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1. INTRODUCTION

The central business districts (CBDs) of its largest cities account for an outsized
share of the United States’ economic growth (Moretti, 2012; Ahlfeldt et al., 2020;
Eckert et al., 2022). Broadening commuting access to these areas is an impor-
tant policy objective and requires either housing investments near the CBD or
improved transportation infrastructure to allow workers from farther afield to
commute in. Expanding housing supply near CBDs has proven difficult due to
political resistance, regulations, and land-use restrictions (Hsieh and Moretti,
2019; Ganong and Shoag, 2017). Such difficulties raise the stakes for designing
effective transportation policies.

The fact that much of the US highway infrastructure constructed after World
War II is now approaching its expiration date (New York Times, Feb. 11, 2022)
also opens a rare political window to change the type of transportation sys-
tems US cities rely on. Should the U.S. repair crumbling roads and highways
to enhance car-based mobility or replace them with new public transit infras-
tructure that re-orients U.S. commuting systems away from their current car
dependence?

This paper proposes new measures of CBD accessibility by cars and by public
transit, discusses their construction and interpretation, and uses them to in-
form this transportation debate. We define ”accessibility zones” as the size of
the surrounding areas from which the CBD can be accessed within a given time
window by either car or public transit. We show how our measures are related
to commuting efficiency, when interpreted through the lens of the canonical
quantitative model of commuting (Monte et al., 2018; Ahlfeldt et al., 2015; Red-
ding and Rossi-Hansberg, 2017). In that framework, larger accessibility zones
are associated with higher overall city productivity, for any given distribution
of origin, destination, and mode choices of workers.

Accessibility zones are easy to construct for most cities worldwide using stan-
dard travel-routing software. Using Google-maps-style route-planning soft-
ware, we compute the accessibility-zone areas of the 109 largest US and Euro-
pean cities. In particular, we separately compute the areas around cities’ CBDs
accessible within 0-15, 15-30, 30-45, and 45-60 minutes for public transit and car-
based commutes during Wednesday morning rush hour. We use the resulting
dataset to establish a set of facts about the accessibility of those cities’ CBDs.
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First, public transit accessibility zones are almost twice as large in European
cities relative to comparably sized US cities for any specific time distance. For
example, the average size of the area from which CBDs of US cities can be
reached within 15-30 minutes by public transit is 34 square kilometers, com-
pared with almost 63 square kilometers in the average European city in our
sample.

Second, car accessibility zones are 2.7 times larger in US cities than in Europe
for commutes between 15 and 30 minutes, and that gap is even larger for com-
mutes within 15 minutes. The average US city in our sample boasts 1,160 square
kilometers from which the CBD can be reached within 15-30 minutes by car; the
same area is only 430 square kilometers in Europe.

Third, US cities’ public transit accessibility disadvantage appears less severe
than what informal public discourse often suggests. Although public transit is
generally faster and more widespread in Europe, U.S. cities’ bus-based public
transit provision is often relatively effective because it uses the superior road
infrastructure that serves cars. Small European cities have a particularly pro-
nounced public transit advantage over smaller US cities.

Fourth, on average, car accessibility zones are almost an order of magnitude
larger than public transit accessibility zones in both Europe and the US. As a
result, US cities outperform Europe in terms of overall accessibility, given the
relative strength of their car-based commuting systems. The significant in-
vestments made in infrastructure to support car-based mobility allow US com-
muters to lose less in time and productivity than their European counterparts.

Fifth, we show that supporting car commutes forces US cities to allocate more
space to car-related infrastructure, resulting in a loss in amenities to residents:
US cities offer much less green space within city boundaries than European
cities.

Sixth, US cities’ car-oriented urban design is associated with additional nega-
tive externalities. A comparison of the accessibility-zone areas during weekday
rush hour and Sunday evening shows heavy car usage slows down everyone’s
commutes, due to congestion. Conversely, broad transit usage during rush
hour speeds up commutes, which is likely related to the economies of scale in
public transit provision. Car orientation of cities is also associated with worse
air pollution, less walking and biking, a larger share of physically inactive peo-
ple, obesity, cardiovascular and respiratory diseases, and lower life expectancy.
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We also combine our accessibility measures with the structure of a quantitative
commuting model to conduct a set of partial-equilibrium counterfactuals. We
use that framework to ask, ”What would the increase in city productivity be
if a city’s accessibility-zone area increased by 10%, holding location and mode
choices of agents fixed at their values observed in the data?”

We find enlarging accessibility-zone areas is subject to decreasing returns. Be-
cause population density falls off from city centers in most cities, each addi-
tional accessible square kilometer tends to contain fewer additional commuters.
Increasing public transit accessibility-zone areas is more ineffective than in-
creasing car areas, because public transit usage declines at the expense of car
usage as people move farther away from the CBD. Increasing the size of transit
accessibility zones has minimal effects on city productivity in all but the largest
US cities, given the generally low transit usage in most cities.

In the long run, general-equilibrium adjustments in mode and location choices
could change these predictions. In particular, policies that enlarge accessibil-
ity zones would be more effective if workers’ location, mode, and destination
choices respond.

Overall, our empirical results highlight a crucial tradeoff. US transportation
systems are generally more effective at bringing workers from city outskirts
into the CBD than most systems in European cities. However, this (car-based)
commuting-efficiency advantage of US cities comes at a cost to public health
and the environment. Our accessibility measure provides a valuable empirical
tool for researchers and policymakers to analyze these tradeoffs quantitatively
to inform future transportation policy choices.

Related Literature. Our main contribution is a new measure of infrastructure-
enabled CBD accessibility. A closely related literature in urban planning has
studied various notions of urban access beginning with Hansen (1959) and In-
gram (1971). The most widely used measure of ”access” in this literature is the
average commuting time between workers’ residences and their job locations in
a city (Wu and Levinson, 2020; Bento et al., 2005). These measures combine (a)
the location choices of firms and workers, (b) the travel-mode choices of work-
ers, and (c) the efficacy of the transportation system to facilitate commutes for
each mode. By contrast, our “accessibility zones” conceptually separate the
efficiency of the commuting system from the choices of firms and workers.

Our approach relies on information on the estimated travel times between arbi-
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trary points, using all available transportation infrastructure. An emerging lit-
erature in urban economics imports software companies’ navigation and route-
finding tools to study urban mobility. In pioneering work, Akbar et al. (2021)
and Couture et al. (2018) use Google maps’ route-finding feature to measure
car travel speeds at different times of the day in the US and in India. Kreindler
(2022) measures traffic density using GPS records of trips collected via a smart-
phone app. Our approach is related but different: we combine optimal route
planning with an algorithm to aggregate points into areas that fall below a cer-
tain travel-time threshold.

A broad class of quantitative spatial models of commuting combines commut-
ing costs, mode choices, and the spatial distribution of workers and firms into
one “sufficient statistic measure of realized equilibrium commuting access”
(e.g., Monte et al., 2018; Tsivanidis, 2022). We show how to decompose this
“commuting access” measure into an easy-to-compute statistic on the efficiency
of the commuting system – independent of the commuting and residential choices
of workers.

The paper has the following structure. In section 2, we provide a theoretical
framework that motivates our accessibility measure and clarifies its interpreta-
tion. In section 3, we describe the construction of accessibility-zone areas in the
data and present descriptive statistics of driving versus public transit in the US
versus Europe. Section 4 discusses the relationship between accessibility-zone
areas and land use, health, and environmental outcomes.

2. THEORY

In this section, we motivate our accessibility-zone measure using a version of
the canonical theoretical framework of commuting developed in Ahlfeldt et al.
(2015), Monte et al. (2018), and Redding and Rossi-Hansberg (2017).

2.1 A Quantitative Model of Commuting

Setup. We consider a closed city economy inhabited by a mass L̄ of agents.
The city consists of i = 1, ..., N neighborhoods. Neighborhoods differ in their
residential amenities, Bi, labor productivity, Zi, and mode-specific commuting
times to other locations. Each agent chooses a residential location, a work loca-
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tion, and a commuting mode between the two.

Labor Demand. In each neighborhood, a representative firm produces the ho-
mogeneous final good using a labor-only technology, Yi = ZiHi, where Hi is the
total units of labor used in location i. Input and output markets are competi-
tive; trade is free. As a result, the final good’s price is constant across locations;
we choose it as the numeraire. The wage per unit of labor in neighborhood i is
then wi = Zi.

Labor Supply. Workers spend their entire income on the final good, enjoy
amenities in their residential location, and earn income in their work location.
Agents can supply a maximum of 1 unit of labor time in their workplace. Com-
muting between locations i and j via mode m costs a fraction τm

ij ∈ (0, 1) of that
time. The utility of a worker ω who lives in location i, works in location j, and
commutes using mode m transportation is given by:

Vm
ij (ω) = wj(1− τm

ij )Biη
ω
ijm,

where ηω
ijm is a worker-specific preference shifter.

Aggregation. To facilitate aggregation, we assume agents draw their prefer-
ence shifters for each location independently from identical Fréchet distribu-
tions, F(η) = exp{−η−κ}, where κ > 0 indexes the heterogeneity of tastes for
a given workplace-residence-mode combination among agents. With this stan-
dard assumption, we can write the fraction of agents that live in location i and
work in j and commute via mode m by φm

ij , so that

φm
ij =

(Bi(1− τm
ij )Zj)

κ

∑i,j,m(Bi(1− τm
ij )Zj)κ

.(1)

We can then solve for the number of workers living in neighborhood i, Li, and
the units of labor supplied to work in location j, Hj:

Li = ∑
j,m

φm
ij L̄ and Hj = ∑

i,m
(1− τm

ij )φ
m
ij L̄.

2.2 Commuting to Central Business Districts

We define the city’s CBD as the location with the highest productivity. We index
the CBD location with j∗ = arg max{Zj}. Equilibrium labor supply to the CBD
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can be written as follows:

Hj∗ = L̄ ∑
m

∑
i

φm
ij∗(1− τm

ij∗) = L̄ ∑
m

Θm
j∗ = L̄Θj∗(2)

where the term Θj∗ ∈ (0, 1) measures the fraction of labor supply employed
in the CBD in equilibrium, and Θm

j∗ ∈ (0, 1) is the fraction of labor supplied to
the CBD via mode m. We refer to Θj∗ ∈ (0, 1) as the commuting efficiency of
the city, and to Θm

j∗ as the contribution of mode m to overall commuting effi-
ciency. The term Θj∗ also has an intuitive interpretation as the fraction of po-
tential labor supply that is allocated to the most productive location, the CBD,
in equilibrium; as a result, we also refer to it as CBD labor supply.

Average income per capita in the city is W̄ = Θj∗Zj∗ + (1− Θj∗)Z̄j 6=j∗ , where
Z̄j 6=j∗ is a weighted average of the productivity in non-CBD locations. When-
ever all agents work in the CBD (∑i,m φm

ij∗ = 1) and commuting into the CBD is
costless (τm

ij∗ = 0∀ i, m), labor supply to the CBD achieves its full potential, that
is, Θj∗ = 1 so that Hj∗ = L̄, and average income per capita is maximized at Zj∗ .

In our theory, indidvidual-specific preferences for workplace-residence-mode
combinations imply that even if commuting is costless, some workers choose to
work in less productive locations than the CBD so that Θj∗ < 1. When personal
preferences vanish (κ → ∞), all agents work where the wage net of commuting
costs and amenities is highest. In this limit case, Θj∗ is a strictly declining func-
tion of commuting costs into the CBD from any origin; welfare is maximized
when these costs are zero so that Θj∗ = 1. The economy without personal route
preferences provides a natural theoretical benchmark.

2.3 A New Measure of CBD Accessibility

Equations 1 and 2 highlight that equilibrium labor supply into the CBD de-
pends on commuting infrastructure (τm

ij ), commuting mode choices, and the
residential locations of workers. In reality, transportation infrastructure im-
provements require very different policy approaches from attempts to alter
mode choices or the residential location decisions of workers. As a result, we fo-
cus on transportation infrastructure and propose an empirically tractable mea-
sure of the effectiveness of a transportation system independent of workers’
choices of residential locations and modes.

To move toward such a measure, we group neighborhoods based on the time
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required to reach the CBD from them, separately for each mode. In particular,
we create sets of locations, It,t+∆, for which the commuting time lies between t
and t + ∆ units of time: It,t+∆ ≡ {i : τij∗ ∈ {t, t + ∆}}. We refer to the collection
of locations Im

t,t+∆ as (t, t + ∆)-minute mode-m accessibility zones. We aggre-
gate our expression for commuting efficiency to the level of (t, t + ∆) mode-m
accessibility zones as follows:

Hj∗ = L̄ ∑
m,t

φm
tj∗(1− τ̄m

t,t+∆) s.t. φm
t,t+∆ = ∑

i∈It,t+∆

φm
ij∗ ; τ̄m

t,t+∆ = ∑
i∈It,t+∆

φm
ij∗

φm
t,t+∆

τm
ij∗

Our measures of CBD accessibility are the total areas of all locations in the (t, t+
∆) mode-m accessibility zone, which we denote Am

t,t+∆. Accessibility zones are
an intuitive measure of the transportation system’s contribution to commuting
efficiency. To illustrate, we decompose our measure of commuting efficiency,
Θj∗ , defined in equation 2 as follows:

Θj∗ = ∑
m,t
Am

t,t+∆
φm

t,t+∆

Am
t,t+∆

(1− τ̄m
t,t+∆) = ∑

m
∑

t
Am

t,t+∆ωm
t,t+∆(1− τ̄m

t,t+∆)︸ ︷︷ ︸
Θm

j∗

,(3)

where t indexes the accessibility zones. The term ωm
t,t+∆ is the population den-

sity of agents within the accessibility zone that use mode m to commute to the
CBD.1 Note accessibility zones are additive, for example,Am

0,30 = Am
0,15 +Am

15,30.

Figure 1 shows an example of a city composed of neighborhoods grouped into
different accessibility zones for a single mode. The black-lined polygons are
neighborhoods which we indexed by i in our model, each associated with an
average commuting time of τij∗ to the CBD. The central neighborhood is the
CBD, which is the highest-productivity work location. The green shading in-
dicates which neighborhood belongs to which accessibility zone given its com-
muting time to the CBD.

We opt for the decomposition in equation 3 for several reasons. First, accessibility-
zone areas, Am

t,t+∆, provide an objective measure of the efficiency of the city’s
commuting system independent of workers’ decision regarding where to live
and which mode to use - which are instead captured by ωm

t,t+∆.2 Second, Am
t,t+∆

1Note a location may be in accessibility zone t for mode m commutes but in accessibility
zone t′ for mode m′ commutes, because m′ is slower or faster than m.

2In other words, Am
t,t+∆ is invariant to changes in agents’ choices of modes or residence
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FIGURE 1: AN EXAMPLE CITY WITH ACCESSIBILITY ZONES

Individual
Neighborhood i

A45,60

A30,45

A15,30

A0,15

CBD

Notes: The figure shows an example city. Each black-lined polygon corresponds to a neighbor-
hood i. The central white neighborhood is the most productive, and is hence referred to as CBD.
A neighborhood’s shade of green indicates its associated accessibility zone. Accessibility zones
are defined as the set of neighborhoods for which commuting times to the CBD are between t
and t + ∆ minutes.

can be computed using publicly available software for almost all cities in the
world. Third, the decomposition in equation 3 maps neatly into the different
development strategies that policymakers can pursue to improve the CBD’s to-
tal commuting access: (1) Improve transportation infrastructure to move work-
ers from high-time-distance to low-time-distance accessibility zones; (2) im-
prove transportation infrastructure to lower the average transportation cost
within a given accessibility zone, τ̄m

tj∗ ; (3) build housing in low-time-distance
accessibility zones (ωm

0,15); or (4) incentivize substitution toward modes with
larger accessibility zones (also represented in ωm

t,t+∆).

Our paper focuses on measuring and describingAm
t,t+∆ for actual cities to gener-

ate insights that can inform critical transportation-policy questions. Have some
US cities been more successful than others at creating large accessibility zones
for their workers? How do accessibility zones compare across different modes
of transport? Are US cities systematically worse at creating large accessibility
zones than cities elsewhere? What can we learn from the cross-section of US
cities about the societal implications of enlarging the accessibility zones for cars
versus for public transit?

The size of accessibility zones for a given city depends not only on the qual-
ity of the physical infrastructure (e.g., streets and rail tracks) but also on the
utilization of these routes (e.g., through congestion) and the frequency and in-

locations; it is only a function of τm
ij∗ ∀i.
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teroperability of different transit options. In the next section, we describe how
we overcome these measurement challenges and present the accessibility-zone
areas for a large sample of cities.

3. ACCESSIBILITY-ZONE AREAS IN THE DATA

This section describes our process for constructing accessibility zones for 109
large cities in the US and Europe. Tables C.3 and C.4 in the Appendix provide
the complete list of cities. We use the accessibility-zone areas to derive a set of
new facts about the efficiency of commuting systems in the US and Europe.

3.1 From Theory to Measurement

The vast majority of commutes in the cities in our sample occur via either public
transit or car and take less than 60 minutes.3 Accordingly, we focus our mea-
surement on car (m = C) or public transit (m = P) commutes that take less than
60 minutes. We split the 60 minutes into four 15-minute intervals, so that the
empirical exercise implements t = 0, 15, 30, 45, 60, and ∆ = 15 in equation 3. As
a result, the empirical counterpart (Θ̃j∗) to the commuting-efficiency measure
(Θj∗) in equation 3 can be written

Θ̃j∗ = ∑
t∈{0,15,30,45}

AC
t,t+15ωC

t,t+15(1− τ̄C
t,t+15) +AP

t,t+15ωP
t,t+15(1− τ̄P

t,t+15),(4)

where Θj∗ = Θ̃j∗ + ξ and ξ captures CBD labor supply provided by modes
other than cars and public transit, labor supply provided by commutes beyond
60 minutes via any mode, and measurement error.

3.2 Constructing Accessibility Zones

Our model defines the CBD as the location with the highest labor productivity.
Data on location-specific productivity are generally not available for cities in
the US or around the world. Statistical agencies also generally do not provide
a ready-to-use definition of the location of a city’s CBD. We follow existing pa-
pers and define the center of the CBD as the latitude and longitude coordinates

3Across all the US cities in our sample, 96% of commuters into the CBD use car or public
transit; of those, only 12% have commutes above 60 minutes.
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generated by feeding the city’s name into Google’s Geocoding Application Pro-
gramming Interface (API) (see Holian and Kahn, 2012; Couture and Handbury,
2020; Couture et al., 2021).4 We refer to the area that falls within a one-kilometer
radius around these coordinates as the CBD. The median US CBD in our sam-
ple accounts for 28% of all employment within a 20 kilometer radius around
the CBD. Seventy-seven percent of CBDs defined in this way include one of the
top-three highest average income ZIP codes in the respective city.

The ubiquity of modern travel-routing software makes computing accessibility
zones feasible for most major cities worldwide. Setting the destination to any
point within the CBD, software such as Google Maps allows users to quickly
find the fastest mode-specific route from any origin at any point in the day.
An essential feature of such software for public transit is that it uses the actual
schedules of all buses, trains, subways, and trams in making route-time predic-
tions. For cars, it takes into account the actual traffic situation.

We first describe how one would use Google maps to construct accessibility
zones, given most readers’ familiarity with the tool. First, divide the city into
parcels of land. The smaller the parcels, the more accurate the geographic delin-
eations of each zone. Use Google Maps to compute the travel time between the
centroid of each parcel and the closest point in the CBD, separately for car and
public transit commutes. Then group parcels into accessibility zones, Im

t,t+∆,
depending on the commute time to the CBD, within 0-15, 15-30, 30-45, or 45-60
minutes, separately for the two modes. Summing the area of all parcels within
each time zone (e.g., 0-15) yields the total accessibility-zone area, Am

t,t+∆, de-
fined in equation 4.5

In practice, we use the interface of a software company called ”Traveltime,
Inc,” which automates the process described above.6 Traveltime’s calculations
use publicly-available schedule data for public transit. All major cities’ tran-
sit networks have public APIs that provide real-time information about arrival
and departure times at any given hour of the day. The Traveltime algorithm

4Holian and Kahn (2012) report that ”although this method of identifying CBDs places con-
siderable trust in Google’s potentially ad-hoc definitions of central places, we found them to be
quite reasonable in all cases.”

5Each parcel belongs to only one (mutually exclusive) accessibility zone within a mode.
However, a parcel could be in the 30-minute zone for car commutes and the 15-minute zone
for public transit commutes. Accessibility zones are not necessarily contiguous. For example,
workers who live near subway stations can often reach the CBD faster than from other areas
closer to the CBD in terms of their straight-line distance.

6See https://app.traveltime.com/ for the web app to use this data product. The app
works for any country for which online mapping services are available.
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FIGURE 2: ACCESSIBILITY ZONE AREAS

(A) PUBLIC TRANSIT (B) DRIVING

Notes: The figure shows the area reachable from a city’s CBD within 0-15, 15-30, 30-45, and 45-
60 minutes (”accessibility zones”) for four US and four European cities, with comparably sized
cities placed next to each other. The left panel shows the accessibility zones for public transit
commutes (green), and the right panel shows the accessibility zones for car-based commutes
(orange) that arrive in the CBD at 8:45 AM on a Wednesday. The (0,15)-minute accessibility-
zone area has the darkest, and the (45,60)-minute accessibility-zone area has the lightest hue.
All accessibility zones appear on the same scale.

accounts for waiting times, walking time to and from transit, and time spent
traversing stations, using historic walking-speed data accounting for intersec-
tions and traffic signals. The algorithm also uses ”OpenStreetMap,” an open-
source API that provides data on the complete road infrastructure and street-
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specific speed profiles for most countries. Our calculations account for traffic
congestion patterns using Traveltime’s algorithm and data, traffic lights, and
the time required to park the car at the destination.

We use the Traveltime API to obtain the area from which the CBD of a given city
can be reached within 15, 30, 45, and 60 minutes on Wednesday at 8 AM, sep-
arately for public transit users and drivers. We then subtract the (0,15)-minute
area from the (0,30)-minute area to obtain the (15,30) accessibility-zone area and
so on, to create the Am

t,t+∆ for all cities in our sample. An advantage of using
Traveltime over Google Maps is that the former creates ”smooth zones”; that is,
creating a grid of locations and computing centroids.

We explore the robustness of the resulting accessibility zones to alternative con-
struction procedures. First, we re-do our exercise using a different software
provider, https://www.targomo.com/, which provides the same service. Sec-
ond, instead of relying on the proprietary software of a company, we construct
accessibility zones using the GoogleMaps API and Python.7 Table A.1 in the
Appendix shows the high correlation between the areas of accessibility zones
constructed using the different approaches.

3.3 Comparing Accessibility across Modes and Countries

Figure 2 shows accessibility zones {Am
t,t+∆}

m=C,T
t=0,15,30,45 for a sample of cities. Pub-

lic transit zones are shown in green in the two columns on the left, and car zones
in orange on the right. Darker hues indicate shorter travel times. Comparable
population-sized US and European cities are next to each other in the same row.

Figure 2 highlights four important patterns that generalize to the full sample of
cities. First, US cities’ car accessibility zones are generally larger than those of
European cities with comparable population sizes. Second, the opposite is true
for public transit zones. The European advantage in public transit is especially
pronounced for short-distance commutes. Third, car accessibility zones in US
cities are much larger than their corresponding public transit zones – but not
necessarily in Europe, especially for longer commuting distances. Fourth, a

7We use GoogleMaps API to obtain mode-specific travel times between any two points to
perform a grid search over a given number of rays radiating outward from the destination. One
starts at some given distance and then moves inward or outward along each ray until reaching
the given time threshold, say, 60 minutes. The envelope of the final 60-minute points along
each ray delineates one of our accessibility zones. This approach misses spatial discontinuities
in access that are important for public transit, captured by the Traveltime algorithm.
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TABLE 1: AVERAGE ACCESSIBILITY-ZONE AREAS BY REGION AND MODE
IN SQUARE KILOMETERS

Car Public Transit Car/Public Transit

Min. US Europe Ratio US Europe Ratio US Europe Ratio

0-15 213.17 40.67 5.24 4.01 6.83 0.59 62.19 7.88 7.89*
15-30 1159.94 428.23 2.71* 33.74 62.83 0.54*** 47.49 8.77 5.41*
30-45 2292.72 1408.76 1.63*** 102.68 170.07 0.60*** 27.07 10.16 2.66
45-60 4302.56 3173.93 1.36*** 167.06 287.44 0.58*** 36.16 13.34 2.71**

Notes: This figure shows average accessibility-zone areas for various time intervals and modes
in the US and Europe. The third column in the ”Car” and ”Public Transit” panels shows the
ratio of the preceding two numbers in the respective row. The ”Car/Public Transit” panel
shows the ratio of the car relative to public transit accessibility-zone areas (”car orientation”)
for each time interval and region. The last panel’s third column shows the ratio of US cities’ car
orientation relative to European cities’ car orientation. We conducted Wald tests in all columns
with a ”Ratio” header for the null hypothesis that the ratio equals 1. The number of stars
indicates the p-value with the following interpretation: *** p<0.01, ** p<0.05, * p<0.1.

comparison across all four columns in a row shows car accessibility zones in
the US are the largest overall. The infrastructure supporting car travel in US
cities affords the greatest “overall accessibility.”

Insights from the Full Sample. Table 1 shows the insights from Figure 2 gen-
eralize to the full sample of cities. The table shows the average accessibility-
zone areas in square kilometers, separately by mode, region, and time distance.
The “Car” panel on the left shows that, depending on the time distance, car
accessibility zones are 1.4-5.2 times larger in the US than in Europe. The US car
advantage is most pronounced for short commutes between 15 and 30 minutes,
perhaps reflecting the difficulty of navigating the dense cores of old European
cities by car. The “Public Transit” panel in the middle shows transit zones in
US cities are only approximately 0.6 times the size of those of European cities,
regardless of the commuting distance.

Table 1 also shows car travel offers larger overall accessibility across all time dis-
tances in both Europe and the US; that is AC

t,t+15 > AP
t,t+15 ∀t ∈ {0, 15, 30, 45}.

A corollary of this finding is that US cities enjoy greater accessibility overall
because they have a comparative advantage in car-based commutes.

Figure 2 highlights one reason why public transit systems provide less access
to CBDs than cars. Especially at longer distances from the CBD, public transit
provides ”patchy” access. Only people who live very close to the sparse net-
work of transit stops in outlying parts of cities can quickly access the CBD. By
contrast, car-based access is spatially more continuous. Note our accessibility
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zones focus on physical areas, not population. Housing and population may
endogenously respond by densifying near transit stations (which is captured
in ω in equations 3 and 4). Our accessibility measure tracks the physical space
available to accommodate such responses.

Variation Across Cities. The two panels in the top row of Figure 3 show the
relationship between accessibility and city size. We graph the areas of the (0,60)-
minute car accessibility zones, AC

0,60, and the (0,60)-minute public transit acces-
sibility zones, AP

0,60, against city size, separately for the US and Europe. In the
US, the size of car accessibility zones does not vary with city population. By
contrast, car accessibility zones are smaller in larger European cities, perhaps
because those larger cities are older, and their historical urban cores are dense,
congestion-prone, and difficult for cars to navigate.

Public transit accessibility zone areas are increasing in city size on both conti-
nents, reflecting the economies of scale inherent in mass public transit, which
has high fixed setup costs and low marginal costs for cities. A more exten-
sive ridership base permits investments in larger transit systems, higher station
density, and train frequency.

The other four panels show the distribution of {AC
0,15,AP

0,15,AC
45,60,AP

45,60} across
our samples of US and European cities. US and European cities are most dis-
similar when focusing on (0,15)-minute accessibility zones. Most European
cities have very small AC

0,15, and little heterogeneity exists. US cities differ
widely in their (0,15) car accessibility areas, and almost all US cities have larger
zones than European cities. Conversely, most European cities outperform every
US city in terms of (0,15)-minute public transit accessibility. Several European
cities have substantially larger zones than even the most public transit-oriented
US city, New York City, which is the single US outlier in the AP

0,15 panel.

European and US cities are more similar in terms of their (45,60)-minute acces-
sibility zones, but US comparative advantage remains in cars, and Europe’s in
public transit. These patterns of comparative advantage are the result of off-
setting factors that only come into play at farther distances from the CBD. The
“patchiness” of public transit access makes covering large areas far away from
the CBD difficult, and European rail-based transit becomes less efficient as we
move to the outskirts of cities. At the same time, bus-based transit in the US,
which leverages existing road infrastructure, helps make long-distance transit
more comparable to that of European cities. Conversely, the relative disadvan-
tage of cars in the dense urban cores of European cities becomes less of an issue
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in city outskirts.

FIGURE 3: ACCESSIBILITY ZONES ACROSS CITIES

(A) AC
0,60 (B) AP

0,60

(C) AC
0,15 (D) AP

0,15

(E) AC
45,60 (F) AP

45,60

Notes: Panel (A) shows a scatter plot of a metro area’s population size against its (0,60)-minute
accessibility-zone area for cars, separately for the US (red) and Europe (blue); it also shows
linear fit lines and 95% confidence intervals for the Europe fit line. Panel (B) shows the replicates
Panel (A) but instead shows (0,60)-minute public transit accessibility-zone areas. Panels (C)-(D)
show histograms of the (0,15)-minute accessibility-zone areas for all cities in our samples for
cars (left) and public transit (right), separately for the US and Europe. Panel (E)-(F) replicates
Panels (C)-(D) show but for the (45,60)-minute accessibility-zone areas. All accessibility-zone
areas in the figure are for commutes that arrive in the CBD at 8.45 am on a Wednesday.
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TABLE 2: DRIVING VERSUS PUBLIC TRANSIT ACCESSIBILITY-ZONE AREAS

US Europe Pooled

Correlation Value Std. Error Value Std. Error Value Std. Error

(AC
0,15,AP

0,15) -0.0412 0.273 -0.326 0.236 -0.219 0.181
(AC

15,30,AP
15,30) 0.0659 0.124 -0.164 0.213 0.0104 0.124

(AC
30,45,AP

30,45) 0.464*** 0.124 0.196 0.121 0.350*** 0.109
(AC

45,60,AP
45,60) 0.282 0.205 0.456*** 0.0944 0.408*** 0.0900

Notes: The table reports the coefficients from a regression of the log of the (t, t+∆)-minute driv-
ing accessibility-zone area on the log of the (t, t + ∆)-minute public transit accessibility-zone
area, run separately for t = 0, 15, 30, 45, ∆ = 15, and various samples. The ”US” panel reports
these coefficient estimates for a regression run with 52 US cities; the ”Europe” panel reports the
same coefficients for regressions run in our European sample of cities. The ”Pooled” panel re-
ports coefficients from running the regression in the pooled Europe and US samples controlling
for a Europe fixed effect. All regressions control for log metro population from OECD data and
include a constant. Robust standard errors in parentheses: *** p<0.01, ** p<0.05, * p<0.1.

3.4 Are Driving and Transit Infrastructure Substitutes?

Do the evident US specialization in cars and European specialization in pub-
lic transit imply car- and transit-based development strategies are substitutes?
Table 2 shows how the sizes of the driving and transit accessibility-zone areas
co-vary in the cross-section of cities, within regions, and in the pooled sample.
The table presents conditional correlations between accessibility-zone areas for
cars and transit, controlling for the population size of a city and a Europe fixed
effect in the pooled specification.

Table 2 suggests a trade-off may exist between transit orientation and car orien-
tation at short time distances close to city centers (AC

0,15 andAP
0,15). On average,

cities with larger (0,15)-minute car accessibility zones have smaller public tran-
sit zones. In and around the city centers, transit and car infrastructure act like
substitutes.

At longer distances, the sizes of car and transit accessibility zones correlate pos-
itively. This complementarity is probably due to the widespread use of public
buses as public transit, especially in US cities. Better road infrastructure for cars
also aids bus-based mobility.

Accessibility, Infrastructure, and Mode Choices. Appendix B explores how
the accessibility-zone areas correlate with direct measures of road and public
transit infrastructure and commuter mode choices.
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The variable “miles of rail lines” is significantly positively correlated withAP
0,60

in both Europe and the US, but not with AC
0,60, as expected (Table B.1). Con-

versely, the length of the road network is more positively correlated with AC
0,60

than AP
0,60. Accessibility-zone areas are therefore likely to respond to commut-

ing infrastructure investments.

Table B.2 shows commuter mode choices are correlated with the size of the ac-
cessibility area for that mode in the cross-section of cities. Car accessibility-zone
areas are associated with increases in the share of commuters who drive and de-
creases in the share walking or biking to work. Transit accessibility zones AP

0,60

are associated with a reduction in the share of commuters driving and increases
in both public transit users and walkers/bikers. Commuters will likely react to
any future changes in the accessibility zones through their mode choices, which
highlights the appropriate use (and limits) of our measures for policy analysis.

3.5 Partial-Equilibrium Effects of Increasing Accessibility

US cities lag behind their European counterparts in public transit accessibility.
Equation 3 highlights two strategies US policymakers could pursue to address
the low accessibility via public transit: change the size of accessibility zones
or change the population density within existing zones. These two categories
of changes correspond to distinct policy actions. Investments in the quality of
public transit would increase public transit accessibility areas AP

t,t+∆, whereas
investments in roads would increase car accessibility areas AC

t,t+∆. Investments
in housing and the relaxing of zoning restrictions are likely to increase the den-
sity of commuters within accessibility zones, ωm

t,t+∆.

We use our model to conduct partial-equilibrium counterfactuals to study the
effects of such policies on overall commuting efficiency, Θ̂j? . We consider two
policy interventions, first increasing the size of a particular accessibility zones
by 10%, second increasing the population density within a given accessibility
zone by 10%. Our outcome of interest is the overall CBD labor supply. We
denote variables before the intervention as x and variables after the interven-
tion as x′. We also define x̂ = x′/x, the factor of change in a given variable
before and after the intervention. We can use equation 4 to express changes in
commuting efficiency as a function of changes in accessibility and population
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density as follows:

Θ̂j∗ = ∑
t,m
Âm

t,t+∆ω̂m
t,t+∆ψm

t,t+∆ s.t. ψm
t,t+∆ =

Am
t,t+∆ωm

t,t+∆(1− τ̄m
t,t+∆)

Θj∗
,(5)

where ψm
t,t+∆ is the initial contribution of mode m commutes from accessibility

zone (t, t + ∆) to overall CBD labor supply.

To conduct our counterfactuals, we then have to construct the accessibility-zone
weights, ψm

t,t+∆. Although we already discussed how to construct the accessibil-
ity zones, the population-density terms, ωm

t,t+∆, require extra work. We use data
from the Longitudinal Employer-Household Dynamics (LEHD) program of the
US Census to compute the number of residents in each accessibility zone that
commute into the CBD using a particular mode. We divide these headcounts by
the corresponding accessibility-zone area to obtain ωm

t,t+∆ for all US cities in our
sample.8 Table C.5 in the Appendix presents the overall commuting efficiency,
Θj∗ , as well as the mode-specific commuting efficiencies, ΘP

j∗ and ΘC
j∗ , for all US

cities in our sample.

Our first counterfactual is an increase in the accessibility-zone areas. We set
ÂC

0,15 = ÂP
0,15 = 1.1 in equation 5. When increasing the accessibility-zone area,

we recompute the population density in that zone. For example, an extension of
AC

0,15 necessarily incorporates territory previously in AC
15,30, so we adjust ωC

0,15

to be an area-weighted average of the prior densities in AC
0,15 and AC

15,30. As a
result, ω̂C

0,15 6= 0 in our accessibility-zone enlargement counterfactuals.

Our second counterfactual increases the population density within various accessibility-
zone areas. We set ω̂P

t,t+∆ = 1.1 in equation 5 while holding fixed the size of
accessibility zones so that Âm

t,t+∆ = 1 ∀m, t and the density in all other accessi-
bility zones. The underlying assumption is that areas closer to the center draw
additional workers from outside of the (0, 60)-minute accessibility zone, that
is, workers previously captured by the ξ residual, so that population density in
other areas within the (0, 60)-minute zone are unaffected. If densification of the
(0,15)-minute accessibility zone occurs instead by pulling in people from, for
example, the (45,60)-minute zone, such reallocation would reduce the positive
impact of densification on increasing CBD labor supply, Θ̂j∗ .

Table C.6 in the Appendix shows the increase in commuting efficiency from
both policies for every city in our sample. Table 3 summarizes the effects within

8Unfortunately, LEHD-type commuting data are unavailable for European cities.
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TABLE 3: COUNTERFACTUAL POLICIES TO ENHANCE COMMUTING
EFFICIENCY

100×(Θ̂j∗ − 1)

Âm
t,t+∆ = 1.1, ω̂m

t,t+∆ < 1 ω̂m
t,t+∆ = 1.1

m C,P P C,P P C,P C,P C,P C,P
(t, t + ∆) (0,15) (0,15) (30,45) (30,45) (0,15) (15,30) (30,45) (45,60)

Largest Cities .023 .004 .025 .015 1.776 4.361 2.607 1.257
↓ .022 .001 .020 .00 1.739 4.755 2.554 .952

to Smallest .028 .001 .013 .004 2.209 5.079 2.057 .656
↓ .031 .000 .014 .003 2.681 4.749 1.849 .721

Cities .030 .001 .011 .002 3.557 4.28 1.575 .588

Average .027 .001 .017 .006 2.411 4.646 2.116 .826

Notes: This table shows the average effect increase in the commuting access term across cities,
Θ, resulting from a 10% increase in commuter density, ωm

t,t+∆, or accessibility-zone area, Am
t,t+∆

from their baseline, separately for five city-size quintiles. Quintile 1 contains the 20% of cities
in our sample that are the largest in terms of OECD metro-area population numbers, Quintile
2 contains the 20% largest cities in the remaining sample, and so forth. Columns 6-9 show the
percentage increase in commuting efficiency (Θ) that results from increasing the population
density in the (0,15)-, (15,30)-, (30,45)-, and (45,60)-minute accessibility zones by 10% relative to
their baseline value in the data for all modes of transport. Columns 2-5 show the percentage
increase in commuting efficiency (Θ) that results from increasing the (0,15)- and (30,45)-minute
accessibility-zone areas by 10% relative to their baseline value in the data. Columns 2 and 4
show the results from increasing the areas for both modes, Columns 3 and 5 from just increasing
the public transit area.

quintiles of cities ordered by size. Quintile 1 contains the largest cities, for ex-
ample, New York City; Quintile 2, the next group, for example, Phoenix, and so
on. These exercises generate several insights.

First, any housing- and zoning-policy changes that densify cities (i.e., increase
ωP

t,t+∆ by 10%) would increase commuting efficiency Θ̂j∗ by considerably more
than increasingAP

t,t+∆ by 10% and adjusting ωP
t,t+∆ accordingly. The relative ef-

fectiveness of such policies was not necessarily apparent ex ante, but the math-
ematical intuition is clear. Expanding infrastructure to enlarge AP

t,t+∆ expands
the boundary of a given accessibility zone radially – away from the CBD into
less dense areas – which produces smaller marginal gains, because fewer com-
muters are out there, so that the associated density decreases ω̂m

t,t+∆ < 0. Fur-
thermore, workers who switch from AP

15,30 to AP
0,15 only experience marginal

time savings, because they were already living relatively close to the CBD. This
prediction might change in a general equilibrium if workers from the city out-
skirts move into the enlarged accessibility zone in response to the improved
transit conditions so that ω̂m

t,t+∆ > 0. Such relocation forces would enhance
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the total benefits of increasing AP
t,t+∆. However, even then, those additional

general-equilibrium benefits are only realized if the city makes complementary
investments in housing in the areas better served by transit to allow those new
workers to take advantage by relocating to areas that allow for shorter com-
mutes.

Second, increasing car accessibility zones (AC
t,t+∆) in US cities is more effective

in increasing aggregate commuting efficiency Θj∗ than increasing transit acces-
sibility areas (AP

t,t+∆). The reason is that car users dominate most US cities. In
terms of equation 5, ψC

t,t+∆ > ψP
t,t+∆∀t in almost all cities and almost all time

distances. As a result, changes in public transit accessibility areas have lower
weights, ψm

t,t+∆, attached to them and lead to only a minor increase in CBD ac-
cessibility. If pre-existing mode preferences are immutable, the straightforward
implication is that US cities should focus on improving road infrastructure to
maximize city productivity. However, this insight may again be attenuated in a
general equilibrium if workers’ mode choices respond endogenously to infras-
tructure improvements.

Third, the effect of raising public transit accessibility is larger in big cities than
in small cities because significant differences exist in public transit ridership
across those two groups. In terms of equation 5, the weights ψP

t,t+∆∀t are larger
in bigger cities than in smaller ones, because in big cities, public transit com-
muting accounts for a larger fraction of commutes into the CBD.

Fourth, the effects of densification differ widely across accessibility-zone areas.
Densifying the (15,30)-minute accessibility zone (ωm

15,30) produces the largest
gains in Θj∗ . Increasing the (0,15)-minute accessibility zone is less effective due
to its small size, which means it contributes few workers to the CBD, that is,
ψm

15,30 > ψm
0,15. Increasing density in the (45,60)-minute zone is less effective be-

cause fewer residents commute into the CBD from there, that is, ψm
15,30 > ψm

45,60.
This result may again get attenuated in general equilibrium if removing zoning
restrictions to build vertically in the areas surrounding a CBD in response to
citizen and firm demand becomes easier. In other words, the political economy
is also not immutable in a general equilibrium.

Fifth, the effects of densification differ widely across cities of different sizes.
Densifying the (45,60)-minute zone is more effective in large cities such as New
York than in smaller cities such as Raleigh, because they contributed more to
total CBD labor supply (ψm

45,60 is much larger in New York than Raleigh). This
finding reflects that large cities attract workers from far away, whereas CBDs
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of small cities mainly serve workers living close by. Conversely, densifying the
(0,15)-minute zone is more effective for smaller towns than larger cities.

4. THE EXTERNALITY COST OF AMERICAN CITIES’

CAR ORIENTATION

The question of whether to prioritize car or public transit infrastructure invest-
ments to increase CBD accessibility also has to consider that these approaches
are likely associated with very different externalities on the environment and
public health. The transportation-policy literature has highlighted several dif-
ferent categories of externalities commonly associated with commuting systems
(see Appendix Figure C.1 in Khreis et al., 2017), including congestion, land use,
health, and pollution. We use these categories to organize our discussion of the
externalities associated with car versus public transit accessibility.

4.1 Congestion Externalities

Our theoretical framework did not explicitly model the dependence of com-
muting costs on the number of commuters using a given mode-route combina-
tion. In reality, commuting costs are often affected by the number of commuters
using a particular route-mode combination. In terms of our model, this finding
suggests τm

i,j = τ̃m
i,j(L̄φm

i,j)
ξm

, where ξm > 0 indicates usage slows down travel.
When commuting costs are a function of the intensity of use, the size of an
accessibility zone depends on the time of the day.

We use our accessibility measure to construct a straightforward test for the di-
rection of such usage externalities. We re-compute our (0,60)-minute accessibil-
ity zones for each mode (Am

0,60) for commutes to the CBD that arrive on Sunday
at 11 PM (”Off-peak Hours”). At that time, traffic on routes into the CBD, φm

i,j? ,
should be much lower than on Wednesday at 8:45 AM (”Peak Hours”) when
we computed the accessibility zone areas thus far in the paper. The change in
Am

0,60 between peak and off-peak hours gives us a sense of the direction and size
of congestion on each mode.

The left panel of Figure 4 graphs peak-hour car accessibility-zone areas against
off-peak areas. Each point represents a city in our sample. All points fall be-
low the 45-degree line, which implies the size of the 60-minute area reachable
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FIGURE 4: HOW ACCESSIBILITY-ZONE AREAS CHANGE WITH USAGE

(A) Driving, AC
0,60 (B) Public Transit, AP

0,60

Notes: This figure shows a scatter plot of cities’ accessibility-zone areas during peak (Wednes-
day 8 AM) and off-peak (Sunday 11 PM) hours. The left panel is for car-based commutes, and
the right is for public-transit-based commutes. Both panels also include a 45-degree line for
reference.

from the CBD within 60 minutes expands during off-peak hours (i.e., a nega-
tive congestion externality, ξC > 0). About 27% of the land area that falls within
60 minutes of the CBD during off-peak hours is no longer accessible within 60
minutes during rush hour in the average city.

The right panel of Figure 4 conducts the same exercise for public transit accessi-
bility zones with opposite results: on average, public transit accessibility is 56%
larger during peak than off-peak hours (ξP < 0). These findings likely reflect
the economies of scale in public transit provision. Because of the shared nature
of travel, running buses and trains more frequently becomes profitable when
more people use the system simultaneously.

The different sign of the usage externalities of the car- versus transit-based com-
muting systems complicates the policy advice on improving a city’s commuting
access Θ̂j∗ . Building more roads could slow car commutes if it induced mode-
switching and increased congestion. On the other hand, building better pub-
lic transit could improve the overall performance of the transit system via in-
creased train frequency and station density, generating additional commuting-
access gains via general-equilibrium forces.
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4.2 Correlations with Land Use, Health, and Pollution

Next, we report a set of conditional correlations by regressing land use, health,
and pollution outcomes on AC

0,60 and AP
0,60, controlling for other observable

determinants of those outcomes as suggested by the relevant literature. We
restrict our analysis to the US cities in our sample, due to a lack of consistent
data for European cities.

Methodology. Because the land use, health, and pollution outcomes are avail-
able at the county level, we employ a two-step procedure to make the most use
of the available county-level variation and maximize the statistical power of
our analysis. In the first step, we run county-level regressions of each outcome
(e.g., road density or PM2.5 pollution) on a set of control variables, such as a
county’s average socioeconomic, demographic, and geographic characteristics
and its manufacturing orientation. We aggregate the residuals of that regression
up to the city level in a second step and regress those residuals on our city-level
measures of AC

0,60 and AP
0,60, along with a control for city population size. Our

two-step procedure allows us to report the correlations that condition on the
more-disaggregated county-level determinants of each outcome variable.

Land Use. Supporting car- versus public transit-based commutes requires dif-
ferent types of physical infrastructure. Their relative importance in a city’s
transportation policy likely affects urban land-use decisions. We explore this
possibility in the top panel of Table 4.9 The second-step associations between
(the unexplained variation in) land-use outcomes andAC

0,60,AP
0,60 indicate cities

with larger car accessibility zones have significantly more space allocated to
streets and motorways per square kilometer of city land. Given car accessi-
bility, public transit accessibility and road density do not exhibit a significant
association. The correlation of the size of transit accessibility zones with bike-
lane density is positive, but not statistically significant.

Next, we see the road density that improves car accessibility takes land away
from other uses. A 10% increase in the car accessibility area (AC

0,60) is associated
with a 1.4-percentage-point decrease in the share of green space. Green space
only accounts for about 9% of the total land area of the average US city in our
sample, making this effect sizable. A 10% increase in the car accessibility area

9Controls in the first stage of our land-use regressions: the fraction of owner-occupied hous-
ing, log population density, log income per capita, the share of black and Hispanic residents,
mean democratic vote share, log mean temperature in January, the agricultural+mining share
of employment.
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TABLE 4: THE COSTS OF ACCESSIBILITY

Panel A: Land Use

Log Total km per km2 Green-space Walking

Motorway Streets Bike Lanes per km2 Index

logAP
0,60 0.0107 -0.117 0.682 -0.00566 0.568

(0.166) (0.0982) (0.748) (0.0345) (0.375)
logAC

0,60 0.440*** 0.291*** -0.0356 -0.139*** -0.864***
(0.114) (0.107) (0.462) (0.0424) (0.281)

R2 0.239 0.232 0.195 0.340 0.138

Panel B: Direct Health Externalities

Share Sh. Poor
Physically + Far from Share Deaths per 1000

Inactive Groceries Obese Traffic Obesity

logAP
0,60 -0.0195** -0.00473 -0.00940 -0.189 -0.111

(0.00763) (0.00684) (0.00626) (0.220) (0.219)
logAC

0,60 0.0118* 0.0269*** 0.0290*** 0.0356 0.424**
(0.00651) (0.00801) (0.00591) (0.130) (0.160)

R2 0.144 0.276 0.376 0.020 0.131

Panel C: Pollution Externalities

tC/km2/yr log Mean Aug. Temp

log CO2 log NOx log PM2.5 Noise p90/p10

logAP
0,60 0.0112 -0.146 -0.0636 0.00360 0.00441

(0.101) (0.135) (0.170) (0.00461) (0.0322)
logAC

0,60 0.334*** 0.384*** 0.331** 9.21e-05 -0.0510
(0.0702) (0.108) (0.124) (0.00309) (0.0312)

R2 0.311 0.230 0.127 0.021 0.040

Panel D: Indirect Health Externalities

Deaths per 1000 Premature log Life

Asthma COPD Total Deaths/100k Expectancy

logAP
0,60 0.0124 -0.205 5.672 0.0349 -0.00621

(0.0517) (0.674) (4.050) (0.0357) (0.00435)
logAC

0,60 0.123** 2.030*** 6.682* 0.0962** -0.0115**
(0.0568) (0.588) (3.776) (0.0389) (0.00449)

R2 0.188 0.232 0.195 0.277 0.324

Notes: All regressions control for city population in the second stage. Robust standard errors in
parentheses. *** p<0.01, ** p<0.05, * p<0.1. We add 1e-6 to the bike lanes to avoid zeros. All
regressions are run on our sample of the 52 largest US cities. We present a complete list of data
sources in Table C.1 in the Appendix; Table C.2 presents summary statistics including mean
and median for every outcome variable.
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is also associated with an 0.09-point decrease in the city’s 20-point “walkability
index.”10 By contrast, a 10% increase in the public transit accessibility area is
associated with an 0.6-point improvement in the city’s walkability index, but this
estimate is not statistically significant.

Health. Panel B of Table 4 examines some health outcomes commonly as-
sociated with car usage.11 A 10% increase in AC

0,60 is associated with a 0.12-
percentage-point increase in the share of the population that is physically in-
active. By contrast, a 10% increase in the public transit accessibility zone AP

0,60

has the opposite association: a 0.2-percentage-point decrease in the physically
inactive share. Likewise, a 10% increase in car accessibility is associated with a
0.27-percentage-point increase in the share of the population in the city that is
both poor and lacks easy access to groceries.12 In other words, car accessibility
is a positive predictor of “food deserts” (Allcott et al., 2019). Car accessibility is
also associated with a larger share of the population that is obese.

Next, we use administrative cause-of-death data from the US Center for Disease
Control and find a positive correlation between traffic deaths and AC

0,60, as well
as a large negative correlation between traffic deaths andAT

0,60, but these corre-
lations are not statistically significant. Obesity deaths, however, are statistically
larger when cities are designed for CBDs to be more car accessible.

Pollution. Panel C shows car accessibility displays a strong positive associa-
tion with air pollutants commonly associated with the burning of fossil fuels,
CO2, NOx, and PM2.5, with elasticities of 0.33-0.38; transit accessibility does
not.13 The public transit accessibility-zone area, AP

0,60, generally has a nega-
tive (but insignificant) coefficient in these pollution regressions. No correlation
exists between car accessibility and noise pollution emitted by transportation
sources or heat islands.

Mortality. Increased pollution, physical inactivity, obesity, and food deserts
may affect downstream health outcomes such as mortality and life expectancy.
Our regressions provide suggestive evidence of such effects. More car-accessible

10The EPA’s National Walkability Index is a composite score of Census block groups’ rela-
tive amenability to pedestrian trips on a 1-20 scale and accounts for street-intersection density,
proximity to transit stops, and land-use diversity.

11First-stage controls: the shares of black residents, Hispanic residents, residents above age
65, residents with heavy drinking habits, smokers, and log population density.

12”Poor” are residents with incomes below twice the poverty line. ”Lack of easy access”
refers to living more than one mile from the nearest grocery store.

13First-stage controls are log income per capita, log population density, the urban share of the
population, the share of employment in manufacturing (CBP), and log county centroid latitude.

25



cities have higher deaths from asthma, chronic pulmonary diseases (COPD),
and a higher total and premature death rate, holding constant the county-level
demographic variables that predict these outcomes. A 10% increase in AC

0,60 is
associated with a 0.12% decrease in life expectancy among residents (elasticity
of 0.01). Transit accessibility-zone areas do not significantly correlate with any
mortality outcome.

In summary, greater car accessibility is associated with larger negative exter-
nalities in pollution, health, and land use within the sample of US cities. These
insights are generally consistent with prior literature that has studied the effects
of transportation on land use (Glaeser and Kahn, 2010; Duranton and Puga,
2015), pollution (Parry et al., 2007; Gendron-Carrier et al., 2022; Schlenker and
Walker, 2016), and health (Knittel et al., 2016; Currie and Walker, 2011). Adler
and van Ommeren (2016) study trade-offs between modes and find consistent
results. Khreis et al. (2017) provide an excellent summary of the public health
literature on how urban transport policy and planning affect the built environ-
ment, transport-infrastructure provision, mode choices, and health outcomes.

5. CONCLUSION

Our research highlights a fundamental trade-off in the design of commuter
systems. Cars are generally more effective at providing city-center access to
far larger surrounding land areas (and therefore, a larger potential population)
than public transit in both the US and Europe. But car-based commuting im-
poses larger negative externalities and health costs on society. When cities are
designed to provide greater car accessibility to CBDs, this type of access ap-
pears to be associated with lifestyle choices that produce worse health, envi-
ronmental, and land-use outcomes than public transit access would. Because
car-accessible cities are more polluted and less walkable, and residents are more
physically inactive, obese, and unhealthy, these residents experience greater
mortality rates and lower life expectancy. By contrast, transit accessibility is not
associated with these negative externalities.

The current car orientation of the US is a result of policy choices after World
War II to invest heavily in roads and highways. That highway infrastructure –
designed to last 50-70 years – is now approaching their expiration dates (New
York Times, Feb. 11, 2022), and cities need to consider alternative policy direc-
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tions.14 Many cities, such as Syracuse and Detroit, have committed to replac-
ing stretches of the interstate with more connected, walkable neighborhoods.15

Other cities, such as Houston, are expanding their highway systems in an at-
tempt to make CBDs more accessible (Los Angeles Times, November 11, 2021).

The transportation infrastructure investments now made will determine the fu-
ture orientation of US transportation infrastructure and affect how US residents
live, work, and commute over the next 50 years. As a result, city planners need
to consider not only the productivity and efficiency effects of focusing on roads
versus public transit infrastructure, but also the social, environmental, conges-
tion, and health consequences of their choices. The CBD accessibility measures
we propose are easy for policymakers to compute for any city, for time of day,
or even repeatedly over time, and can aid such policy evaluations.

Study Limitations and Directions for Future Work. Our study is descriptive
by design, and our goal was to construct theory-consistent measures of CBD
accessibility to aid policy analysis. The partial-equilibrium results we report in
section 3.5 should not be read as “predictive,” because they might change as
people and firms adjust their mode choices, workplace, and residential location
choices, or as politicians respond to citizen demands and alter zoning restric-
tions. To properly account for those general-equilibrium changes, the measures
we have developed will need to be paired with theoretical frameworks where
mode and location choices adjust, and the negative externalities stemming from
those choices are accounted for. Existing quantitative spatial models of com-
muting could serve as a natural point of departure for developing such holistic
frameworks (e.g., Allen et al., 2015; Ahlfeldt et al., 2015; Monte et al., 2018).16

Similarly, the associations between car and transit accessibility zones and var-
ious health and pollution outcomes we report in section 4 are correlations,
not causal effects of commuting-infrastructure changes. Policy shocks, nat-
ural experiments, or historical or geographic instruments that extract exoge-
nous components of the variation in accessibility zones are necessary to make

14The Biden administration’s infrastructure plan reflects some potential changes in the focus
of transportation policy; see (Los Angeles Times, November 11, 2021).

15New Orleans and Dallas face pressure from residents and activists to address the pollution,
noise, and safety hazards associated with its mega-roads (New York Times, May 27, 2021).

16Applications include an evaluation of the Los Angeles Metro Rail extension (Severen, 2022),
measuring the effects of the world’s largest bus rapid transit system in Bogotá (Tsivanidis,
2022), and optimal-transit-system design in general equilibrium frameworks (Fajgelbaum and
Schaal, 2020; Allen and Arkolakis, 2022). Redding and Rossi-Hansberg (2017) provide a general
summary of this literature.
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causal statements. Although many studies estimate the causal effects of a par-
ticular type of transportation infrastructure on a specific health outcome (e.g.,
Gendron-Carrier et al., 2022; Currie and Walker, 2011), no study has attempted
a comprehensive assessment of the wide range of costs and benefits of transport-
infrastructure interventions. The marginal value of public funds approach (Hen-
dren and Sprung-Keyser, 2020) provides an exciting framework to combine dif-
ferent causal estimates and map them into a dollar-denominated cost-benefit
analysis.

Lastly, our approach does not account for the monetary costs of alternative
mode choices -for example, the costs of parking in the CBD, car maintenance,
insurance, or the cost of tickets for public transit. Such costs are significant
drivers of mode choices and are also natural policy levers to design car- or
transit-oriented commuting systems.
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ONLINE APPENDIX

A. ALTERNATIVE MEASUREMENT APPROACHES

Different approaches can be taken to construct accessibility zones in the data.
In the body of the paper, we rely on proprietary software by a company called
“Traveltime, Inc” (https://app.traveltime.com/), which automates the con-
struction process. Other companies offer the same service, and constructing
accessibility zones from first principles is possible using any route-finding API.

TABLE A.1: PAIRWISE CORRELATIONS AMONG ACCESSIBILITY-ZONE AREAS

Source Traveltime Targomo Google Maps

Traveltime 1.00 - -
Targomo 0.76 1.00 -
Google Maps 0.85 0.74 1.00

Notes: The table compares the (0,60)-minute car accessibility-zone areas computed using three
different approaches. All accessibility-zone areas are for commutes that arrive in the CBD at
8:45 AM on a Wednesday. The different computing approaches are: using the proprietary soft-
ware of TravelTime Inc (row 1) or Targomo (row 2) and using Python and the GoogleMaps API
to construct the zones ourselves (row 3).

Table A.1 shows the correlations between the (0,60)-minute car accessibility-
zone areas from ”Traveltime, Inc” and the same areas computed using an al-
ternative software provider, Targomo (https://www.targomo.com), and an ap-
proach that uses Python combined with optimal routes obtained from Google
Maps. The correlations are high: all three sources deliver comparable estimates
of the accessibility-zone areas.

B. ACCESSIBILITY, INFRASTRUCTURE, AND MODE

CHOICES

In this section, we examine the correlations between our accessibility-zone ar-
eas and traditional measures of infrastructure (e.g., road length), and mode
choices of commuters.

A - 1
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Accessibility and Infrastructure. Table B.1 shows coefficient estimates from
a regression of (0,60)-minute accessibility-zone areas in the US and Europe on
traditional measures of transportation infrastructure, separately for public tran-
sit and cars. We include a constant and a control for city population size in all
regressions. The pooled regression also includes a Europe dummy.

As expected, the public transit accessibility-zone area and the number of rail
miles positively correlate in the US and Europe. Similarly, car accessibility and
total street miles are strongly positively correlated in the US. The same corre-
lation is less strong and insignificant in Europe, perhaps reflecting that large
street networks in old European city centers were not designed for cars. Road
length in the US also correlates positively with the size of public transit acces-
sibility zones, perhaps because US transit systems in many cities rely on buses.
European public transit systems rely much more on trams, subways, and rail-
roads.

TABLE B.1: ACCESSIBILITY ZONES AND INFRASTRUCTURE

United States Europe Pooled

log of... AP
0,60 AC

0,60 AP
0,60 AC

0,60 AP
0,60 AC

0,60

Rail Miles 0.0656** -0.0460 0.191*** 0.0929* 0.122*** 0.0312
(0.0292) (0.0470) (0.0666) (0.0497) (0.0283) (0.0343)

Street Miles 0.797** 0.992*** 0.0681 0.268 0.473* 0.615**
(0.307) (0.268) (0.326) (0.344) (0.255) (0.244)

Observations 52 52 51 51 103 103
R-squared 0.658 0.237 0.334 0.200 0.582 0.268

Notes: All regressions regress log accessibility-zone areas on log measures of transportation
infrastructure. All regressions include a constant term and a control for population, which we
do not report. The pooled regressions include a Europe dummy which we do not report. We
add a 1 to the total rail miles in cities with a rail mile count of 0. Robust standard errors in
parentheses. *** p<0.01, ** p<0.05, * p<0.1. We present a complete list of data sources in Table
C.1.

Accessibility and Transportation-Mode Choice. Table B.2 regresses mode shares
for driving, public transit, and non-motorized commutes on our accessibility
measures. The mode shares are the fraction of workers commuting into the
CBD using a particular mode. As expected, in cities with larger driving acces-
sibility zones, more people use the car to get to work, and fewer people use
public transit. Likewise, in cities with larger public transit accessibility zones,
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more people use public transit for their commute, and fewer people use cars.

Interestingly, public transit accessibility areas are also positively correlated with
the walk/bike mode share. By contrast, larger car accessibility areas negatively
correlate with the use of these modes, even after holding fixed the population
size of the city. These differences in correlations suggest cities that have more
public transit and fewer cars are more walkable, which helps explain some of
the externality costs of car orientation we observe in section 4.

The Europe fixed effect indicates European workers are substantially less likely
to use cars than are US workers, and lower driving propensity is equally split
between the increased likelihood of taking public transit, and walking/biking
to work. Workers in large cities are more likely to use public transit and less
likely to drive.

TABLE B.2: ACCESSIBILITY ZONES AND MODE SHARES

Share of CBD Commutes via

Driving Transit Walk+Bike

logAP
0,60 -0.157*** 0.118*** 0.0326**

(0.0306) (0.0311) (0.0163)
logAC

0,60 0.0993*** -0.0438 -0.0517**
(0.0278) (0.0284) (0.0246)

log Population -0.0621* 0.0689** -0.00417
(0.0340) (0.0339) (0.0123)

Europe Dummy -0.200*** 0.101*** 0.105***
(0.0342) (0.0293) (0.0155)

Observations 96 96 98
R-squared 0.751 0.616 0.608

Notes: All regressions include a constant term, which we do not report. Robust standard errors
in parentheses. *** p<0.01, ** p<0.05, * p<0.1. We present a complete list of data sources in
Table C.1. Note the mode shares across Driving, Transit, and Walk+Bike do not sum to 1, due
to the “Other” category in data.
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C. ADDITIONAL FIGURES AND TABLES

In this section, we present additional Figures and Tables.

Figure C.1 presents a graphic taken from Khreis et al. (2017), which diagram-
matically shows the linkages between urban transport policy and planning, and
adverse health impacts. The figure helped us focus on what variables to analyze
in section 4 above.

Table C.1 provides the data source and unit of measurement of every variable
used in the paper. Similarly, Table C.2 provides summary statistics of all the
variables used throughout the paper. Tables C.3 and C.4 list the (0,15)-, (15,30)-,
(30,45)-, and (45,60)-minute accessibility-zone areas for every US and European
city in our sample, separately for driving and public transit. Table C.5 presents
our estimates for CBD labor supply for every US city in our sample, overall and
by mode.

Table C.6 presents the predicted changes in CBD labor supply, Θ̂j∗ , resulting
from the partial-equilibrium counterfactual exercises in section 3.5, for each US
city in our sample.
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FIGURE C.1: OVERVIEW OF TRANSPORTATION POLICY EXTERNALITIES

Notes: This figure shows Figure 1 from Khreis et al. (2017), which in their pa-
per was entitled ”Linkages between Urban Transport and Adverse Health Im-
pacts.”
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TABLE C.1: DATA SOURCES

Variable Unit Description Source

Demographics and Economic

Metro Area population Count Population of corresponding OECD metro area OECD
Urban share of the population Proportion Share of population living in urban areas, 2010 NHGIS Table H7W (Census 2010)
Share of employment in manufacturing Proportion Share of employment in NAICS codes 31-33, 2015 County Business Patterns
65+-year-olds Proportion Share of population aged 65+ NHGIS Table H76 (Census 2010)
Owner-occupied fraction Proportion Share of occupied housing units owner-occupied, 2006-2010 NHGIS Table JRK (2006-2010 ACS)
Population Density Persons per km2 Population per square kilometer, 2010 NHGIS Table H7X (Census 2010)
Income per capita $ Per capita income in the past 12 months, 2006-2010 NHGIS Table JQB (2006-2010 ACS)
Share of black residents Proportion Share of population Black or African American alone NHGIS Table H7X (Census 2010)
Share of hispanic residents Proportion Share of population Hispanic or Latino NHGIS Table H7Y (Census 2010)
Mean democratic vote share Proportion Mean vote share of democratic presidential candidates, 2000-2016 MIT Election Data + Science Lab
Agricultural share of employment Proportion Share of employment in NAICS code 11, 2015 County Business Patterns
Commuters by Mode from Tract to Tract

Infrastructure and Land Use

Total street length kilometer Used OpenStreetMap API to count total street length within each metro area OpenStreetMap
Total motorway length kilometer Used OpenStreetMap API to count total motorway length within each metro area OpenStreetMap
Total Bike Lanes length kilometer Used OpenStreetMap API to count total bike lane length within each metro area OpenStreetMap
Greenspace area Proportion Share area covered by parks OpenStreetMap

Pollution

CO2 Tons Total annual on-road CO2 emissions EPA National Emissions Inventory (2017)
NOX Tons Total annual on-road NOX emissions EPA National Emissions Inventory (2017)
PM 2.5 Tons Total annual on-road PM 2.5 emissions EPA National Emissions Inventory (2017)
Noise Decibels Noise energy emitted from transportation sources over a 24-hour period, averaged over receptor locations within grid cell National Transportation Noise Mapping Tool
90th/10th percentile August temperature Ratio Ratio of 90th to 10th percentile grid-cell-level August temperature (2019) MODIS Land Surface Temperature and Emissivity (MOD11)
Mean January temperature Degrees Celsius Mean grid-cell-level January temperature (2019) MODIS Land Surface Temperature and Emissivity (MOD11)

Health

Residents with heavy drinking habits Proportion Share of adults reporting binge or heavy drinking. 2020 County Health Rankings
Residents who are smokers smokers Proportion Share of adults who are current smokers. 2020 County Health Rankings
Walking Index Index (1-20) Composite index of street intersection density, proximity to transit stops, and diversity of land uses EPA National Walkability Index
Share Physically Inactive Proportion Share of adults age 20 and over reporting no leisure-time physical activity 2020 County Health Rankings
Share poor and far from groceries Proportion Share of population with income < 2× poverty line and live > 1 mi. from grocery store 2020 County Health Rankings
Share obese Proportion Share of (age 20+) population with BMI¿30 kg/m2 2020 County Health Rankings

Death

Total Deaths Deaths/1000 residents All deaths CDC Multiple Cause of Death 1999-2019
Traffic Deaths Deaths/1000 residents Transport accident deaths according to International Classification of Diseases CDC Multiple Cause of Death 1999-2019
Obesity Deaths Deaths/1000 residents Obesity-caused deaths according to International Classification of Diseases CDC Multiple Cause of Death 1999-2019
Asthma Deaths Deaths/1000 residents Asthma-caused deaths according to International Classification of Diseases CDC Multiple Cause of Death 1999-2019
COPD Deaths Deaths/1000 residents Chronic obstructive pulmonary disease-caused deaths according to International Classification of Diseases CDC Multiple Cause of Death 1999-2019
Premature Deaths Years/100k population Years of potential life lost before age 75 per 100,000 population 2020 County Health Rankings
Life Expectancy Years Average number of years a person can expect to live 2020 County Health Rankings

Notes: This table presents a description, the unit of measurement, and the source for every empirical variable used in the paper.
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TABLE C.2: SUMMARY STATISTICS

Variable Aggregation Unit Mean Standard Deviation Min Max

Demographics and Economic

(Total) Metro Area population County Persons 3016273 4335979 251446 19961045
Urban share of the population County Proportion 0.41 0.31 0 1
Share of employment in manufacturing County Proportion 0.15 0.12 0 0.75
65+-year-olds County Proportion 0.16 0.04 0.04 0.43
Owner-occupied fraction County Proportion 0.73 0.08 0.21 0.91
Population Density County Persons per km2 98.66 661.70 0.05 26544.42
Income per capita County $ 22452.07 5370.60 7772.00 64381.00
Share of black residents County Proportion 0.09 0.15 0.00 0.86
Share of hispanic residents County Proportion 0.08 0.13 0.00 0.96
Mean democratic vote share County Proportion 0.38 0.13 0.07 0.90
Agricultural share of employment County Proportion 0.01 0.02 0 0.35
Commuters by Mode from Tract to Tract

Infrastructure and Land Use

Total street length County kilometers 2611.85 2174.43 0.00 37046.48
Total motorway length County kilometers 85.75 159.39 0.00 2650.58
Total Bike Lanes length County kilometers 16.82 106.99 0.00 3734.72
Greenspace area County Proportion 0.09 0.17 0 1

Pollution

CO2 County Tons 465.38 1440.33 1.39 42337.96
NOX County Tons 0.84 1.91 0.01 45.55
PM 2.5 County Tons 0.04 0.12 0.00 3.86
Noise County Decibels 53.57 1.63 45.32 56.96
90th/10th percentile August temperature County Ratio 1.13 0.14 1.00 2.17
Mean January temperature County Degrees Celsius 2.64 8.21 -20.42 23.19

Health

Residents with heavy drinking habits County Proportion 0.17 0.03 0.08 0.29
Residents who are smokers smokers County Proportion 0.17 0.04 0.06 0.41
Walking Index County Index (1-20) 6.49 1.92 2.86 16.00
Share Physically Inactive County Proportion 0.27 0.06 0.10 0.50
Share poor and far from groceries County Proportion 0.09 0.08 0.00 0.72
Share obese County Proportion 0.33 0.05 0.12 0.58

Death

COPD Deaths per 1000 County Deaths/1000 residents 23.74 8.99 1.04 64.08
Total Deaths County Deaths/1000 residents 216.89 53.40 40.33 440.01
Traffic Deaths per 1000 County Deaths/1000 residents 2.43 1.26 0.30 13.06
Obesity Deaths per 1000 County Deaths/1000 residents 2.30 1.08 0.30 9.68
Asthma Deaths per 1000 County Deaths/1000 residents 0.76 0.45 0.14 8.46
Premature Deaths County Years/100k population 8525.83 2765.87 2730.60 43939.07
Life Expectancy County Years 77.45 3.01 61.63 104.74

Notes: This table presents summary statistics and the spatial unit of measurement for every empirical variable used in the paper.

A
-7



TABLE C.3: ACCESSIBILITY AREAS IN THE US

City AC
0,15 AC

15,30 AC
30,45 AC

45,60 AP
0,15 AP

15,30 AP
30,45 AP

45,60

Albany, NY 97.31 792.1 1921 3885 2.875 20.62 69.74 86.03
Atlanta, GA 362.1 1716 3155 5743 3.949 45.47 175.1 380.9
Austin, TX 225.3 1507 3160 5852 3.046 25.49 71.23 99.79
Birmingham, AL 573.4 1840 3793 7541 3.265 20.13 39.89 46.08
Boston, MA 75.48 727.6 1796 3533 6.132 70.23 177.9 206.8
Buffalo, NY 150.2 794.6 1537 2583 5.538 38.22 100.9 115.2
Charlotte, NC 300.6 1320 2560 5127 6.948 53.32 135.0 165.8
Chicago, IL 286.0 1336 2452 4273 8.044 70.95 201.1 293.7
Cincinnati, OH 100.7 913.8 2407 4199 3.150 25.79 78.80 122.6
Cleveland, OH 107.3 738.2 1892 3419 5.458 39.63 106.3 184.8
Columbus, OH 173.5 1243 2832 6033 4.922 43.60 116.5 166.7
Dallas, TX 313.0 2388 4662 8069 2.645 29.87 125.9 206.0
Denver, CO 17.15 726.7 2066 4123 3.859 35.25 120.2 209.6
Detroit, MI 138.2 1021 2069 3515 3.048 17.62 59.85 142.5
Fresno, CA 456.2 1701 2861 5215 3.435 25.45 62.51 79.29
Hartford, CT 443.9 1582 2852 4956 6.019 60.12 160.9 182.1
Houston, TX 482.4 2532 4051 6673 2.365 32.51 164.2 308.2
Indianapolis, IN 151.8 1170 2856 6175 3.273 36.81 108.4 141.4
Jacksonville, FL 105.7 666.6 1140 2210 2.755 17.76 58.59 110.7
Kansas City, MO 223.7 1429 3296 7018 4.489 26.65 100.0 166.5
Las Vegas, NV 384.8 992.0 745.4 787.4 3.014 24.94 80.35 144.8
Los Angeles, CA 323.9 1800 2068 3018 6.576 63.89 205.7 448.4
Louisville, KY 210.0 1258 2811 5877 2.247 18.74 61.67 101.7
Memphis, TN 417.0 1822 3689 7186 4.606 24.28 54.25 91.47
Miami, FL 93.94 585.2 856.3 951.2 2.684 32.11 69.47 171.8
Milwaukee, WI 145.6 1054 2275 4565 2.491 24.55 98.15 150.2
Minneapolis, MN 185.0 1613 3121 6406 3.603 33.58 137.8 312.3
Nashville, TN 443.9 2168 4617 7997 2.716 21.29 80.02 78.58
New Haven, CT 86.40 693.9 1405 2559 5.289 43.38 76.31 93.87
New Orleans, LA 264.1 463.3 650.9 2334 3.239 12.95 54.20 87.31
New York, NY 56.05 936.0 2094 3489 6.540 46.79 168.8 372.7
Oklahoma City, OK 223.2 1448 3218 6956 2.045 23.18 98.39 116.4
Orlando, FL 127.4 869.8 1639 2247 3.266 22.67 75.42 139.1
Philadelphia, PA 206.5 1240 2721 4981 10.27 90.14 195.0 267.6
Phoenix, AZ 68.80 968.3 2108 3018 2.579 30.86 108.0 202.2
Pittsburgh, PA 230.4 1082 2305 5136 3.988 54.70 144.5 195.0
Portland, OR 34.60 608.0 1685 3262 3.393 42.69 131.7 188.5
Raleigh, NC 48.31 481.0 1497 3308 4.269 31.76 75.03 125.2
Richmond, VA 214.1 1184 2212 4578 2.879 31.08 52.89 32.51
Sacramento, CA 321.2 1398 3351 4987 3.539 27.56 86.59 138.3
Salt Lake City, UT 107.4 799.8 1085 2069 2.918 28.95 89.76 151.4
San Antonio, TX 460.8 2047 3788 7239 2.605 25.83 124.1 187.3
San Diego, CA 278.1 910.6 1134 1684 5.142 23.58 83.09 169.8
San Francisco, CA 58.01 522.3 1161 2454 7.943 50.79 113.6 186.7
Seattle, WA 98.44 687.5 1130 1972 5.003 40.87 147.6 260.5
St. Louis, MO 263.0 1604 2824 6222 3.564 39.14 91.38 171.5
St. Petersburg, FL 148.8 237.8 840.2 1978 3.270 27.64 46.64 49.18
Tampa, FL 140.2 685.4 1539 2442 2.152 12.87 45.37 84.29
Tucson, AZ 249.8 1107 1863 2582 3.110 23.54 109.0 119.5
Tulsa, OK 140.6 1375 2755 5937 2.265 4.047 35.25 47.17
Virginia Beach, VA 119.0 498.7 582.9 1431 1.730 2.993 9.180 30.76
Washington, DC 151.6 1031 2092 3937 4.359 37.82 156.9 356.4

Average 213.2 1160 2293 4303 4.010 33.74 102.7 167.1

Notes: The table presents the size of the area from which the CBD of a given city is accessible
within (0,15)-, (15,30)-, (30,45)-, or (45,60)-minute commutes via either cars or public transit.
The areas have been constructed for Wednesday at 8.30 AM. The areas are computed using the
service of the ”Traveltime, Inc.” website. A - 8



TABLE C.4: ACCESSIBILITY AREAS IN EUROPE

City AC
0,15 AC

15,30 AC
30,45 AC

45,60 AP
0,15 AP

15,30 AP
30,45 AP

45,60

Amsterdam, Netherlands 109.5 778.1 1803 3441 5.431 50.98 139.3 266.5
Athens, Greece 36.36 312.0 623.0 1084 9.151 70.86 136.7 109.8
Barcelona, Spain 7.603 56.38 449.3 1334 11.57 67.93 106.7 221.1
Berlin, Germany 42.26 181.7 572.2 1771 7.592 103.0 289.6 437.5
Birmingham, UK 62.61 737.0 1857 3745 4.233 51.51 174.2 219.7
Bordeaux, France 8.097 149.4 1044 2971 4.097 38.06 103.9 184.8
Bremen, Germany 66.20 628.3 2113 5103 6.046 50.65 133.9 209.9
Brussels, Belgium 22.74 367.5 1852 4953 7.949 100.3 253.5 619.9
Budapest, Hungary 30.35 311.9 1211 2933 4.193 45.23 147.7 231.6
Cologne, Germany 46.56 671.2 2674 6199 6.341 67.37 240.6 542.0
Copenhagen, Denmark 33.06 197.4 873.1 2466 12.89 83.71 218.8 323.7
Dortmund, Germany 22.77 587.0 2189 5842 7.560 59.76 150.7 363.0
Dresden, Germany 45.10 299.5 1473 3608 3.873 46.94 117.1 169.8
Dublin, Ireland 119.6 800.3 1722 3132 5.168 47.40 129.6 190.0
Duesseldorf, Germany 46.96 874.4 3092 6011 3.530 45.26 152.1 377.4
Frankfurt, Germany 38.91 580.7 2035 4625 12.55 92.92 255.6 450.2
Glasgow, UK 66.01 679.9 1524 2421 3.458 43.28 166.0 274.9
Hamburg, Germany 27.30 254.0 1080 3522 8.495 76.90 199.3 424.7
Hanover, Germany 67.38 632.6 1788 4149 14.90 94.09 175.6 307.8
Helsinki, Finland 10.52 112.6 620.3 1943 8.288 82.64 248.2 261.3
Katowice, Poland 90.61 742.0 1762 3594 2.355 36.09 144.0 254.5
Krakow, Poland 16.77 196.4 788.7 2086 6.432 55.38 123.3 189.5
Leeds, UK 56.87 543.7 1420 2980 4.380 31.48 100.5 246.0
Lille, France 8.409 355.6 2224 4785 3.203 44.16 117.6 178.1
Lisbon, Portugal 31.58 449.3 853.0 1415 6.335 51.80 81.74 108.2
Liverpool, UK 45.64 255.2 693.2 1724 3.957 40.57 120.1 145.5
London, UK 16.62 88.88 237.3 851.6 3.647 50.39 282.6 621.2
Lyon, France 5.122 309.0 1587 3694 6.150 56.80 163.4 221.4
Madrid, Spain 9.469 486.2 1491 3082 13.23 112.2 292.7 358.9
Manchester, UK 57.68 392.0 1180 2688 4.512 36.53 166.5 343.6
Marseille, France 17.37 271.6 975.6 1623 5.434 35.92 82.36 129.2
Milan, Italy 7.578 72.59 846.8 3164 8.680 79.60 146.5 293.0
Munich, Germany 48.12 626.8 2574 5918 5.254 89.25 284.9 448.8
Naples, Italy 157.8 838.8 1062 2017 4.382 16.51 27.60 60.83
Nuremberg, Germany 40.45 510.6 2429 4977 5.077 73.23 179.0 274.1
Oslo, Norway 40.54 363.8 1017 2301 7.999 80.11 203.4 264.4
Paris, France 4.561 66.13 539.6 1742 12.23 110.2 375.1 675.0
Porto, Portugal 72.08 629.2 1441 2323 6.883 45.20 75.31 73.31
Prague, Czech Republic 32.88 442.6 1717 4578 9.105 97.95 243.9 395.2
Rome, Italy 27.41 259.4 1102 2553 11.22 70.87 134.8 165.4
Rotterdam, Netherlands 87.62 767.3 1631 3437 6.953 57.96 194.9 318.4
Seville, Spain 29.95 402.8 1252 2016 2.585 17.84 46.85 80.02
Sheffield, UK 21.09 217.7 995.3 2241 2.814 21.58 79.77 114.4
Stockholm, Sweden 23.42 429.4 1159 2425 2.480 55.30 232.7 408.2
Stuttgart, Germany 38.40 568.5 1872 3576 9.213 84.14 218.7 392.1
Toulouse, France 5.698 194.8 1871 4642 7.603 68.97 178.8 270.1
Turin, Italy 29.41 368.8 1419 3156 4.836 35.61 93.16 174.8
Valencia, Spain 33.44 473.3 1318 1852 6.131 45.97 74.30 89.12
Vienna, Austria 14.61 221.7 947.2 2845 11.50 101.4 190.2 293.9
Warsaw, Poland 38.83 293.2 1165 3158 8.231 99.27 207.1 360.6
Zuerich, Switzerland 54.20 790.6 1685 3174 8.194 83.02 272.4 526.1

Average 40.67 428.2 1409 3174 6.829 62.83 170.1 287.4

Notes: The table presents the size of the area from which the CBD of a given city is accessible
within (0,15)-, (15,30)-, (30,45)-, or (45,60)-minute commutes via either cars or public transit.
The areas have been constructed for Wednesday at 8.30 AM. The areas are computed using the
service of the ”Traveltime, Inc.” website.
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TABLE C.5: CBD LABOR SUPPLY, Θ, ACROSS CITIES

City Θ ΘC ΘP

Albany, NY 0.791 0.748 0.0429
Atlanta, GA 0.786 0.723 0.0635
Austin, TX 0.861 0.824 0.0371
Birmingham, AL 0.891 0.887 0.00400
Boston, MA 0.619 0.317 0.303
Buffalo, NY 0.873 0.790 0.0822
Charlotte, NC 0.818 0.788 0.0299
Chicago, IL 0.607 0.268 0.339
Cincinnati, OH 0.804 0.754 0.0499
Cleveland, OH 0.808 0.729 0.0794
Columbus, OH 0.853 0.823 0.0305
Dallas, TX 0.790 0.761 0.0290
Denver, CO 0.702 0.637 0.0651
Detroit, MI 0.830 0.806 0.0245
Fresno, CA 0.898 0.886 0.0118
Hartford, CT 0.835 0.781 0.0534
Houston, TX 0.793 0.768 0.0255
Indianapolis, IN 0.853 0.842 0.0106
Jacksonville, FL 0.762 0.756 0.00636
Kansas City, MO 0.848 0.820 0.0278
Las Vegas, NV 0.892 0.858 0.0342
Los Angeles, CA 0.766 0.687 0.0792
Louisville, KY 0.870 0.834 0.0368
Memphis, TN 0.891 0.875 0.0161
Miami, FL 0.833 0.798 0.0347
Milwaukee, WI 0.836 0.763 0.0722
Minneapolis, MN 0.696 0.575 0.120
Nashville, TN 0.865 0.851 0.0134
New Haven, CT 0.728 0.677 0.0516
New Orleans, LA 0.762 0.721 0.0410
New York, NY 0.609 0.124 0.485
Oklahoma City, OK 0.882 0.874 0.00809
Orlando, FL 0.805 0.792 0.0126
Philadelphia, PA 0.688 0.404 0.284
Phoenix, AZ 0.800 0.771 0.0287
Pittsburgh, PA 0.767 0.590 0.177
Portland, OR 0.726 0.598 0.128
Raleigh, NC 0.795 0.785 0.00986
Richmond, VA 0.811 0.777 0.0343
Sacramento, CA 0.768 0.731 0.0362
Salt Lake City, UT 0.778 0.734 0.0435
San Antonio, TX 0.891 0.849 0.0413
San Diego, CA 0.807 0.753 0.0546
San Francisco, CA 0.699 0.424 0.275
Seattle, WA 0.648 0.442 0.205
St. Louis, MO 0.811 0.761 0.0502
St. Petersburg, FL 0.852 0.838 0.0145
Tampa, FL 0.851 0.841 0.0103
Tucson, AZ 0.816 0.783 0.0327
Tulsa, OK 0.860 0.854 0.00611
Virginia Beach, VA 0.814 0.814 2.60e-05
Washington, DC 0.655 0.392 0.263

Average 0.794 0.717 0.0772

Notes: The table shows the CBD labor-supply measure derived from the model for each city,
overall, Θj∗ , and by mode, ΘC

j∗ and ΘP
j∗ .
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TABLE C.6: COUNTERFACTUAL CHANGES IN CBD LABOR SUPPLY

City ωP
0,15, ωC

0,15 ωP
0,15 ωP

15,30, ωC
15,30 ωP

15,30 ωP
30,45ωC

30,45 ωP
30,45 ωP

45,60ωC
45,60 ωP

45,60 AP
0,15,AC

0,15 AP
0,15 AP

30,45,AC
30,45 AP

30,45

Albany, NY 1.02 1.00 1.05 1.00 1.02 1.00 1.01 1.00 1.00 1.00 1.00 1.00
Atlanta, GA 1.02 1.00 1.04 1.00 1.03 1.00 1.01 1.00 1.00 1.00 1.00 1.00
Austin, TX 1.03 1.00 1.04 1.00 1.02 1.00 1.01 1.00 1.00 1.00 1.00 1.00
Birmingham, AL 1.05 1.00 1.04 1.00 1.01 1.00 1.01 1.00 1.00 1.00 1.00 1.00
Boston, MA 1.01 1.00 1.04 1.02 1.04 1.02 1.02 1.01 1.00 1.00 1.00 1.00
Buffalo, NY 1.03 1.00 1.05 1.00 1.02 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Charlotte, NC 1.03 1.00 1.05 1.00 1.02 1.00 1.01 1.00 1.00 1.00 1.00 1.00
Chicago, IL 1.02 1.00 1.03 1.02 1.03 1.02 1.02 1.01 1.00 1.00 1.00 1.00
Cincinnati, OH 1.01 1.00 1.05 1.00 1.03 1.00 1.01 1.00 1.00 1.00 1.00 1.00
Cleveland, OH 1.01 1.00 1.05 1.00 1.03 1.00 1.01 1.00 1.00 1.00 1.00 1.00
Columbus, OH 1.02 1.00 1.06 1.00 1.01 1.00 1.01 1.00 1.00 1.00 1.00 1.00
Dallas, TX 1.02 1.00 1.05 1.00 1.02 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Denver, CO 1.00 1.00 1.05 1.00 1.04 1.00 1.01 1.00 1.00 1.00 1.00 1.00
Detroit, MI 1.01 1.00 1.05 1.00 1.03 1.00 1.01 1.00 1.00 1.00 1.00 1.00
Fresno, CA 1.06 1.00 1.03 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Hartford, CT 1.04 1.00 1.03 1.00 1.02 1.00 1.01 1.00 1.00 1.00 1.00 1.00
Houston, TX 1.03 1.00 1.05 1.00 1.02 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Indianapolis, IN 1.01 1.00 1.06 1.00 1.03 1.00 1.01 1.00 1.00 1.00 1.00 1.00
Jacksonville, FL 1.01 1.00 1.05 1.00 1.03 1.00 1.01 1.00 1.00 1.00 1.00 1.00
AKansas City, MO 1.01 1.00 1.06 1.00 1.02 1.00 1.01 1.00 1.00 1.00 1.00 1.00
Las Vegas, NV 1.05 1.00 1.05 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Los Angeles, CA 1.02 1.00 1.05 1.00 1.02 1.00 1.01 1.00 1.00 1.00 1.00 1.00
Louisville, KY 1.02 1.00 1.06 1.00 1.01 1.00 1.01 1.00 1.00 1.00 1.00 1.00
Memphis, TN 1.04 1.00 1.05 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Miami, FL 1.02 1.00 1.04 1.00 1.03 1.00 1.01 1.00 1.00 1.00 1.00 1.00
Milwaukee, WI 1.03 1.00 1.05 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Minneapolis, MN 1.02 1.00 1.05 1.00 1.02 1.01 1.01 1.01 1.00 1.00 1.00 1.00
Nashville, TN 1.03 1.00 1.04 1.00 1.02 1.00 1.01 1.00 1.00 1.00 1.00 1.00
New Haven, CT 1.03 1.00 1.05 1.00 1.02 1.00 1.01 1.00 1.00 1.00 1.00 1.00
New Orleans, LA 1.06 1.00 1.03 1.00 1.01 1.00 1.01 1.00 1.00 1.00 1.00 1.00
New York, NY 1.00 1.00 1.03 1.02 1.04 1.03 1.03 1.03 1.00 1.00 1.00 1.00
Oklahoma City, OK 1.02 1.00 1.06 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Orlando, FL 1.02 1.00 1.05 1.00 1.02 1.00 1.01 1.00 1.00 1.00 1.00 1.00
Philadelphia, PA 1.02 1.00 1.05 1.02 1.02 1.01 1.01 1.01 1.00 1.00 1.00 1.00
Phoenix, AZ 1.00 1.00 1.05 1.00 1.04 1.00 1.01 1.00 1.00 1.00 1.00 1.00
Pittsburgh, PA 1.02 1.00 1.04 1.01 1.03 1.01 1.01 1.01 1.00 1.00 1.00 1.00
Portland, OR 1.01 1.00 1.05 1.01 1.03 1.01 1.01 1.00 1.00 1.00 1.00 1.00
Raleigh, NC 1.01 1.00 1.04 1.00 1.04 1.00 1.02 1.00 1.00 1.00 1.00 1.00
Richmond, VA 1.03 1.00 1.05 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Sacramento, CA 1.04 1.00 1.04 1.00 1.01 1.00 1.01 1.00 1.00 1.00 1.00 1.00
Salt Lake City, UT 1.02 1.00 1.06 1.00 1.01 1.00 1.01 1.00 1.00 1.00 1.00 1.00
San Antonio, TX 1.04 1.00 1.05 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00
San Diego, CA 1.04 1.00 1.04 1.00 1.01 1.00 1.01 1.00 1.00 1.00 1.00 1.00
San Francisco, CA 1.02 1.00 1.05 1.02 1.02 1.01 1.01 1.01 1.00 1.00 1.00 1.00
Seattle, WA 1.01 1.00 1.05 1.01 1.03 1.01 1.01 1.01 1.00 1.00 1.00 1.00
St. Louis, MO 1.02 1.00 1.05 1.00 1.02 1.00 1.01 1.00 1.00 1.00 1.00 1.00
St. Petersburg, FL 1.05 1.00 1.03 1.00 1.02 1.00 1.01 1.00 1.00 1.00 1.00 1.00
Tampa, FL 1.02 1.00 1.04 1.00 1.03 1.00 1.01 1.00 1.00 1.00 1.00 1.00
Tucson, AZ 1.03 1.00 1.05 1.00 1.02 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Tulsa, OK 1.02 1.00 1.06 1.00 1.02 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Virginia Beach, VA 1.05 1.00 1.05 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Washington, DC 1.01 1.00 1.04 1.01 1.03 1.02 1.02 1.01 1.00 1.00 1.00 1.00

Average 1.02 1.00 1.05 1.00 1.02 1.00 1.01 1.00 1.00 1.00 1.00 1.00

Notes: The table shows the counterfactual change in the CBD labor-supply measure, Θj∗ , in
response to counterfactual 10% increases in population density within various accessibility-
zone areas (Columns 2-9) and in response to 10% increases in various accessibility-zone areas.
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