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Abstract
We introduce three new STATA commands, nop, ziop2 and ziop3, for the esti-

mation of a three-part nested ordered probit model, the two-part zero-inflated ordered
probit models of Harris and Zhao (2007, Journal of Econometrics 141: 1073—1099) and
Brooks, Harris and Spencer (2012, Economics Letters 117: 683—686), and a three-part
zero-inflated ordered probit model for ordinal outcomes, with both exogenous and en-
dogenous switching. The three-part models allow the probabilities of positive, neutral
(zero) and negative outcomes to be generated by distinct processes. The zero-inflated
models address a preponderance of zeros and allow them to emerge in different latent
regimes. We provide postestimation commands to compute probabilistic predictions
and various measures of their accuracy, to access the goodness of fit, and to perform
model comparison using the Vuong test (Vuong 1989, Econometrica 57: 307—333) with
the corrections based on the Akaike and Schwarz information criteria. We investigate
the finite-sample performance of the maximum likelihood estimators by Monte Carlo
simulations, discuss the relations among the models, and illustrate the new commands
with an empirical application to the U.S. federal funds rate target.

Keywords: ordinal outcomes, zero inflation, nested ordered probit, zero-inflated
ordered probit, endogenous switching, Vuong test, nop, ziop2, ziop3, federal funds rate
target.
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1 Introduction

We introduce the STATA commands, nop, ziop2 and ziop3, which estimate two-level nested
and zero-inflated ordered probit (OP) models for ordinal outcomes, including the zero-
and middle-inflated OP models of Harris and Zhao (2007), Bagozzi and Mukherjee (2012),
Brooks, Harris and Spencer (2012) and Sirchenko (2013). The rationale behind the two-level
nested decision process is standard in discrete-choice modeling when the set of alternatives
faced by a decision-maker can be partitioned into subsets (or nests) with similar alternatives
correlated due to common unobserved factors. The choice among the nests and the choice
among the alternatives within each nest can be driven by different sets of observed and
unobserved factors (and common factors can have different weights).
In unordered categorical data, in which choices can be grouped into the nests of similar

options, the nested logit model is a popular method. Nested models for ordinal data are
rare although the rationale behind them is similar: choosing among a negative response
(decrease), a neutral response (no change) or a positive response (increase) is quite different
from choosing the magnitude of a negative or positive response; and choosing the magnitude
of a negative response can be driven by quite different determinants than choosing the
magnitude of a positive response. This leads to three implicit decisions: an upper-level
regime decision – a choice among the nests, and two lower-level outcome decisions – the
choices of the magnitude of the negative and positive responses (see the top left panel of
Figure 1).

Figure 1. Decision trees of nested and zero-inflated ordered probit models

Notes: Decisionmakers are not assumed to choose sequentially. The tree diagrams simply represent a nesting
structure of the system of OP models.

Furthermore, it would be reasonable for the zero (no-change) alternative to be in three
nests: its own, one with the negative responses, and one with the positive responses; hence,
some zeros can be driven by similar factors as the negative or positive responses. This leads



to a three-part cross-nested model with the nests overlapping at the zero response; hence, the
probability of zeros is “inflated”. Since the regime decision is not observable, the zeros are
observationally equivalent – it is never known to which of the three nests the observed zero
belongs. Several types of models with overlapping nests for unordered categorical responses
have been developed (Vovsha 1997; Wen and Koppelman 2001); cross-nested models for
ordinal outcomes are rare (Small 1987).
The prevalence of status quo, neutral or zero outcomes is observed in many fields, in-

cluding economics, sociology, technometrics, psychology and biology. The heterogeneity of
zeros is widely recognized – see Winkelmann (2008) and Greene and Hensher (2010) for a
review. Studies identify different types of zeros such as: no visits to a doctor due to good
health, iatrophobia, or medical costs; no illness due to strong immunity or lack of infection;
no children due to infertility or choice. In the studies of survey responses using an odd-point
Likert-type scale, where the respondents must indicate a negative, neutral or positive atti-
tude or opinion, the heterogeneity of indifferent responses (a true neutral option versus an
undecided, or ambivalent, or uninformed one, commonly reported as neutral) is also well-
recognized and sometimes labeled as the middle category endorsement or inflation (Bagozzi
and Mukhetjee 2012; Hernández, Drasgow and Gonzáles-Romá 2004; Kulas and Stachowski
2009).
Two-part zero-inflated models, developed to address the unobserved heterogeneity of

zeros, combines a binary choice model for the probability of crossing the hurdle (to participate
or not to participate; to consume or not to consume) with a count or ordered-choice model
for non-negative outcomes above the hurdle: the two parts are estimated jointly, and zero
observations can emerge in both parts. The two-part zero-inflated models include the zero-
inflated Poisson (Lambert 1992), negative binomial (Greene 1994), binomial (Hall 2002)
and generalized Poisson (Famoye and Singh 2003) models for count outcomes, and the zero-
inflated OP model (Harris and Zhao 2007) and zero-inflated proportional odds model (Kelley
and Anderson 2008) for non-negative ordinal responses.1

The model of Harris and Zhao (2007) is suitable for explaining decisions such as the levels
of consumption, when the upper hurdle is naturally binary (to consume or not to consume),
the responses are non-negative and the inflated zeros are situated at one end of the ordered
scale (see the bottom left panel of Figure 1). Bagozzi and Mukherjee (2012) and Brooks,
Harris and Spencer (2012) modified the model of Harris and Zhao (2007) and developed the
middle-inflated OP model for an ordinal outcome, which ranges from negative to positive
responses, and where an abundant outcome is situated in the middle of the choice spectrum
(see the bottom right panel of Figure 1).
The three-part zero-inflated OP model (see the top right panel of Figure 1) introduced

in Sirchenko (2013) is a natural generalization of the models of Harris and Zhao (2007),
Bagozzi and Mukherjee (2012) and Brooks, Harris and Spencer (2012). A trichotomous
regime decision is more realistic and flexible than a binary decision (change or no change) if
applied to ordinal data with negative, zero and positive values.

1The zero-inflated models, estimation of which is currently implemented in STATA, include: the zero-
inflated Poisson model (the zip command), the negative binomial model (the zinb command), and the
binomial model (the zib command) and the beta-binomial model (the zibbin command) developed by Hardin
and Hilbe (2014).



2 Models

2.1 Notation and assumptions

The observed dependent variable yt, t = 1, 2, ..., T is assumed to take on a finite number
of ordinal values j coded as {−J−, ...,−1, 0, 1, ..., J+}, where a potentially heterogeneous
(and typically predominant) response is coded as zero. The latent unobserved (or only
partially observed) variables are denoted by “∗”. Each model assumes an ordered-choice
regime decision and ordered-choice outcome decisions conditional on the regime. The regime
decision can be correlated with each outcome decision. We denote: by xt, x−t , x

+
t and zt the

tth rows of the observed data matrices (which in addition to the predetermined explanatory
variables may also include the lags of yt); by β, β

−, β+ and γ the vectors of slope parameters;
by α, α−, α+ and µ the vectors of threshold parameters; by ρ, ρ− and ρ+ the vectors of
correlation coeffi cients; by εt, ε−t , ε

+
t and νt the error terms that are independently and

identically distributed (iid) across t with normal cumulative distribution function (CDF) Φ,
the zero means and the variances σ2, σ2−, σ

2
+ and σ

2
ν , respectively; and by Φ2(g1;g2;σ

2
1;σ

2
2; ρ)

the CDF of the bivariate normal distribution of the two random variables g1 and g2 with the
zero means, the variances σ21 and σ

2
2 and the correlation coeffi cient ρ:

Φ2(g1;g2;σ
2
1;σ

2
2; ρ) = 1

2πσ1σ2
√
1−ρ2

g1∫
−∞

g2∫
−∞

exp
(
−u2/σ21−2ρuw/σ1σ2+w2/σ22

2(1−ρ2)

)
dudw.

2.2 Three-part nested ordered probit (NOP) model

Despite the wide-spread use of nested logit models for unordered categorical responses, we
are aware of only one example of the nested ordered probit model in the literature (Sirchenko
2013). The two-level NOP model can be described as

Upper-level decision: r∗t = ztγ + νt, st =


1 if µ2 < r∗t ,
0 if µ1 < r∗t ≤ µ2,
−1 if r∗t ≤ µ1.

Lower-level decisions: y−∗t = x−t β
− + ε−t , y+∗t = x+t β

+ + ε+t ,

yt =


j(j > 0) if st = 1 and α+j−1 < y+∗t ≤ α+j ,
0 if st = 0,
j(j < 0) if st = −1 and α−j < y−∗t ≤ α−j+1,

where −∞ = α+0 ≤ α+1 ≤ ... ≤ α+J+ =∞
and −∞ = α−−J− ≤ α−−J−+1 ≤ ... ≤ α−0 =∞.

Correlation among
decisions:

[
νt
εit

]
iid∼ N

(
0
0
,

[
σ2ν ρiσνσi

ρiσνσi σ2i

])
, i ∈ {−,+}.



The probabilities of the outcome j in the NOP model are given by

Pr(yt = j|zt,x−t ,x+t ) = Ij<0 Pr(r∗t ≤ µ1 and α
−
j < y−∗t ≤ α−j+1|zt,x−t )

+Ij=0 Pr(µ1 < r∗t ≤ µ2|zt) + Ij>0 Pr(µ2 < r∗t and α
+
j−1 < y+∗t ≤ α+j |zt,x+t )

= Ij<0 Pr(νt ≤ µ1 − ztγ and α−j − x−t β− < ε−t ≤ α−j+1 − x−t β−)
+Ij=0 Pr(µ1 − ztγ < νt ≤ µ2 − ztγ)
+Ij>0 Pr(µ2 − ztγ < νt and α+j−1 − x+t β+ < ε+t ≤ α+j − x+t β+)
= Ij<0[Φ2(µ1 − ztγ;α−j+1 − x−t β−;σ2ν ;σ

2
−; ρ−)− Φ2(µ1 − ztγ;α−j − x−t β−;σ2ν ;σ

2
−; ρ−)]

+Ij=0[Φ(µ2 − ztγ;σ2ν)− Φ(µ1 − ztγ;σ2ν)]
+Ij>0[Φ2(−µ2 + ztγ;α+j − x+t β+;σ2ν ;σ

2
+;−ρ+)

−Φ2(−µ2 + ztγ;α+j−1 − x+t β+;σ2ν ;σ
2
+;−ρ+)],

(1)

where Ij<0 is an indicator function such that Ij<0 = 1 if j < 0, and Ij<0 = 0 if j ≥ 0
(analogously for Ij=0 and Ij>0).
In the case of exogenous switching (when ρ− = ρ+ = 0), the probabilities of the outcome

j in the NOP can be computed as

Pr(yt = j|zt,x−t ,x+t , ρ− = ρ+ = 0)
= Ij<0Φ(µ1 − ztγ;σ2ν)[Φ(α−j+1 − x−t β−;σ2−)− Φ(α−j − x−t β−;σ2−)]
+Ij=0[Φ(µ2 − ztγ)− Φ(µ1 − ztγ)]
+Ij>0[1− Φ(µ2 − ztγ;σ2ν)][Φ(α+j − x+t β+;σ2+)− Φ(α+j−1 − x+t β+;σ2+)].

In the case of two or three outcome choices the NOP model degenerates to the conven-
tional single-equation OP model.

2.3 Two-part zero-inflated ordered probit (ZIOP-2) model

The ZIOP-2 model, which represents the zero-inflated OP model of Brooks, Harris and
Spencer (2012) and the middle-inflated OP model of Bagozzi and Mukherjee (2012), can be
described by the following system

Regime decision: r∗t = ztγ + νt, s∗t =

{
1 if µ < r∗t ,
0 if r∗t ≤ µ.

Outcome decision: y∗t = xtβ + εt,

yt =

{
j if s∗t = 1 and αj−1 < y∗t ≤ αj,
0 if s∗t = 0,

where −∞ = α−J−−1 ≤ α−J− ≤ ... ≤ αJ+ =∞.

Correlation among
decisions:

[
νt
εt

]
iid∼ N

(
0
0
,

[
σ2ν ρσνσ
ρσνσ σ2

])
.

The probabilities of the outcome j in the ZIOP-2 model are given by

Pr(yt = j|zt,xt) = Ij=0 Pr(r∗t ≤ µ|zt) + Pr(µ < r∗t and αj−1 < y∗t ≤ αj|zt,xt)
= Ij=0 Pr(νt ≤ µ− ztγ) + Pr(µ− ztγ < νt and αj−1 − xtβ < εt ≤ αj − xtβ)
= Ij=0Φ(µ− ztγ;σ2ν) + Φ2(−µ+ ztγ;αj − xtβ;σ2ν ;σ

2;−ρ)
−Φ2(−µ+ ztγ;αj−1 − xtβ;σ2ν ;σ

2;−ρ).

(2)

In the case of exogenous switching (when ρ = 0), these probabilities can be computed as



Pr(yt = j|zt,xt, ρ = 0) = Ij=0Φ(µ− ztγ;σ2ν)
+[1− Φ(µ− ztγ;σ2ν)][Φ(αj − xtβ;σ2)− Φ(αj−1 − xtβ;σ2)].

If yt ≥ 0 for ∀t, the ZIOP-2 model becomes the model of Harris and Zhao (2007).

2.4 Three-part zero-inflated ordered probit (ZIOP-3) model

The ZIOP-3 model developed by Sirchenko (2013) is a three-part generalization of the ZIOP-
2 model, and can be described by the following system

Regime decision: r∗t = ztγ + νt, s∗t =


1 if µ2 < r∗t ,
0 if µ1 < r∗t ≤ µ2,
−1 if r∗t ≤ µ1.

Outcome decisions: y−∗t = x−t β
− + ε−t , y+∗t = x+t β

+ + ε+t ,

yt =


j(j ≥ 0) if s∗t = 1 and α+j−1 < y+∗t ≤ α+j ,
0 if s∗t = 0,
j(j ≤ 0) if s∗t = −1 and α−j < y−∗t ≤ α−j+1,

where −∞ = α+−1 ≤ α+0 ≤ ... ≤ α+J+ =∞
and −∞ = α−−J− ≤ α−−J−+1 ≤ ... ≤ α−1 =∞.

Correlation among
decisions:

[
νt
εit

]
iid∼ N

(
0
0
,

[
σ2ν ρiσνσi

ρiσνσi σ2i

])
, i ∈ {−,+}.

The probabilities of the outcome j in the ZIOP-3 model are given by

Pr(yt = j|zt,x−t ,x+t ) = Ij≤0 Pr(r∗t ≤ µ1 and α
−
j < y−∗t ≤ α−j+1|zt,x−t )

+Ij=0 Pr(µ1 < r∗t ≤ µ2|zt) + Ij≥0 Pr(µ2 < r∗t and α
+
j−1 < y+∗t ≤ α+j |zt,x+t )

= Ij≤0 Pr(νt ≤ µ1 − ztγ and α−j − x−t β− < ε−t ≤ α−j+1 − x−t β−)
+Ij=0 Pr(µ1 − ztγ < νt ≤ µ2 − ztγ)
+Ij≥0 Pr(µ2 − ztγ < νt and α+j−1 − x+t β+ < ε+t ≤ α+j − x+t β+)
= Ij≤0[Φ2(µ1 − ztγ;α−j+1 − x−t β−;σ2ν ;σ

2
−; ρ−)− Φ2(µ1 − ztγ;α−j − x−t β−;σ2ν ;σ

2
−; ρ−)]

+Ij=0[Φ(µ2 − ztγ;σ2ν)− Φ(µ1 − ztγ;σ2ν)]
+Ij≥0[Φ2(−µ2 + ztγ;α+j − x+t β+;σ2ν ;σ

2
+;−ρ+)

−Φ2(−µ2 + ztγ;α+j−1 − x+t β+;σ2ν ;σ
2
+;−ρ+)],

(3)

where Ij≤0 is an indicator function such that Ij≤0 = 1 if j ≤ 0, and Ij≤0 = 0 if j > 0
(analogously for Ij≥0).
In the case of exogenous switching (when ρ− = ρ+ = 0), these probabilities can be

computed as

Pr(yt = j|zt,x−t ,x+t , ρ− = ρ+ = 0) = Ij≤0Φ(µ1 − ztγ;σ2
ν)[Φ(α−j+1 − x−t β−;σ2−)

−Φ(α−j − x−t β−;σ2−)] + Ij=0[Φ(µ2 − ztγ;σ2ν)− Φ(µ1 − ztγ;σ2ν)]
+Ij≥0[1− Φ(µ2 − ztγ;σ2ν)][Φ(α+j − x+t β+;σ2+)− Φ(α+j−1 − x+t β+;σ2+)].

The inflated outcome does not have to be in the very middle of the ordered choices. If it
is located at the end of the ordered scale, i.e. if yt ≥ 0 for ∀t, the ZIOP-3 model reduces to
the ZIOP-2 model of Harris and Zhao (2007).



2.5 Maximum likelihood (ML) estimation

The probabilities in each OP equation can be consistently estimated under fairly general
conditions by an asymptotically normal ML estimator (Basu and de Jong 2007). The simul-
taneous estimation of the OP equations in the NOP, ZIOP-2 and ZIOP-3 models can be also
performed using an ML estimator of the vector of the parameters θ that solves

max
θεΘ

T∑
t=1

J+∑
j=−J−

Itj ln[Pr(yt = j|xallt ,θ)], (4)

where Itj is an indicator function such that Itj = 1 if yt = j and Itj = 0 otherwise; θ includes
γ, µ, β−, β+, α−, α+, ρ− and ρ+ for the NOP and ZIOP-3 models, and γ, µ, β, α and ρ
for the ZIOP-2 model; Θ is a parameter space; xallt is a vector that contains the values of all
independent variables in the model; and Pr(yt = j|xallt ,θ) are the probabilities from either
(1) or (2) or (3). The asymptotic standard errors of θ̂ can be computed from the Hessian
matrix.
The intercept components of β, β−, β+ and γ are identified up to scale and location,

that is, only jointly with the corresponding threshold parameters α, α−, α+ and µ and
variances σ2, σ2−, σ

2
+, and σ

2
ν . As is common in the identification of discrete-choice models,

the variances σ2, σ2−, σ
2
+, and σ

2
ν are fixed to one, and the intercept components of β, β

−,
β+ and γ are fixed to zero. The probabilities in (1), (2) and (3) are invariant to these
(arbitrary) identifying assumptions: up to scale and location, we can identify all parameters
in θ because of the non-linearity of OP equations, i.e. via the functional form (Heckman
1978; Wilde 2000). However, since the normal CDF is approximately linear in the middle
of its support, the simultaneous estimation of two or three equations may experience a
weak identification problem if the regime and outcome equations contain the same set of
independent variables. To enhance the precision of parameter estimates we may impose
exclusion restrictions on the specification of the independent variables in each equation.
The three regimes (nests) in the NOP model are fully observable, contrary to the latent

(only partially observed) regimes in the ZIOP-2 and ZIOP-3 models. The likelihood function
of the NOP model – again in contrast with the ZIOP-2 and ZIOP-3 models – is separable
with respect to the parameters in the three equations. Thus, solving (4) for the NOP model
is equivalent to maximizing separately the likelihoods of the three OP models representing
the upper- and lower-level decisions.2

2.6 Marginal effects (ME)

The marginal effects of a continuous independent variable k (the kth element of xallt ) on the
probability of each discrete outcome j are computed for the ZIOP-3 model as

2The data matrices in the lower-level decisions should be truncated to contain only those rows of x−t or
x+t for which yt < 0 or yt > 0, respectively.



MEk,j,t = ∂ Pr(yt=j|θ)
∂xallt,k

= Ij≤0

{[
Φ

(
µ1−ztγ−ρ−(α−j −x−t β

−)√
1−(ρ−)2

)
f(α−j − x−t β−)

−Φ

(
µ1−ztγ−ρ−(α−j+1−x−t β

−)√
1−(ρ−)2

)
f(α−j+1 − x−t β−)

]
β−allk

−
[
Φ

(
α−j+1−x−t β

−−ρ−(µ1−ztγ)√
1−(ρ−)2

)
− Φ

(
α−j −x−t β

−−ρ−(µ1−ztγ)√
1−(ρ−)2

)]
f(µ1 − ztγ)γallk

}
−Ij=0[f(µ2 − ztγ)− f(µ1 − ztγ)]γallk

+Ij≥0

{[
Φ

(
ztγ−µ2+ρ+(α

+
j−1−x+t β

+)√
1−(ρ+)2

)
f(α+j−1 − x+t β+)

−Φ

(
ztγ−µ2+ρ+(α

+
j −x+t β

+)√
1−(ρ+)2

)
f(α+j − x+t β+)

]
β+allk

+

[
Φ

(
α+j −x+t β

++ρ+(ztγ−µ2)√
1−(ρ+)2

)
− Φ

(
α+j−1−x+t β

++ρ+(ztγ−µ2)√
1−(ρ+)2

)]
f(ztγ − µ2)γallk

}
,

where f is the probability density function of the standard normal distribution, and γallk ,
β−allk and β+allk are the coeffi cients on the kth independent variable in xallt in the regime
equation, the outcome equation conditional on s∗t = 1 and the outcome equation conditional
on s∗t = −1, respectively (γallk , β

−all
k or β+allk is zero if the kth independent variable in xallt is

not included into the corresponding equation). For a discrete-valued independent variable,
the ME can be computed as the change in the probabilities when this independent variable
changes by one increment and all other independent variables are fixed.
The MEs for the NOP model are computed by replacing Ij≥0 in the above formula with

Ij>0 and Ij≤0 with Ij<0.
The MEs for the ZIOP-2 model are computed as

MEk,j,t = ∂ Pr(yt=j|θ)
∂xallt,k

= −Ij=0[f(µ− ztγ)]γallk

+

[
Φ

(
ztγ−µ+ρ(αj−1−xtβ)√

1−ρ2

)
f(αj−1 − xtβ)− Φ

(
ztγ−µ+ρ(αj−xtβ)√

1−ρ2

)
f(αj − xtβ)

]
βallk

+

[
Φ

(
αj−xtβ+ρ(ztγ−µ)√

1−ρ2

)
− Φ

(
αj−1−xtβ+ρ(ztγ−µ)√

1−ρ2

)]
f(ztγ − µ)γallk ,

where βallk is the coeffi cient on the kth independent variable in xallt in the outcome equation
(βallk is zero if the kth independent variable in xallt is not included into the outcome equation).
The asymptotic standard errors of the MEs are computed using the Delta method as the

square roots of the diagonal elements of

̂
V ar(M̂Ek,j,t) = ∇θM̂Ek,j,tV̂ ar(θ̂)∇θM̂E

′

k,j,t.

2.7 Relations among the models and their comparison

We now discuss the choice of a formal statistical test to compare the NOP, ZIOP-2, ZIOP-3
and conventional OP models. The choice depends on whether the models are nested in each
other.
The exogenous-switching version of each model is nested in its endogenous-switching

version as its uncorrelated special case; their comparison can be performed using any classical
likelihood-based test for nested hypotheses, such as the likelihood ratio (LR) test.



The OP is not nested either in the NOP or ZIOP-3 model. We can compare the OP
model with them using a likelihood-based test for non-nested models, such as the Vuong
test (Vuong 1989). The OP model is however nested in the ZIOP-2 model. The latter
reduces to the former if µ → −∞; hence, Pr(yt = 0|xt, s∗t = 1) → 0. Therefore, the Vuong
test for non-nested hypothesis cannot be used to compare the OP and ZIOP-2 model: for
nested hypothesis, the Voung test reduces to the LR test. However, the critical values of the
classical LR test are invalid in this case since some of the standard regularity conditions of
the classical LR test fail to hold (Andrews 2001; Andrews and Cheng 2012). In particular,
the value of µ in the null hypothesis is not an interior point of the parameter space; hence,
the asymptotic distribution of the LR statistics is not standard.3

The NOP model is nested in the ZIOP-3 model. The latter becomes the former if α−−1 →
∞ and α+1 → −∞; therefore, Pr(yt = 0|x+t , s∗t = 1) → 0 and Pr(yt = 0|x−t , s∗t = −1) → 0.
The values of α−−1 and α

+
1 in the null hypothesis are not the interior points of the parameter

space; thus, the asymptotic distribution of the LR statistics is not standard. The comparison
of the NOP and ZIOP-3 models can also be performed using the LR test with simulated
adjusted critical values (Andrews 2001; Andrews and Cheng 2012).
Generally, the ZIOP-2 model is not a special case of the ZIOP-3 model, and vice versa.

We can compare them using the Vuong test. A special case when the ZIOP-3 model nests
the ZIOP-2 model emerges under certain restrictions on the parameters as explained below.
In this case, the selection between the ZIOP-3 and ZIOP-2 models can be performed using
any classical likelihood-based test for nested hypotheses such as the LR test.
The special case emerges if yt takes on only three discrete values j ∈ {−1, 0, 1}, the

regressors in x−t and x+t in the outcome equations of the ZIOP-3 model contain all the
regressors in the ZIOP-2 regime equation (denoted below by z2t with the parameter vector
γ2), and the regressors in the regime equation of the ZIOP-3 model (denoted below by z3t
with the parameter vector γ3) include all the regressors in the xt in the ZIOP-2 outcome
equation. According to (2) the probabilities of the outcome j in the ZIOP-2 model are given
by

Pr(yt = −1|z2t,xt) = Φ2(−µ+ z2tγ2;α−1 − xtβ;−ρ);

Pr(yt = 0|z2t,xt) = Φ(µ− z2tγ2) + Φ2(−µ+ z2tγ2;α0 − xtβ;−ρ)
−Φ2(−µ+ z2tγ2;α−1 − xtβ;−ρ) = 1− Φ2(−µ+ z2tγ2;−α0 + xtβ; ρ)
−Φ2(−µ+ z2tγ2;α−1 − xtβ;−ρ);

Pr(yt = 1|z2t,xt) = Φ(−µ+ z2tγ)− Φ2(−µ+ z2tγ2;α0 − xtβ;−ρ)
= Φ2(−µ+ z2tγ2;−α0 + xtβ; ρ),

(5)

since Φ2(x; y; ρ) = Φ(x)− Φ2(x;−y;−ρ).
Similarly, according to (3) the probabilities of the outcome j in the ZIOP-3 model are

given by

3Analogously, the use of the Vuong test for non-nested hypotheses to test for zero inflation in a Poisson
or negative binomial model with a binary regime equation is inappropriate too, because these models are
actually nested in their two-part zero-inflated extensions (Wilson 2015).



Pr(yt = −1|z3t,x−t ,x+t ) = Φ2(µ1 − z3tγ3;α−0 − x−t β−;ρ−);

Pr(yt = 0|z3t,x−t ,x+t ) = Φ(µ1 − z3tγ3)− Φ2(µ1 − z3tγ3;α−0 − x−t β−;ρ−)
+Φ(µ2 − z3tγ3)− Φ(µ1 − z3tγ3) + Φ2(−µ2 + z3tγ3;α

+
0 − x+t β+;−ρ+)

= Φ2(µ1 − z3tγ3;−α−0 + x−t β
−;−ρ−) + Φ(µ2 − z3tγ3)

−Φ(µ1 − z3tγ3) + Φ2(−µ2 + z3tγ3;α
+
0 − x+t β+;−ρ+);

Pr(yt = 1|z3t,x−t ,x+t ) = Φ(−µ2 + z3tγ3)− Φ2(−µ2 + z3tγ3;α
+
0 − x+t β+;−ρ+)

= Φ2(−µ2 + z3tγ3;−α+0 + x+t β
+; ρ+).

Suppose the regressors in x−t and x
+
t in the ZIOP-3 outcome equations are identical to the

regressors in z2t in the ZIOP-2 regime equation, the regressors in z3t in the ZIOP-3 regime
equation are identical to the regressors in the xt in the ZIOP-2 outcome equation, and the
parameters are restricted as follows: −β− = β+ = γ2, β = γ3, µ1 = α−1, µ2 = α0, −α−0 =
α+0 = µ and −ρ− = ρ+ = ρ. Then, since x−t = x+t = z2t, z3t = xt and Φ(−x) = 1 − Φ(x),
the probabilities for the ZIOP-3 model can be written as

Pr(yt = −1|xt, z2t) = Φ2(α−1 − xtβ;−µ+ z2tγ2;−ρ);

Pr(yt = 0|xt, z2t) = Φ2(α−1 − xtβ;µ− z2tγ2;ρ) + Φ(α0 − xtβ)− Φ(α−1 − xtβ)
+Φ2(−α0 + xtβ;µ− z2tγ2;−ρ) = −Φ2(α−1 − xtβ;−µ+ z2tγ2;−ρ) + 1
−Φ2(−α0 + xtβ;−µ+ z2tγ2; ρ);

Pr(yt = 1|xt, z2t) = Φ2(−α0 + xtβ;−µ+ z2tγ2; ρ),

which are identical to the probabilities for the ZIOP-2 model in (5).
Notice that the restrictions −β− = β+ = γ2 and −α−0 = α+0 = µ impose a sort of

symmetry in the ZIOP-3 model, because they imply that the conditional probability of a
positive response is equal to the conditional probability of a negative response:

Pr(yt = 1|z3t,x+t , s∗t = 1) = 1− Φ(α+0 − x+t β+) =

= Φ(−α+0 + x+t β
+) = Φ(α−0 − x−t β−) = Pr(yt = −1|zt,x−t , s∗t = −1).

In general, if x−t and x
+
t are not identical to z2t but contain all the regressors in z2t, and

if z3t is not identical to xt but contains all the regressors in xt, the ZIOP-2 model is still
nested in the ZIOP-3 model with the additional zero restrictions for the coeffi cients on all
the extra regressors in x−t , x

+
t and z3t.

3 The nop, ziop2 and ziop3 commands in Stata

The accompanying software includes the three new commands, the postestimation commands
and the supporting help files.



3.1 Syntax

The following commands estimate, respectively, the NOP, ZIOP-2 and ZIOP-3 models for
discrete ordinal outcomes:

nop depvar [indepvars] [if] [in] [, posindepvars(varlist)
negindepvars(varlist) infcat(choice) endoswitch robust
cluster(varname) nolog initial(string)vuong]

ziop2 depvar [indepvars] [if] [in] [, outindepvars(varlist) infcat(choice)
endoswitch robust cluster(varname) nolog initial(string)]

ziop3 depvar [indepvars] [if] [in] [, posindepvars(varlist)
negindepvars(varlist) infcat(choice) endoswitch robust
cluster(varname) nolog initial(string) vuong]

An ordinal dependent variable depvar is assumed to take on at least five discrete ordinal
values in the NOP model, at least two in the ZIOP-2 model, and at least three in the ZIOP-3
model. A list of the independent variables in the regime equation indepvars may be different
from the lists of the independent variables in the outcome equations.

Options

posindepvars(varlist) specifies a list of the independent variables in the outcome equation,
conditional on the regime s∗t = 1 for non-negative outcomes in the NOP and ZIOP-3
models; by default, it is identical to indepvars, the list of the independent variables in
the regime equation.

negindepvars(varlist) specifies a list of the independent variables in the outcome equation,
conditional on the regime s∗t = −1 for non-positive outcomes in the NOP and ZIOP-3
models; by default, it is identical to indepvars, the list of the independent variables in
the regime equation.

outindepvars(varlist) specifies a list of the independent variables in the outcome equation
of the ZIOP-2 model; by default, it is identical to indepvars, the list of the independent
variables in the regime equation.

infcat(choice) is the value of the dependent variable in the regime s∗t = 0 that should be
modeled as inflated in the ZIOP-2 and ZIOP-3 models, and as neutral in the NOP model;
by default, choice equals 0.

endoswitch specifies that endogenous regime switching is to be used instead of default
exogenous switching. Regime switching is endogenous if the unobserved random term
in the regime equation is correlated with the unobserved random terms in the outcome
equations, and exogenous otherwise.

robust specifies that a robust sandwich estimator of variance is to be used; the default
estimator is based on the observed information matrix.

cluster(varname) specifies a clustering variable for the clustered robust sandwich estima-
tor of variance.

initial(string) specifies a space-delimited list string of the starting values of the parame-
ters in the following order: γ, µ, β+, α+, β−, α−, ρ− and ρ+ for the NOP and ZIOP-3
models, and γ, µ, β, α and ρ for the ZIOP-2 model.



vuong specifies that the Vuong test of the NOP (or ZIOP-3) model versus the conventional
OP model should be performed. The reported Vuong test statistics (the standard one and
the two adjusted test statistics with corrections to address the comparison of models with
different numbers of parameters based on the Akaike (AIC) and Bayesian (BIC) infor-
mation criteria) have a standard normal distribution with large positive values favoring
the NOP (or ZIOP-3) model and large negative values favoring the OP model.

nolog suppresses the iteration log and preliminary results.

Stored results

The descriptions of the stored results can be found in the help files.

3.2 Postestimation commands

The following postestimation commands are available after nop, ziop2 and ziop3:

The predict command

predict newvar [if] [in] [, zeros regimes output(string)]

This command computes the predicted probabilities of the discrete choices (by default),
the regimes and the types of zeros conditional on the regime, and the predicted outcomes
and the expected values of the dependent variable for all observed values of the independent
variables in the sample. The command creates (J−+J++ 1) new variables under the names
with a newvar prefix. The following options are available:

regimes indicates that the probabilities of the regimes st ∈ {−1, 0, 1} must be predicted
instead of the choice probabilities. This option is ignored if the zeros option is used.

zeros indicates that the probabilities of the different types of zeros (the outcomes in the
inflated category infcat(choice) in the ZIOP-2 and ZIOP-3 models), conditional on
different regimes, must be predicted instead of the choice probabilities.

output(string) specifies the different types of predictions. The possible values of string
are: choice for reporting the predicted outcome (the choice with the largest predicted
probability); mean for reporting the expected value of the dependent variable computed
as
∑

i iPr(yt = i); and cum for predicting the cumulative choice probabilities: Pr(yt <=
−J−), Pr(yt <= −J−+ 1), ..., Pr(yt <= J+). If string is not specified, the usual choice
probabilities Pr(yt = −J−), Pr(yt = −J− + 1), ..., Pr(yt = J+) are predicted and saved
into the new variables with the newvar prefix.

The ziopprobabilities command

ziopprobabilities [, at(string) zeros regimes]

This command shows the predicted probabilities estimated at the specified values of the
independent variables along with the standard errors. The options zeros and regimes are
specified as in predict. The option at() is specified as follows:

at(string) specifies for which values of the independent variables to estimate the predictions.
If at(string) is used (string is a list of varname = value expressions, separated by
commas), the predictions are estimated at these values and displayed without saving to



the dataset. If some independent variable names are not specified, their median values
are taken instead. If at() is not used, by default the predictions are estimated at the
median values of the independent variables.

The ziopcontrasts command

ziopcontrasts [, at(string) to(string) zeros regimes]

This command shows the differences in the predicted probabilities, estimated first at the
values of the independent variables in at() and then at the values in to(), along with the
standard errors. The options zeros, regimes and at() are specified as in ziopprobabilities.
The options to() is specified analogously to at().

The ziopmargins command

ziopmargins [, at(string) zeros regimes]

This command shows the marginal effects of each independent variable on the predicted
probabilities estimated at the specified values of the independent variables along with the
standard errors. The options zeros, regimes and at() are specified as in ziopprobabilities.

The ziopclassification command

ziopclassification [if] [in]

This command shows the classification table (or confusion matrix); the percentage of
correct predictions; the two strictly proper scores – the probability, or Brier, score (Brier
1950) and the ranked probability score (Epstein 1969); the precisions, the hit rates (or recalls)
and the adjusted noise-to-signal ratios (Kaminsky and Reinhart 1999).
The classification table reports the predicted choices (the ones with the highest predicted

probability) in columns, the actual choices in rows, and the number of (mis)classifications
in each cell.
The Brier probability score is computed as 1

T

∑T
t=1

∑J+

j=−J− [Pr(yt = j) − Ijt]
2, where

indicator Ijt = 1 if yt = j and Ijt = 0 otherwise. The ranked probability score is computed
as 1

T

∑T
t=1

∑J+

j=−J− [Qjt −Djt]
2, where Qit =

∑j
i=−J− Pr(yt = i) and Dit =

∑j
i=−J− Ijt. The

better the prediction, the smaller both score values. Both scores have a minimum value of
zero when all the actual outcomes are predicted with a unit probability.
The precision, the hit rate (or recall) and the adjusted noise-to-signal ratios are defined

as follows. Let TP denote a true positive event, that is, the outcome was predicted and
occurred; let FP denote a false positive event, that is, the outcome was predicted but did
not occur; let FN denote a false positive event, that is, the outcome was not predicted but
did occur; and let TN denote a true negative event, that is, the outcome was not predicted
and did not occur. The desirable outcomes fall into categories TP and TN, while the noisy
ones fall into categories FP and FN. A perfect prediction has no entries in FP and FN, while
a noisy prediction has many entries in FP and FN, but few in TP and TN. The precision is
defined for each choice as TP/(TP+FP), the recall – as TP/(TP+FN ), and the adjusted
noise-to-signal ratio – as [FP/(FP+TN )]/[TP/(TP+FN )].



The ziopvuong command

ziopvuong modelspec1 modelspec2

This command performs the Vuong test for non-nested hypotheses, which compares the
closeness of two models to the true data distribution using the differences in the pointwise
log likelihoods of the two models. The arguments modelspec1 and modelspec2 are the names
under which the estimation results are saved using the estimates store command. Any
model that stores the vector e(ll_obs) of observation-wise log-likelihood can technically be
used to perform the test. The command provides the three Vuong test statistics (z-scores):
the standard one and two adjusted ones with corrections to address the comparison of models
with different numbers of parameters based on AIC and BIC. They can be used to test the
hypothesis that one of the models explains the data better than the other. A significant
positive z-score indicates a preference for the first model, while a significant negative value
of the z-score indicates a preference for the second model. An insignificant z-score implies
no preference for either model.

4 Monte Carlo simulations

We conducted extensive Monte Carlo experiments to illustrate the finite sample performance
of the ML estimators of each model.

4.1 Monte Carlo design

We simulated six processes generated by the NOP, ZIOP-2 and ZIOP-3 models, each of them
with both exogenous and endogenous switching. Repeated samples with 200, 500 and 1,000
observations were independently generated and then estimated by the true model. There
were 10,000 replications in each experiment.
Three independent variables w1, w2 and w3 were drawn in each replication as w1

iid∼
N (0, 1) + 2, w2

iid∼ N (0, 1), and w3 = −1 if u ≤ 0.3, 0 if 0.3 < u ≤ 0.7, or 1 if u >

0.7, where u iid∼ U [0, 1]. The repeated samples were generated for the NOP and ZIOP-3
models with Z = (w1,w2), X− = (w1,w3), X+ = (w2,w3), and for the ZIOP-2 model with
Z = (w1,w3), X = (w2,w3). The dependent variable y was generated with five values: -2,
-1, 0, 1 and 2. The parameters were calibrated to yield, on average, the following frequencies
of the above outcomes: 7%, 14%, 58%, 14% and 7%, respectively. To avoid the divergence of
ML estimates due to the problem of complete separation (perfect prediction), which could
happen if the actual number of observations in any outcome category is very low, the samples
with any outcome category frequency lower than 6% were re-generated. The variances of
the error terms in all equations were fixed to one. The true values of all other parameters in
the simulations are shown in Table A1 in Appendix. The starting values for the slope and
threshold parameters were obtained using the independent OP estimations of each equation.
The starting values for ρ, ρ− and ρ+ were obtained by maximizing the likelihood functions
of the endogenous-switching models holding the other parameters fixed at their estimates
in the corresponding exogenous-switching model. The values of the choice probabilities,
which depend on the values of the regressors, are computed at the population medians of
the regressors.



4.2 Monte Carlo results

Table 1 reports the measures of the accuracy for the estimates of the choice probabilities.
The results for the estimates of the parameters and MEs are qualitatively and quantitatively
similar. The simulations show that the ML estimators are consistent and reliable even in
samples with only 200 observations: the biases of choice probability estimates are smaller
than five percent and the asymptotic coverage rates differ from the nominal 0.95 level by
less than one percent. For each model, the bias and RMSE decrease as the sample size
increases. The RMSE decreases, in most cases, faster than the asymptotic rate

√
n. This

may be caused by a small number of large deviations in the parameter estimation in small
samples. For all models and sample sizes, the bias and RMSE are, as expected, slightly
higher for a more complex endogenous-switching version. The standard error estimates, on
average, correspond to the actual standard errors; however, large deviations make standard
error estimates biased in small samples, but do not move the coverage rates from the nominal
level by more than one percent even with only 200 observations. The accuracy in the NOP
models is, as expected, higher than in the zero-inflated OP models.

Table 1. Monte Carlo results: The accuracy of ML estimators

NOP NOP ZIOP2 ZIOP2 ZIOP3 ZIOP3
(ρ=ρ+=0) (ρ=0) (ρ=ρ+=0)

200 2.3 1.5 4.4 5.1 3.3 3.1
500 1.1 0.9 2.3 3.0 1.6 1.5

1000 0.4 0.4 1.3 1.7 0.8 1.0
200 2.4 2.6 2.8 2.9 2.7 2.9
500 1.5 1.6 1.7 1.8 1.6 1.8

1000 1.1 1.1 1.2 1.2 1.1 1.3
200 94.4 94.4 95.3 95.3 95.1 94.8
500 95.4 95.2 95.6 95.6 95.9 95.7

1000 95.5 95.5 95.7 95.7 95.6 95.6
200 4.2 4.2 6.9 6.4 5.5 15.1
500 3.9 4.6 6.9 6.1 5.3 16.6

1000 2.6 3.4 5.7 5.9 3.7 13.9

size
True and estimated model:Sample

The accuracy of the estimates of choice probabilities

Bias, %

RMSE, ×100

Coverage rate
(at 95% level), %

Bias of standard error
estimates, %

Notes: Bias — the absolute difference between the estimated and true values, divided by the true value;
RMSE —the absolute root mean square error of the estimates; Coverage rate —the percentage of times the
estimated asymptotic 95% confidence intervals cover the true values; Bias of standard error estimates —the
absolute difference between the average of the estimated asymptotic standard errors of the estimates and the
standard deviation of the estimates in all replications. The above measures are averaged across five outcome
categories.

5 Examples

The new commands are applied to a real-world time-series sample of all decisions of the
U.S. Federal Open Market Committee (FOMC) on the federal funds rate target made at
scheduled and unscheduled meetings during the 9/1987 —9/2008 period.



The dependent variable, the change to the rate target, is classified into five ordered
categories: “-0.5” (a cut of 0.5% or more), “-0.25” (a cut less than 0.5% but more than
0.0625%), “0”(no change or change by no more than 0.0625%), “0.25”(a hike more than
0.0625% but less than 0.5%) and “0.5”(a hike of 0.5% or more). The FOMC decisions are
aligned with the real-time values of the explanatory variables as they were truly available
to the public on the previous day before each FOMC meeting. The explanatory variables
include: spread (the difference between the one-year treasury constant maturity rate and
the effective federal funds rate, five-business-day moving average; data source: ALFRED4);
pb (the trichotomous indicator that we constructed from the “policy bias”statements at the
previous FOMC meeting: it equals 1 if the statement was asymmetric toward tightening, 0
if the statement was symmetric, and -1 if the statement was asymmetric toward easing; data
source: FOMC statements and minutes5); houst (the Greenbook projection for the current
quarter of the total number of new privately owned housing units started; data source:
RTDSM6); gdp (the Greenbook projection for the current quarter of quarterly growth in the
nominal gross domestic (before 1992: national) product, annualized percentage points; data
source: RTDSM).
We start by estimating the conventional OP model using the oprobit command:

. oprobit rate_change spread pb houst gdp, nolog

Ordered probit regression Number of obs = 210
LR chi2(4) = 214.54
Prob > chi2 = 0.0000

Log likelihood = -159.56242 Pseudo R2 = 0.4020

------------------------------------------------------------------------------
rate_change | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

spread | 1.574232 .1870759 8.41 0.000 1.20757 1.940894
pb | .9262378 .1479364 6.26 0.000 .6362877 1.216188

houst | 1.373179 .3459397 3.97 0.000 .6951499 2.051209
gdp | .2390714 .0571926 4.18 0.000 .1269761 .3511668

-------------+----------------------------------------------------------------
/cut1 | .4656819 .5382091 -.5891885 1.520552
/cut2 | 1.8382 .5339707 .7916362 2.884763
/cut3 | 4.835985 .6359847 3.589478 6.082492
/cut4 | 6.331172 .6875922 4.983516 7.678828

------------------------------------------------------------------------------

. estat ic

Akaike´s information criterion and Bayesian information criterion

-----------------------------------------------------------------------------
Model | Obs ll(null) ll(model) df AIC BIC

-------------+---------------------------------------------------------------
. | 210 -266.8308 -159.5624 8 335.1248 361.9017

-----------------------------------------------------------------------------

4ALFRED (ArchivaL Federal Reserve Economic Data) is available at https://alfred.stlouisfed.org/.
5https://www.federalreserve.gov/monetarypolicy/fomc_historical.htm.
6RTDSM (Real-Time Data Set for Macroeconomists) is available at https://www.philadelphiafed.org.



We now allow the negative, zero and positive changes to the rate target to be generated
by different processes, and estimate the three-part NOP model. The nop command yields
the following results:

. nop rate_change spread pb houst gdp, neg(spread gdp) pos(spread pb) inf(0) nolog vuong
Nested ordered probit regression
Regime switching: exogenous
Number of observations = 210
Log likelihood = -150.9638
McFadden pseudo R2 = 0.4342
LR chi2( 8) = 231.7341
Prob > chi2 = 0.0000
AIC = 325.9276
BIC = 366.0929
--------------------------------------------------------------------------------------

rate_change | Coef. Std. Err. z P>|z| [95% Conf. Interval]
---------------------+----------------------------------------------------------------
Regime equation |

spread | 1.579634 .2195074 7.20 0.000 1.149407 2.00986
pb | .8769436 .1582913 5.54 0.000 .5666983 1.187189

houst | 2.303497 .4324382 5.33 0.000 1.455934 3.15106
gdp | .2742909 .0696122 3.94 0.000 .1378535 .4107283

/cut1 | 3.299825 .6832466 4.83 0.000 1.960686 4.638963
/cut2 | 6.496983 .8339921 7.79 0.000 4.862389 8.131578

---------------------+----------------------------------------------------------------
Outcome equation (+) |

spread | 1.627788 .6748859 2.41 0.016 .3050354 2.95054
pb | 2.255519 .8805447 2.56 0.010 .5296829 3.981355

/cut1 | 3.13416 .9511016 3.30 0.001 1.270035 4.998285
---------------------+----------------------------------------------------------------
Outcome equation (-) |

spread | .9489572 .3821965 2.48 0.013 .1998659 1.698049
gdp | .1339181 .1006124 1.33 0.183 -.0632785 .3311147

/cut1 | -.4720761 .4202012 -1.12 0.261 -1.295655 .351503
--------------------------------------------------------------------------------------
Vuong test versus ordered probit:
Mean difference in log likelihood 0.0409
Standard deviation of difference in log likelihood 0.2626
Number of observations 210
Vuong test statistic z = 2.2600
P-Value Pr>z = 0.0119

with AIC (Akaike) correction z = 1.2087
P-Value Pr>z = 0.1134

with BIC (Schwarz) correction z = -0.5508
P-Value Pr>z = 0.7091

The NOP model provides a substantial improvement of the likelihood, and is preferred to
the standard OP model according to AIC and the Vuong test (the p-value is 0.01). However,
the Vuong tests with the corrections based on AIC and BIC are indifferent between the two
models. Endogenous switching does not significantly improve the likelihood of the NOP
model (the log likelihood with endogenous switching is -150.2, the p-value of the LR test
of the null of exogenous switching is 0.48), the correlation coeffi cients ρ−and ρ+ are not
significant, and both AIC and BIC favor the NOP model with exogenous switching.



Next we allow for an inflation of zero outcomes and estimate the three-part ZIOP-3
model. The ziop3 command with exogenous switching yields the following results:

. ziop3 rate_change spread pb houst gdp, neg(spread gdp) pos(spread pb) inf(0) nolog vuong
(output omitted)
Zero-inflated ordered probit regression
Zero inflation: three regimes
Regime switching: exogenous
Number of observations = 210
Log likelihood = -139.5529
McFadden pseudo R2 = 0.4770
LR chi2(10) = 254.5558
Prob > chi2 = 0.0000
AIC = 307.1058
BIC = 353.9653
--------------------------------------------------------------------------------------

rate_change | Coef. Std. Err. z P>|z| [95% Conf. Interval]
---------------------+----------------------------------------------------------------
Regime equation |

spread | 2.106257 .364262 5.78 0.000 1.392317 2.820198
pb | 1.628486 .3356997 4.85 0.000 .9705269 2.286446

houst | 5.311379 .9913486 5.36 0.000 3.368372 7.254387
gdp | .3809606 .1085468 3.51 0.000 .1682127 .5937084

/cut1 | 9.103481 1.772781 5.14 0.000 5.628894 12.57807
/cut2 | 12.3481 1.952013 6.33 0.000 8.522227 16.17398

---------------------+----------------------------------------------------------------
Outcome equation (+) |

spread | 1.809669 .7282205 2.49 0.013 .3823831 3.236955
pb | 2.620109 .9836793 2.66 0.008 .6921334 4.548085

/cut1 | -1.481781 1.015198 -1.46 0.144 -3.471532 .5079697
/cut2 | 3.509078 1.070858 3.28 0.001 1.410236 5.607921

---------------------+----------------------------------------------------------------
Outcome equation (-) |

spread | 1.072859 .2690323 3.99 0.000 .5455655 1.600153
gdp | .177697 .0742318 2.39 0.017 .0322055 .3231886

/cut1 | -.6373707 .3361142 -1.90 0.058 -1.296142 .021401
/cut2 | .7569744 .3460019 2.19 0.029 .0788232 1.435126

--------------------------------------------------------------------------------------
Vuong test versus ordered probit:
Mean difference in log likelihood 0.0953
Standard deviation of difference in log likelihood 0.3851
Number of observations 210
Vuong test statistic z = 3.5853
P-Value Pr>z = 0.0002

with AIC (Akaike) correction z = 2.5102
P-Value Pr>z = 0.0060

with BIC (Schwarz) correction z = 0.7110
P-Value Pr>z = 0.2385

The empirical evidence in favor of zero inflation is convincing: with only two extra
parameters, the ZIOP-3 model has a much higher likelihood than the NOP model (-139.6
vs. -151.0), and is clearly preferred by both AIC and BIC to the NOP and OP models.
The Vuong tests for zero inflation (the standard one and one with the correction based on
AIC) favor the ZIOP-3 model over the OP model at the 0.001 and 0.01 level, respectively.
Endogenous switching does not significantly improve the likelihood of the ZIOP-3 model
either (the p-value of the LR test of exogenous switching is 0.30, and both AIC and BIC
prefer the exogenous switching).



In contrast, the likelihood of the two-part ZIOP-2 model is even lower than that of the
NOP model. According both to AIC and BIC, the ZIOP-2 model is inferior to all the above
models, including the OP one. The ziop2 command yields the following results:

. ziop2 rate_change spread pb houst gdp, out(spread pb houst gdp ) infcat(0) nolog
Zero-inflated ordered probit regression
Zero inflation: two regimes
Regime switching: exogenous
Number of observations = 210
Log likelihood = -154.3563
McFadden pseudo R2 = 0.4215
LR chi2( 9) = 224.9490
Prob > chi2 = 0.0000
AIC = 334.7126
BIC = 378.2250
----------------------------------------------------------------------------------

rate_change | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-----------------+----------------------------------------------------------------
Regime equation |

spread | -.5718098 .4932372 -1.16 0.246 -1.538537 .3949173
pb | 2.220756 1.124943 1.97 0.048 .015908 4.425605

houst | .4317792 .9262931 0.47 0.641 -1.383722 2.24728
gdp | -.3039409 .1561281 -1.95 0.052 -.6099462 .0020645

/cut1 | -3.269292 2.104548 -1.55 0.120 -7.394131 .8555464
-----------------+----------------------------------------------------------------
Outcome equation |

spread | 1.920514 .2407834 7.98 0.000 1.448587 2.392441
pb | 1.21367 .1982338 6.12 0.000 .8251391 1.602201

houst | 1.637904 .3932584 4.16 0.000 .8671315 2.408676
gdp | .2358575 .0628755 3.75 0.000 .1126239 .3590911

/cut1 | .5651226 .5985828 0.94 0.345 -.6080782 1.738323
/cut2 | 2.422641 .6270021 3.86 0.000 1.193739 3.651542
/cut3 | 5.397053 .7416277 7.28 0.000 3.94349 6.850617
/cut4 | 7.039527 .8100945 8.69 0.000 5.451771 8.627283

----------------------------------------------------------------------------------

The Vuong tests prefer the ZIOP-3 model to the ZIOP-2 model at the 0.01 significance
level using the standard test statistic, and at the 0.02 and 0.03 levels using the corrected
statistics based, respectively, on AIC and BIC:

. quietly ziop3 rate_change pb spread houst gdp, neg(spread gdp ) pos(pb spread) inf(0)
(output omitted)

. est store ziop3_model

. quietly ziop2 rate_change spread pb houst gdp, out(spread pb houst gdp) inf(0)

. est store ziop2_model

. ziopvuong ziop3_model ziop2_model
Vuong non-nested test for ziop3_model vs ziop2_model
Mean difference in log likelihood 0.0705
Standard deviation of difference in log likelihood 0.4235
Number of observations 210
Vuong test statistic z = 2.4119
P-Value Pr>z = 0.0079

with AIC (Akaike) correction z = 2.2490
P-Value Pr>z = 0.0123

with BIC (Schwarz) correction z = 1.9763
P-Value Pr>z = 0.0241

Now we report the selected output of the postestimation commands, performed for the
ZIOP-3 model.



The predicted choice probabilities at the specified values of the independent variables
can be estimated using the ziopprobabilities command:

. ziopprobabilities, at (pb=1, spread=0.426, houst=1.6, gdp=6.8)
Evaluated at:
gdp houst pb spread

6.8000 1.6000 1.0000 0.4260

Predicted probabilities of different outcomes
Pr(y=-.5) Pr(y=-.25) Pr(y=0) Pr(y=.25) Pr(y=.5)

0.0000 0.0000 0.1027 0.4908 0.4065

Standard errors of the probabilities
Pr(y=-.5) Pr(y=-.25) Pr(y=0) Pr(y=.25) Pr(y=.5)

0.0000 0.0000 0.0491 0.1173 0.1154

The predicted probabilities of the three latent regimes s∗t ∈ {−1, 0, 1} or the probabilities
of the three types of zeros conditional on each regime can be estimated for each sample
observation using the command predict with the option zeros or regimes, respectively:

. predict p_zero, zeros

. predict p_reg, regimes

. tabstat p_zero* p_reg*, stat(mean)

stats | p_zero_0 p_zero_n p_zero_p p_reg_n p_reg_0 p_reg_p
---------+------------------------------------------------------------

mean | .3895957 .1453901 .0042672 .4028259 .3895957 .2075784
----------------------------------------------------------------------

The average predicted probabilities of the regimes st = −1, st = 0 and st = 1 in the
sample are 0.40, 0.39 and 0.21, respectively. However, the average probability of zeros
conditional on the regime st = −1 (0.15) is much higher than on the regime st = 1 (0.00).
The marginal effects of the independent variables on the choice probabilities at the spec-

ified values of the independent variables can be estimated using the ziopmargins command:

. ziopmargins, at (pb=1, spread=0.426, houst=1.6, gdp=6.8)
Evaluated at:
gdp houst pb spread

6.8000 1.6000 1.0000 0.4260

Marginal effects of all variables on the probabilities of different outcomes
| Pr(y=-.5) Pr(y=-.25) Pr(y=0) Pr(y=.25) Pr(y=.5)

-----------+-----------------------------------------------------------------
gdp | -0.0000 -0.0000 -0.0682 0.0373 0.0309

houst | -0.0000 -0.0000 -0.9503 0.5198 0.4305
pb | -0.0000 -0.0000 -0.2914 -0.7720 1.0634

spread | -0.0000 -0.0000 -0.3769 -0.4372 0.8140

Standard errors of marginal effects
| Pr(y=-.5) Pr(y=-.25) Pr(y=0) Pr(y=.25) Pr(y=.5)

-----------+-----------------------------------------------------------------
gdp | 0.0000 0.0000 0.0244 0.0156 0.0143

houst | 0.0000 0.0000 0.2840 0.1924 0.1799
pb | 0.0000 0.0000 0.0772 0.4059 0.3890

spread | 0.0000 0.0000 0.1115 0.3106 0.2971

The differences in the predicted choice probabilities (along with the standard errors) at
two different values of the independent variables can be estimated using the ziopcontrasts
command. In particular, this command may be used to compute the MEs of the discrete



ordinal independent variables such as pb (instead of using the ziopmargins command, which
computes the derivatives of the probabilities):

. ziopcontrasts, at(pb=1, spread=0.426, houst=1.6, gdp=6.8) ///
> to(pb=0, spread=0.426, houst=1.6, gdp=6.8)
Evaluated between

| gdp houst pb spread
-----------+-----------------------------------

from | 6.8000 1.6000 1.0000 0.4260
to | 6.8000 1.6000 0.0000 0.4260

Contrasts of the predicted probabilities of different outcomes
Pr(y=-.5) Pr(y=-.25) Pr(y=0) Pr(y=.25) Pr(y=.5)

0.0000 0.0003 0.5427 -0.1376 -0.4054

Standard errors of the contrasts
Pr(y=-.5) Pr(y=-.25) Pr(y=0) Pr(y=.25) Pr(y=.5)

1.8053 0.9350 0.2971 0.3404 0.7325

Finally, the different measures of model fit and the accuracy of the probabilistic predic-
tions can be computed using the ziopclassification command:

. ziopclassification
Classification table

Actual | Predicted outcomes
outcomes | -.5 -.25 0 .25 .5 | Total

-----------+-------------------------------------------------------+----------
-.5 | 7 9 2 0 0 | 18
-.25 | 2 21 12 0 0 | 35

0 | 1 8 100 5 0 | 114
.25 | 0 0 9 25 0 | 34
.5 | 0 0 2 4 3 | 9

-----------+-------------------------------------------------------+----------
Total | 10 38 125 34 3 | 210

Accuracy (% of correct predictions) = 0.7429
Brier score = 0.3731
Ranked probability score = 0.2160

Actual |
outcomes | Precision Recall Adjusted noise-to-signal ratio

-----------+-----------------------------------------------------------
-.5 | 0.7000 0.3889 0.0402
-.25 | 0.5526 0.6000 0.1619

0 | 0.8000 0.8772 0.2969
.25 | 0.7353 0.7353 0.0695
.5 | 1.0000 0.3333 0.0000

As Table 2 reports, the ZIOP-3 model demonstrates the best fit according to all the
criteria.



Table 2. Comparison of the alternative models

OP NOP ZIOP2 ZIOP3

AIC 335.1 325.9 334.7 307.1

BIC 361.9 366.1 378.2 354.0

Percentage of correct predictions 0.66 0.70 0.70 0.74

Brier probability score 0.42 0.40 0.41 0.37

Ranked probability score 0.24 0.23 0.23 0.22

Adjusted noisetosignal ratio for zeros 0.44 0.41 0.36 0.30

Measure of fit

Notes: The NOP, ZIOP-2 and ZIOP-3 models are estimated with exogenous switching.

6 Concluding remarks

This article describes the ML estimation of the nested and cross-nested zero-inflated ordered
probit models using the new STATA commands nop, ziop2 and ziop3. Such models can be
applied to a variety of data sets in which the discrete ordinal outcomes can be divided into
groups (nests) of similar choices, for example, the decisions to reduce, leave unchanged, or
increase the choice variable (monetary policy interest rates, rankings, prices, consumption
levels), or the negative, neutral, or positive attitudes to survey questions. The choice among
the nests is driven by an ordered-choice switching mechanism that can be either exogenous
or endogenous to the outcome decisions, which are also naturally ordered (large or small
increase/decrease; disagree or strongly disagree; etc.). The models allow the probabilities of
choices from different nests (e.g., no change and an increase) to be driven by distinct mecha-
nisms. Moreover, the cross-nested zero-inflated models allow the often abundant no-change
or neutral outcomes to belong to all nests and be inflated by several different processes. The
results of Monte Carlo simulations indicate that the proposed ML estimators are consistent
and perform well in small samples.
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Appendix

Table A1. Monte Carlo simulations: The true values of parameters

NOP
(exog)

NOP ZIOP2
(exog)

ZIOP2 ZIOP3
(exog)

ZIOP3

γ (0.6, 0.4)' (0.6, 0.4)' (0.6, 0.8)' (0.6, 0.8)' (0.6, 0.4)' (0.6, 0.4)'
μ (0.21, 2.19)' (0.21, 2.19)' 0.45 0.45 (0.9, 1.5)' (0.9, 1.5)'
β (0.5, 0.6)' (0.5, 0.6)'
β  (0.3, 0.9)' (0.3, 0.9)' (0.3, 0.9)' (0.3, 0.9)'

β + (0.2, 0.3)' (0.2, 0.3)' (0.2, 0.3)' (0.2, 0.3)'
α (1.45, 0.55, 0.75, 1.65)' (1.18,0.33, 0.9, 1.76)'
α  0.17 0.5 (0.67, 0.36)' (0.88, 0.12)'

α + 0.68 1.3 (0.02, 1.28)' (0.49, 1.67)'
ρ 0 0.5
ρ  0 0.3 0 0.3

ρ + 0 0.6 0 0.6

Notes: (exog) —exogenous switching: ρ = ρ− = ρ+ = 0. The variances σ2, σ2−, σ
2
+, and σ

2
ν are all fixed to

one in all models.
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