed; and categorial variables for temperature bins as described in the text aggregated to the corresponding level. Second-

stage models include firm and region-by-year fixed effects; annual averages of linear and quadratic terms of daily humidity and 

windspeed; and annual counts of the daily categorial variables for temperature (i.e., number of days in each temperature bin). 

Standard errors are clustered at the focal-city level in all models and reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 

Second-stage standard errors are also adjusted for two-stage estimation. In Columns 1 through 5 this is done using 100 block-

bootstrap iterations.

Middle funnel, 300-kilometer maximum distance cutoff
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