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Abstract. We propose a maximum likelihood (ML) based method to improve the bunching

approach of measuring the elasticity of taxable income (ETI), and derive the estimator for several
model settings that are prevalent in the literature, such as perfect bunching, bunching with

optimization frictions, notches, and heterogeneity in the ETI. We show that the ML estimator

is more precise and likely less biased than ad-hoc bunching estimators that are typically used in
the literature. In the case of optimization frictions in the form of random shocks to earnings,

the ML estimation requires a prior of the average size of such shocks. The results obtained in
the presence of a notch can differ substantially from those obtained using ad-hoc approaches. If

there is heterogeneity in the ETI, the elasticity of the individuals who bunch exceeds the average

elasticity in the population.
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1. Introduction

A large literature addresses the problem of estimating the elasticity of taxable
income (ETI). The early literature focused on changes in income levels over time,
eventually leading to instrumental variables (IV) regression approaches that essen-
tially regress changes in taxable income on changes in the net-of-tax rate (Feldstein,
1995; Gruber and Saez, 2002; Weber, 2014). Recently, bunching approaches to mea-
suring the ETI have evolved as an alternative to regression methods, following the
seminal paper of Saez, (2010). Saez argues that if the taxable income responds to
marginal taxation, then the observed income distribution depends on the net-of-tax
rate. Therefore, the change in the net-of-tax rate at a kink point keeps some individ-
uals from earning income above that kink. These individuals will create an excess
mass (bunching) at the kink point, the size of which can identify the ETI.

The appeal of the bunching approach is that it circumvents endogeneity and weak
instrument problems that are typical for the IV regression methods.1 Instead, data
containing a single cross-section with at least one change in the marginal net-of-tax
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rate is sufficient to identify the ETI in principle. Yet, the bunching approach faces
practical problems. In particular, individuals may not bunch exactly at the kink,
due to optimization frictions or income shocks that are outside their control. In that
case, in order to estimate the ETI, it is necessary to compare the observed income
distribution to a counter-factual distribution in the absence of the kink point. The
literature relies on non-parametric methods such as polynomial smoothing based on
histograms, that are typically not best in a non-parametric sense. This is because
they rely on the visual identification of the bunching range, because grouped data
can lead to a biased estimate using such methods, and because the non-parametric
estimate is based on the observed income density with exception of the bunching
range, which makes that range an out-of-sample prediction that is not necessarily
fitted well.

We argue that parametric methods, the assumptions of which are fully described,
are preferable to non-parametric methods, whose statistical consequences are opaque.
This paper therefore provides a structural approach to the measurement of the ETI
based on the bunching method. We propose a maximum likelihood estimation (MLE)
based method to improve currently used approaches (but see Bertanha et al., (2018)
for an alternative take on the same issues). Specifically, the proposed method is
based on the log linear labor supply model with log-normal unobserved components
which can be applied to the case of data with perfect bunching, as well as extended
to account for imperfect bunching, or to account for the possibilities of notches, i.e.,
noncontinuous jumps in the tax due. The MLE approach has four advantages over
procedures based on polynomial smoothing of the distribution around the kink.2

First, it is transparent in terms of the underlying model of income formation, as
well as in terms of functional form and distributional assumptions. Second, mea-
surement error/ optimization frictions can be modeled explicitly, which allows for
the estimation of their size as opposed to the visual determination of the bunching
interval. As indicated above, this aspect is potentially very important, since individ-
uals do not bunch exactly at the kink. Third, the ML estimator can be extended to
include covariates and can thus control for specific characteristics of different types
of taxpayers, while still assuming a common distribution of the unobserved income
component or optimization frictions. Fourth, the approach is in principle more flex-
ible, as the precise model can be adjusted and the number of behavioral margins of
the underlying model can be increased. It is also applicable to non-convex budget
sets, which can be exemplified by the presence of notches (see, e.g., Pudney, 1989,
chapter 5, and Hausman, 1980. See also Kleven and Waseem, 2013 for a recent
application).

We obtain four main results: First, the MLE estimator is more precise and
likely less biased than the ad-hoc bunching estimators that are typically used in the
literature. Second, in the case of bunching at kink points, the MLE estimation fits the
data of several published papers very well, and produces results in a similar order of

2As advocated for example by Chetty et al., (2011) and Kleven and Waseem, (2013).
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magnitude. Third, results obtained in the presence of a notch can differ substantially
from those obtained using ad-hoc approaches. Last, if there is heterogeneity in
the ETI parameter, the elasticity of the individuals who bunch exceeds the average
elasticity in the population. Yet, as many empirical results for the ETI are very
small, the estimated heterogeneity of the ETI is typically also small.

After presenting Saez’s basic intuition of the bunching estimator of the ETI, and
some modifications used in the literature (section 2) we discuss how our parametric
estimator can improve the measurement in terms of efficiency. Then, we define the
parametric estimators for the ETI that are adapted to the theoretical benchmark
case of perfect bunching (Section 3), and several alternative environments such as
and imperfect bunching (Section 4), bunching in the presence of a notch (Section
5), and heterogeneity in the ETI (Section 6). For each environment, we apply the
method to the data of published studies in the field. Section 7 concludes.

2. Basic Intuition

We base our parametric estimator on a model used by Saez, (2010) which is the
seminal paper on the bunching estimator, and similar to other models used in earlier
research on the ETI. By using the same model, we can compare our results to those
obtained in the literature. Furthermore, we can use Saez’ (2010) original rationale
to illustrate the intuition of the bunching estimator.

Suppose that the preferences over consumption, c, and work hours, h, can be
represented by the quasi-linear utility function

u(c, h) = c− η

1 + 1/α

(h
η

)1+ 1
α
, (1)

which yields the log linear labor supply function given the before-tax wage rate w,
and the marginal tax rate, τ ,

lnh∗(w, η) = α lnw(1− τ) + ln η. (2)

In Equation (2), α > 0 is the wage elasticity of the labor supply with respect to the
marginal net wage rate, w(1− τ), and (−η) < 0 is the disutility of work. Assuming
that we cannot observe the wage rate but only the taxable earnings, we are interested
in the optimal earnings function

lnwh∗ = α ln τ c + lnω ≡ ln z, (3)

where τ c ≡ (1 − τ) is the marginal net-of-tax rate. Given our assumptions, ω =
w(α+1)η describes an unobserved component of the individual’s income.

As the preferences are quasi-linear and the labor supply is isoelastic, the be-
havioral response of earnings, z, to a marginal change in the net-of-tax rate is then
defined as: d ln z

d ln τc
= α. As earnings are the only source of income, α is the elasticity

of taxable income (ETI) w.r.t. the net-of-tax rate.
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Given the preferences in Equation (1), the optimal level of earnings z is an
increasing function of both the unobserved income component ω and the net-of-
tax rate τ c. In a tax environment with one kink at the earnings level k, where
the net-of-tax rate τ c2 to the right of k is less than the net-of-tax rate τ c1 to the
left of k, the earnings distributions below and above the kink will follow different
distributions: z(τ c1 , ω) below the kink and z(τ c2 , ω) above the kink. For a particular
value of the unobserved income component ω̂, z(τ c1 , ω̂) exceeds z(τ c2 , ω̂), because the
individual would choose a higher income level if she can keep more at the margin.
Analogously, for a particular income level ẑ, there are two values of ω, ω1 and ω2,
such that ẑ = z(τ c1 , ω1) = z(τ c2 , ω2). For both income functions z(τ c1 , ω)|(z < k) and
z(τ c2 , ω)|(z > k), there is an exact correspondence between income, z, and ω, as the
marginal net-of-tax rate τ c is well-defined. At the kink, however, a range of values
of the unobserved income component are possible: define ω such that z(τ c1 , ω) ≡ k
and ω̄ such that z(τ c2 , ω̄) ≡ k. Then, Saez, (2010) argues that individuals with an
unobserved income component ω ∈ [ω, ω̄] choose z = k. If the density function of
ω is smooth, then the observed income distribution will spike at the kink income.
Furthermore, if the densities of the income distribution to the left and to the right
of the kink income are known, then the size of the spike (the amount of bunching)
identifies the ETI.

Let us formalize the corresponding bunching estimator of the ETI, still following
Saez exactly. Denote the probability to be observed at the kink by B, and let f(ω)
denote the density function for the unobserved income component. As the income
level and the level of the unobserved component identify each other uniquely given
the marginal net-of-tax rate, B can be expressed in terms of either the income level
or the unobserved income component:3

B = P[z = k] = P[z(τ c1 , ω) ≤ k ≤ z(τ c2 , ω)]

= P[ω ≤ ω ≤ ω̄]

=

∫ ω̄

ω

f(ω)dω.

(4)

In order to estimate B, we would prefer to express B in terms of observables
instead of unobservables, that is in terms of the income distributions f̃(z; τ c1)|(z < k)

and f̃(z; τ c2)|(z > k), instead of the distribution f(ω). To this aim, it is instructive
to note that in the absence of a kink (if the net-of-tax rate was τ c1 for all levels
of income), the tax payers who bunch would instead realize earnings in the interval
z ∈ [z(τ c1 , ω), z(τ c1 , ω̄)] ≡ [k, (k+d)] of length d. We can then express B in terms of the
density of the income distribution under the net-of-tax rate τ c1 (i.e., the hypothetical
income distribution in the absence of the kink):

3We can also express ω as the inverse function of the income level and the tax rate, such that
z(τ c, z−1(τ c, k)) = k.
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Figure 1. Bunching

Note: ω describes the unobserved income component. z(τ c1 , ω) and z(τ c2 , ω) describe optimal earn-
ings functions given the respective net-of-tax rate τ c and the unobserved component ω. dω

dz (τ, z)
describes the derivative of ω(τ, z), i.e., the inverse earnings function, with respect to optimal earn-
ings, evaluated at the earnings level z and under the tax rate τ .

B =

∫ k+d

k

f̃(z; τ c1)dz, (5)

where (k + d) = z(τ c1 , ω̄) is the optimal level of earnings which the individual with
the smallest disutility of work among those bunching at k would choose under the
uniform net-of-tax rate τ c1 .4 Figure 1 illustrates the relation between the unobserved
component ω and the income level z given the net-of-tax rate τ c, and depicts B in
terms of Equation (5). Saez’ approach approximates Equation (5) (area B̂ in Figure
1) using a trapezoidal approximation

B =

∫ k+d

k

f̃(z; τ c1)dz

≈ d
(
f̃(k; τ c1) + f̃(k + d; τ c1)

)1

2
.

(6)

4The individual would prefer that quantity to k. Under the piecewise linear tax system, this
level of earnings is not available, however, at the tax rate before the kink.
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In the approximation in Equation (6), f̃(k; τ c1) is in principle observable, while

d and f̃(k + d; τ c1) are not. To derive f̃(k + d; τ c1), note that the density function of
the unobserved component f(ω) can be transformed to the density function of the

income distribution f̃(z) by using the inverse earnings function ω(τ c, z) = z−1(τ c, z)
such that

f̃(z; τ c) = f(ω)
dω

dz
(τ c, z).

Therefore, the densities of the earnings distributions at a given level of the unobserved
income component ω̂ are in a strict relation to each other:

f̃(z; τ c1) = f̃(z; τ c2)
dω
dz

(τ c1 , z)
dω
dz

(τ c2 , z))
≡ f̃(z; τ c2)γ(τ c1 , τ

c
2 , z).

The unobservable term f̃(k+d; τ c1) can thus be replaced by f̃(k; τ c2)γ(τ c1 , τ
c
2 , k): Saez’

approximation can now be expressed in terms of the densities of the observed income
distributions before and after the kink:

B ≈ d
(
f̃(k; τ c2)γ(τ c1 , τ

c
2 , k) + f̃(k; τ c1)

)1

2
. (7)

The sizes of d and γ can be constructed from observables using the model struc-
ture, in particular the optimal earnings level in Equation (3), which after substitution
in Equation (7) gives Saez’s Equation (5) exactly.5

Saez bases his estimate for α on the approximation in Equation (7) and replaces
the unknown components such as the two densities by empirical analogs. Further-
more, the empirical results in Saez, (2010) are based on the assumption that bunching
is imperfect, i.e., that it occurs in an interval around the kink rather than precisely at
the kink, as displayed in Figure 2. Imperfect bunching complicates the estimation of
B, because the bunching population is now spread out over an interval that contains
also individuals that do not bunch. The bunching probability B (the green striped
area in Figure 2) then equals the probability to be in the interval (both shaded
areas), minus the probability to be one of the individuals in the interval that did
not intend to be at k (the yellow shaded area). B is therefore referred to as excess
bunching. This correction requires an assumption about the counter-factual density
in the interval around k in the absence of a kink point. Saez, (2010) assumes that
the counter-factual density on each side of the kink equals the density next to the
bunching interval.

While the intuition of the bunching estimator is clear and provides a simple
and theory-based method to estimate the ETI, it is empirically challenging. The
estimator in Equation (7) demands the measurement of several quantities which

5with z−1(τ c, e) = τ cα/e; z(τ c1 , z
−1(τ c2 , k))−k = ((

τc1
τc2

)
α
−1)k; z−1

ζ (τ c, ζ) = τcα

ζ2 ; and γ(τ c1 , τ
c
2 , k) =

(
τc1
τc2

)
−α
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Figure 2. Excess Bunching

B

ln z

f̃(ln z)

ln k
Note: The graph shows the density of observed earnings in the case of imperfect
bunching. Shaded areas depict the bunching interval. The green striped area
depicts excess bunching B.

may not be straightforward to obtain from a sample. If bunching is imperfect (which
virtually all studies in the literature assume), the measurement of B requires both the
identification of the bunching interval and an assumption about the counter-factual
density around the kink. The bunching interval is typically determined visually,
which is not necessarily best. The densities f̃(k; τ c2) and f̃(k; τ c1) are even less obvious
to measure. The estimation problem is made harder since in the simple model we
discuss above, we can only estimate these quantities from the observations to the left
or to the right of the kink. In the case of imperfect bunching, the estimation must
even rely on observations outside the bunching interval.

Several authors have proposed further refinements of Saez’s first approach which
are mostly concerned with the questions of estimating the counter-factual earnings
distribution if bunching is imperfect, and estimating the earnings density on either
side of the kink, i.e., f̃(k; τ c1) and f̃(k; τ c2). In particular, Chetty et al., (2009, 2011),
fit a higher-order polynomial through the observed income density with exception of
the bunching interval, which has been adopted my many other studies (for example
Bastani and Selin, 2014 and Kleven and Waseem, 2013).6 While this approach is
more complicated than Saez’ assumption of a constant density on either side of the
bunching interval, it is not obvious to us that it leads to more reliable results, as
the statistical consequences of the underlying assumptions are not entirely described.
Furthermore, it relies on methodological choices that are not necessarily best in a
non-parametric sense.

To demonstrate this, let us take a closer look at the polynomial approach of
Chetty et al., (2009, 2011). The earnings data is first collected into relatively narrow

6Some studies use the income distribution from other years or groups of taxpayers that are not
subject to the kink or notch as counter-factual income distribution.
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bins to construct a histogram of the distribution of earnings before and after the
kink. Excluding observations near the kink on either side, these observation counts
become the dependent variable of a regression of a polynomial function of earnings
(on the basis of simulations, Chetty et al., 2009, 2011 fit a polynomial of order 7).
The prediction of the model is used to redistribute the proportion of the population
around the kink and create a hypothetical earnings distribution that would apply
in the absence of the kink. This produces a new counter-factual distribution on
which they apply the previous procedure. This process is repeated until the pa-
rameters which determine the polynomial have converged. Bootstrapping is then
used to measure the precision of the parameters. The final parameter estimates are
eventually used to calculate the excess mass at, or around the kink, relative to the
constructed counter-factual distribution which yields the estimates of the ETI. The
procedure produces simultaneously a smoothed estimator of the histogram (because
of the fit of a polynomial function of earnings) and an estimator of the counter-factual
distribution of earnings in the absence of the tax kink.

This procedure is not based on any theoretical result together with the necessary
technical conditions which would apply to it. Yet, it is not likely that it is best in
a non-parametric sense because the initial binning of the data may have a cost in
terms of integrated squared error over the non-excluded range of the earnings data
relative to a method based on a kernel density estimator with a smoothing parameter
(Bosq and Lecoutre (1987), Theorem 3.2 and remark 3.3). Whether this cost is large
or not in practice is difficult to assess, but in the conventional cases and in large
samples it can be sizable (the exact values depend on various constants which depend
themselves on the details of the methods and on the unknown density. The order
of magnitude ESI for large sample sizes clearly favors the kernel estimates). The
costs of estimation related to the construction of the counter-factual distribution
based on the smoothed histogram are beyond our discussion here. However, the
method clearly does embody a particular trade off between the bias and the variance
of the estimated earnings density, which in this instance may favor a reduction of
the variance (i.e., favor smoothness) at a cost in terms of bias. Finally the bias of
the estimated counter-factual density around the kink is likely to increase further
since the data near the kink is essentially ignored and does not contribute to the
construction of the counter-factual.

The bunching framework has also been adjusted to the case of notches, which
create non-convexities in the individual’s budget set. At a notch, the marginal tax
rate exceeds 100%, such that there is a certain range of taxable income above the
notch in which net income is lower than net income at the notch. In this range,
both leisure and net income would be lower than at the notch point, which is why
it is typically assumed that no rational agent would choose to be in that range. In
the presence of a notch, the tax system thus creates incentives for individuals to
avoid an income range (k, e+). Because of the notch however, the net-of-tax rate
after the notch depends on the exact location of the earning level that is considered.
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This means that we can not use the analogy between the statistical model and the
economic model directly as we did in the case of a kink.

Kleven and Waseem, (2013) develop this point nicely. They assume that the tax
schedule around the kink takes the following form of a pure proportional notch:

T (z) = τ1z + ∆τz1[z>k],

for ∆τ > 0. For increases in earnings beyond the kink k, the implied approximate
marginal tax rate after the kink varies as well:

τ2(∆z) ≡ T (k + ∆z)− T (k)

∆z
= τ1 + ∆τ + ∆τ

k

∆z
,

for ∆z > 0. For relatively small values of ∆z this rate can be significantly larger
than 1. This arises since the notch leads to large marginal tax rate for small increases
in earnings. The approximate net-of-tax rate beyond the notch takes the form:

τ c2(∆z) ≡ 1− τ2(∆z) = τ c1 −∆τ −∆τ
k

∆z
, (8)

In the case of a notch, it is thus crucial to determine the distance ∆z empirically.
Kleven and Waseem, (2013) determine ∆z by the point where the excess mass before
the notch equals the ”missing mass” after the notch (compared with a counter-factual
income that is determined using a polynomial as described above). For notches, the
derivation of the counter-factual income density is thus even more crucial than in
the case of a kink in a convex budget set.

There are thus few arguments why the non-parametric methods that are typically
used in the bunching literature should produce reliable results. In particular, because
they rely on a combination of visual determination of the bunching interval and a
potentially large bias in the measurement of the counter-factual earnings density
around the kink. We argue that a parametric estimation of the model outlined above
is preferable to the non-parametric approach for at least three reasons: because the
underlying assumptions about both the earnings process and the distribution of the
unobserved income component are transparent; because these assumptions can be
modified (in particular, the model can be extended to allow for several margins of
income generation); and because additional parameters, such as the size of random
earnings shocks in the case of imperfect bunching, can be estimated (rather than
assumed).

In order to improve the measurement, we therefore propose a parametric esti-
mator of the two densities and the bunching probability which can be estimated by
the maximum likelihood method. We start by deriving the estimator for the case of
perfect bunching, and then adapt the basic case to the case of imperfect bunching
and notches. We aim here at keeping the baseline income generating process simple,
in order to demonstrate the general methodology. Yet, the approach is suitable to
entail more complicated income generating processes.
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3. A Statistical Model of Perfect Bunching

Based on the intuition in part 2, we derive a parametric model of the distribution
of earnings in an interval that includes the kink, which allows for the estimation of
the probability to be at the kink as well as for the estimation of the densities around
the kink. Using this model, we show that in the case of perfect bunching, the Saez
estimator is biased if the tax units at the kink are identified within an interval
rather than at a precise income level (which is typical for the literature and can be
a restriction of the available data), and that the bias can be substantial. We further
show that using the suggested parametric model, it is possible to correct for that
bias. This enables the researcher to use the perfect bunching formula even if only
grouped data are available. We also show simulation results that suggest that using
the parametric model considerably reduces the variance of the Saez estimator.

A log-normal specification of the model. We consider a model based on the
preferences in Equation (1), where the unobserved income component is log normally
distributed, such that lnω ∼ N (µ, σ2

ω).7 Using this distributional assumption as
well as the inverse earnings function ω = z−1(τ c, z), we can evaluate expression (4)
precisely:

B =P[ln z−1(τ c1 , k) < lnω < ln z−1(τ c2 , k)]

=

∫ (α ln τc2−ln k−µ)/σω

(α ln τc1−ln k−µ)/σω

φ(u)du,

=Φ[(α ln τ c2 − ln k − µ)/σω]− Φ[(α ln τ c1 − ln k − µ)/σω]

=Φ[(ln k − α ln τ c1 + µ)/σω]− Φ[(ln k − α ln τ c2 + µ)/σω],

(9)

where φ(ω) is the standard normal density function and Φ(ω) the standard normal
distribution function. The last expression follows from the properties of the normal
distribution. The approximation comparable to (7) now takes the simpler form (using
the distribution of the logarithm of earnings instead of earnings directly):

B ≈α(ln τ c1 − ln τ c2)
(
φ(
α ln τ c1 − ln k − µ

σω
) + φ(

α ln τ c2 − ln k − µ
σω

)
) 1

2σω
.

Hence, provided we can measure the quantitiesB, φ(
α ln τc1−ln k−µ

σω
)/σω and φ(

α ln τc2−ln k−µ
σω

)/σω,
we obtain a direct estimate of α using Saez’s approach:

α̂ = 2
1

ln τ c1 − ln τ c2

σωB

φ(
α ln τc1−ln k−µ

σω
) + φ(

α ln τc2−ln k−µ
σω

)
. (10)

We observe first that the estimation problem is local in nature, i.e., it concerns
only the observations near or at a particular kink. The parametric model we provide

7The method described below is, of course, applicable also for other functional form assumptions.
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here captures this feature. The model is based on the truncated normal distribution
over a range of earnings [z, z̄] which includes the kink k.

Since bunching is perfect, it will take place at k exactly. Yet, in practice, it may
only be feasible to measure earnings to a relative precision of δ, where δ is a small
and positive number.8 We assume here that an observation is identified at the kink
if it lies between ke−δ and k. Then, over the range [z, z̄], log earnings are distributed
as follows:9

if z ∈ [z, ke−δ), then f̃1(ln z) = sφ(s ln z − λ1)/P [z, z̄],

if z ∈ [ke−δ, k], then B(ln k) = (Φ(s ln k − λ2)− Φ(s(ln k − δ)− λ1))/P [z, z̄],

if z ∈ (k, z̄], then f̃2(ln z) = sφ(s ln z − λ2)/P [z, z̄],

(11)
where P [z, z̄] ≡ Φ(s ln z̄ − λ2)− Φ(s ln z − λ1) is the probability of being in the earn-
ings range [z, z̄], while s, λ1, and λ2 are parameters with s > 0. In the context of a
normal distribution s is one over the standard deviation of the unobserved compo-
nent σω, and the the parameters λi are the ratios of the mean to the standard errors
to the left and right of the kink. In the case of the isoelastic model of earnings we
have λi ≡ sα ln τ ci − sµ and s ≡ 1/σω.

If λ1 ≥ λ2, the model allows for bunching at k for any positive δ. This condition
must be true if taxable income responds negatively to taxation and if the net-of-tax
rate to the left of the kink exceeds the net-of-tax rate to the right of the kink.10

The parameters s, λ1, and λ2 can be estimated by maximum likelihood given a
sample in the interval [z, z̄].

For a sample of n individual observations, zi, in the interval [z, z̄] and for a
positive number δ given, the log-likelihood takes the form:

lnLB,n =
∑
i∈I−

(
ln s− 1

2
s2(s ln zi − λ1)2

)
+

∑
i∈I+

(
ln s− 1

2
s2(s ln zi − λ2)2

)
+

nk ln(Φ(s ln k − λ2)− Φ(s(ln k − δ)− λ1))−
n ln(Φ(s ln z̄ − λ2)− Φ(s ln z − λ1)),

(12)

8For example, Bastani and Selin, (2014) and Kleven and Waseem, (2013) base their estimations
on small earnings intervals with roughly δ = 0.5. The model allows for δ to be zero, of course.

9In the case of a distribution like the log-normal distribution, the ratio of the distribution of z
and of the distribution of its logarithm, ln z, depends on z only and not on the parameters of the
distribution. To clarify the presentation we describe the distribution of ln z only.

10If λ1 = λ2 the bunching is approximately equal to sφ(s ln k − λ2)/P[e, ē] whenever δ is small
enough. Finally if sδ + λ1 < λ2 (which requires that λ1 < λ2), the model above does not describe
a probability distribution over the interval, i.e. the expression of the probability at the kink is
negative.
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where I− and I+ collect the observations such that ln zi < ln k − δ and ln zi > ln k
respectively. nk denotes the number of observations such that earnings are between
ln k − δ and ln k.

The maximum likelihood estimates of the parameters, λ̂1, λ̂2, and ŝ, can be
obtained together with an estimate of their (asymptotic) precision. We can then use
the model structure11 and identify α directly from the parameter estimates by:

α̂norm =
λ̂1 − λ̂2

ln(τ c1)− ln(τ c2)

1

ŝ
(13)

Observe that this expression is simple: it suggests that we consider the difference
between the latent (latent because it is conditional on being below or above the kink)
mean log earning before the kink and the latent mean log earning after the kink and
divide by the difference in the log of net-of-tax rates.

We have shown in related work that the precision of the ML estimator exceeds
the precision of the original Saez estimator in a simulated environment (see our
related Monte Carlo study Aronsson et al., 2017 for details). Figure 3 illustrates the
increased precision that the ML estimator provides.

Does δ matter for the baseline Saez approximation? Instead of relying on
the model structure, we can reproduce the Saez approximation from the maximum
likelihood estimates by deducing estimates of the bunching probability B and the
two earnings densities, f̃1(ln k− δ) and f̃2(k). If δ is known, we can of course correct
for the imprecision caused by δ given the parameter estimates. Without a parametric
estimation, however, the researcher would not be able to correct for δ. We ask here
what error we would expect from an imprecise identification of B. In that case, the
bunching probability is estimated by

B̂ =
Φ(ŝ ln k − λ̂2)− Φ(ŝ(ln k − δ)− λ̂1)

Φ(ŝ ln z̄ − λ̂2)− Φ(ŝ ln z − λ̂1)
,

and of the densities at the edge of the bunching interval:

ˆ̃f1(ln k − δ) = ŝ
φ(ŝ(ln k − δ)− λ̂1)

Φ(ŝ ln z̄ − λ̂2)− Φ(ŝ ln z − λ̂1)
,

ˆ̃f2(k) = ŝ
φ(ŝ ln k − λ̂2)

Φ(ŝ ln z̄ − λ̂2)− Φ(ŝ ln z − λ̂1)
.

We can use these estimates to replace the theoretical expressions in Equation (10)
to obtain an estimate of α based on the methodology Saez proposes

α̂SaezN =
2

ŝ

1

ln τ c1 − ln τ c2

Φ(ŝ ln k − λ̂2)− Φ(ŝ(ln k − δ)− λ̂1)

φ(ŝ(ln k − δ)− λ̂1) + φ(ŝ ln k − λ̂2)
(14)

11That is, recognize that the isoelastic model of earnings implies that λi = sα ln τ ci + sµ
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Figure 3. Saez and lognormal bunching estimators
small kink

(10 percentage points)
large kink

(20 percentage points)

Note: Saez and log-normal bunching estimators. 1,000 replications with 10,000 individual obser-
vations over 12 years each, facing two tax environments: small kink: τ c1 = 0.65, τ c2 = 0.55; large
kink: τ c1 = 0.65, τ c2 = 0.45. See Aronsson et al., (2017) for details and precise figures. Estima-

tors: ˆalphaSaez: Saez approximation (Equation 7); ˆalphanorm: MLE based ETI bunching estimator
(Equation 13).

The difference between the structural estimator α̂norm and the (uncorrected)

Saez approximation α̂SaezN can be deduced if (λ̂1 + ŝδ − λ̂2) is small:

Φ(ŝ ln k − λ̂2)− Φ(ŝ(ln k − δ)− λ̂1) ≈

(λ̂1 + ŝδ − λ̂2)
1

2

(
φ(ŝ(ln k − δ)− λ̂1) + φ(ŝ ln k − λ̂2)

)
.

Then we have

α̂SaezN ≈ α̂norm +
δ

ln(τ c1)− ln(τ c2)
, (15)

which suggests that the two estimators differ little if δ is small and the difference in
the tax rates is large. Yet, if the kink is small, such that τ c1 and τ c2 are close in size,
small imprecisions can lead to large differences in the estimate of α. For example, if
the tax rate at the kink increases from 20% to 22%, a small imprecision such as 0.5%
of the kink income leads to an increase of roughly 0.2 in the estimate of α. While the
bias can be substantial, the second term in the expression above does not depend on
any unknown parameter. Hence it is possible to deduce the value of the structural
estimator α̂norm from the α̂SaezN . In the case of perfect bunching, a researcher using



14 THOMAS.ARONSSON, KATHARINA.JENDERNY, AND GAUTHIER.LANOT

the Saez approximation can thus correct for the bias created by binned data even
without the use of ML estimation.

As an illustration of the method, we estimate the model of perfect bunching
using the observed earnings distribution of self-employed individuals in Pakistan
that Kleven and Waseem, (2013) have analyzed. Their data displays very precise
bunching, which is thus suitable for the perfect bunching model framework. As
the tax system in Pakistan features notches12 instead of kinks, this application is
illustrative at this point. We come back to a modified version of our model that
explicitly accounts for both the notch and frictions in section 5.

We focus on on the kink at 400k Pakistani Rupees (PR).13 Figure 4 illustrates
the fit of the model in the earnings range around the 400kPR kink, for which the
authors estimate an ETI between 0.06 and 0.1914, using a polynomial approximation
to estimate a counter-factual income distribution in the absence of a notch. The data
in Figure 4 is grouped in small bins of width 2.5kPR. We argue that our parametric
model reproduces the main features of the data, although the observed density is
more variable than the model would suggest.

Assuming that δ = 0.5%, which roughly corresponds to the size of the income
intervals the authors use relative to the notch income (2.5kPR/400kPR), we estimate
the parameters of the distribution of earnings around the kink and obtain the esti-
mated value α̂norm = 0.55 (0.02). The difference between the estimates α̂SaezN and
α̂norm, i.e. the correction δ/(ln τ c1− ln τ c2), for this application is equal to 0.18, so that
α̂SaezN ≈ 0.55 + 0.18 = 0.73; a direct calculation of α̂SaezN yields an almost identical
value. Recall that as we do not account for the notch here, it is not surprising that
our estimates are much larger than the estimates that Kleven and Waseem, (2013)
provide, because we underestimate the incentive to undercut the notch.

4. Imperfect Bunching and Optimization Frictions

As discussed in Section 2, the literature typically assumes that bunching is im-
perfect. Individuals may not be able to aim perfectly at the kink and their earnings
may vary in ways that they do not control. Yet, optimization errors are typically not
explicitly modeled in the literature. Instead, it is assumed that bunching occurs in
an interval around the kink. As discussed above, the methods used in the literature
are problematic both because the bunching interval has to be determined visually,

12From the evidence Kleven and Waseem, (2013) present in Figure A.5, we can retrieve a mea-
surement of their bunched data. This involves using a ruler to measure the distance from the
horizontal axis and scaling that distance to the vertical axis. . We rescale the data to be densities
instead of the number of tax payers, and can then fit the theoretical density we describe earlier to
the observed one.

13We refer to their paper for further detail on the particularities of the income tax schedule in
Pakistan.

14See Figure VI and Table II in Kleven and Waseem, (2013)
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Figure 4. Kleven and Waseem (2013), K=400kPR,
α̂norm=0.55(0.02).

Note: The data is not identical to Kleven and Waseem, (2013). The figure shows the observed
data (blue dots) and the prediction of the distribution of earnings in the interval given the best
fit parameters. In the case of perfect bunching, the height at the kink is a probability whereas
elsewhere the height measures the density.
The maximum likelihood estimator for the ETI (see Equation (13), is 0.55 (0.02), while the estima-
tor following Saez’s approach assuming log normality is about 0.73. Kleven and Waseem, (2013)
estimate a structural elasticity between 0.02 and 0.04.

and because the methods of determining a counter-factual density of earnings in the
absence of a kink are not best in a non-parametric sense.

We therefore suggest a modification of the ML estimator of the ETI that directly
models optimization frictions, such that observed earnings are a mixture of planned
earnings and some (log-normal) noise. This allows us to estimate both the size
and variance of the shock, and the size of the bunching interval using maximum
likelihood.15

We start again from the model based on the preferences in Equation (1) which
determines the optimal level of earnings as well as the relevant net-of-tax rate. In

15In addition to imperfect bunching, the literature has modeled optimization frictions by assum-
ing that a certain fraction of taxpayers (so-called non-responders) has a (short-term) elasticity of
zero (Aronsson et al., 2017; Kleven and Waseem, 2013). This is particularly common in the case
of notches, as a notch always creates an income range that a rational agent who values both con-
sumption and spare time would not choose. This range can be used to identify the non-responders.
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the single-kink case we have:
if α ln τ c1 + lnω < ln k : ln z = α ln τ c1 + lnω,

if α ln τ c2 + lnω > ln k : ln z = α ln τ c2 + lnω,

if α ln τ c1 + lnω > ln k and α ln τ c2 + lnω < ln k : ln z = ln k.

(16)

The observed zo earnings that the individual experiences in the end is determined
by the planned earnings z and a shock ε such that

ln zo = ln z + ln ε. (17)

We assume that lnω and ln ε are independently normally distributed. As before, lnω
has mean µ and variance σ2

ω. ε is a multiplicative shock to the planned earnings
z, and is log normally distributed with mean 1, which implies that the logarithm

of ε is distributed normally with ln ε ∼ N (−σ2
ε

2
, σ2

ε ). We denote ς ≡ 1/σε and
ν ≡ −σε/2 = −1/(2ς).

In order to obtain maximum likelihood estimates for this modified model, we need
to derive the density function of observed earnings. To that aim, we first derive the
distribution function of observed earnings. We describe the distribution of observed
earnings ln zo given our assumptions concerning the distribution of planned earnings
ln z (which depend on the unobserved component ω, the elasticity of taxable income
α, and the net-of-tax rate τ c) and the distribution of ln ε.

The distribution function of observed earnings at some level t equals the proba-
bility that observed earnings zo = zε are less than t, or, equivalently, that planned
earnings z are less than t

ε
:16

H(t) ≡ P[zε < t] = E
ε
[P[zε < t|ε]] = E

ε
[P[z <

t

ε
|ε]]

Given the distribution of the unobserved component of planned earnings ω, the
distribution of planned earnings z depends on the net-of-tax rate, and is therefore
different to the left and to the right of the kink. For ε larger than t

k
, the distribution

function of t
ε

corresponds to the distribution function of planned earnings given the
net-of-tax rate to the left of the kink. For ε smaller than t

k
, the distribution function

of t
ε

corresponds to the distribution function of planned earnings given the net-of-tax

16Note that any positive level of observed earnings is consistent with any positive level of planned
earnings, as the absolute value of ε is unbounded.
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rate to the right of the kink.

H(t) =

∫ t
k

0

P[z <
t

ε
]g(ε)dε+

∫ +∞

t
k

P[z <
t

ε
]g(ε)dε =∫ t

k

0

F̃2(
t

ε
)g(ε)dε︸ ︷︷ ︸

t
ε

above kink

+

∫ +∞

t
k

F̃1(
t

ε
)g(ε)dε︸ ︷︷ ︸

t
ε

below kink

,
(18)

Figure 5. Distribution Function of Observed Earnings

(+∞ > ε > t
k
) −→ ( t

ε
< k)

F̃1( t
ε
)

ln z

f̃(ln z)

ln kln t
ε

(0 < ε < t
k
) −→ ( t

ε
> k)

F̃1(k)

F̃2|z>k( tε)
B(k)

ln z

f̃(ln z)

ln k ln t
ε

Note: The graphs show the densities of planned earnings z. Shaded areas depict the probability
that observed earnings are below a certain level t, given the size of the shock ε and the distribution
of planned earnings z.

where g(ε) represents the probability density function of the shock ε, F̃1(x) =
P[z < x] is the distribution function of planned earnings under the net-of-tax rate
τ c1 , and F̃2(x) = P[z < x] is the distribution function of planned earnings under
the net-of-tax rate τ c2 . We can decompose F̃2(x) using F̃1(x), the probability that
planned earnings are at the kink B(k) = P[z = k], and the distribution function of
planned earnings above the kink F̃2(x)|z>k = P[k < z < x]. This is done in Equation
(19). Figure 5 depicts that decomposition.

H(t) =

∫ t
k

0

(
F̃1(k) +B(k) + F̃2|z>k(

t

ε
)
)
g(ε)dε︸ ︷︷ ︸

t
ε

above kink

+

∫ +∞

t
k

F̃1(
t

ε
)g(ε)dε︸ ︷︷ ︸

t
ε

below kink

(19)
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The density of observed earnings h(t) is such that h(t) ≡ dH(t)

dt
. Some algebra

yields:

h(t) =
1

k
B(k) g(

t

k
) +

∫ t
k

0

f̃2(
t

ε
)g(ε)

dε

ε
+

∫ +∞

t
k

f̃1(
t

ε
)g(ε)

dε

ε
, (20)

where f̃1 and f̃2 describe the density functions of planned earnings given the net-of-
tax rates τ c1 and τ c2 . Given the normality assumptions we have made, the density of
observed earnings with imperfect bunching takes the form:17

h(t) =
ς

t
φ(ς ln t− ς ln k − ν)B(k)+

sς

St
φ(

1

S
(ςs ln t− (λ2ς + νs)))Φ[

1

S
(ς2 ln t− S2 ln k + ςν − λ2s)]+

sς

St
φ(

1

S
(ςs ln t− (λ1ς + νs)))Φ[

1

S
(S2 ln k − ς2 ln t+ λ1s− ςν)],

(21)

where S2 = s2 + ς2, and B(k) = Φ[s ln k − λ2] − Φ[s ln k − λ1] so that we require
λ1 − λ2 > 0 to insure some bunching.

Figure 6 illustrates the effect of imperfect bunching on the distribution of earn-
ings in a simple case where the variance of the shock to planned earnings is substan-
tial.

We can now evaluate the amount of bunching around the kink following Saez’s
intuition. The imperfect nature of the bunching means that the earnings of individ-
uals who aimed for the kink are now distributed around the kink, as shown in Figure
7. This is captured by the first term in Equation (21): ς

t
φ(ς ln t − ς ln k − ν)F (k).

Hence, the log normal model of the bunching error suggests that we consider an
interval of earnings values which covers a large percentage of the realizations of the
bunching error around the kink.

In terms of the first term in Equation (21), we may require that −3 < ς ln z −
ς ln k − ν < 3 to ensure the 99% of the bunching errors have been observed.18 We
should therefore consider all observed earnings in the range zk ≡ exp(−3−ν

ς
)k < z <

exp(3+ν
ς

)k ≡ zk. Whatever the precise interval, as long as it contains approximately

17We derive the density in Appendix A
18This requires that the analyst has some ideas about the likely size of the variance of the shocks

σε, since it determines both ς and ν.
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Figure 6. Perfect vs Imperfect Bunching

Note: The figure presents histograms from simulated data in the case of perfect
bunching (in green) and imperfect bunching (behind the first histogram,in blue). The
red line is the kernel density estimator when the data is generated under imperfect
bunching while the grey line corresponds to the theoretical density.

all tax payers who aimed at the kink, i.e.,
∫ zk/k
zk/k

g(u)du ≈ 1 we find:

P[zk < z < zk] =

∫ zk

zk

h(t)dt

≈ F (k) +

∫ zk

zk

∫ t
k

0

f2(
t

u
)g(u)

du

u
dt+

∫ zk

zk

∫ +∞

t
k

f1(
t

u
)g(u)

du

u
dt

= F (k) + I2 + I1,

(22)

where I2 and I1 are shorthand for the last two terms in the previous expression.
We can understand I2 as the proportion of observations such that desired earnings
are beyond the kink and such that the bunching error is consistent with observed
earnings in the observation range around the kink. A similar interpretation can be
given for I1.
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Figure 7. Decomposing the observed density h(t)

Note: The figure shows the theoretical density h(t) in dark blue. The dashed and
dotted lines correspond to the density of desired earnings assuming that the net-of-
tax rates are τ c1 (in red) or τ c2 (in red). The second and third term in the expression
of h(t) are represented in black.

We can then understand Saez’s expression for excess bunching since approxi-
mately:

F (k) ≈ P[zk < z < zk]− I2 − I1, (23)

where the RHS measures the amount of ”net bunching”. The approximation we used
in Equation (4) can be used here too to approximate B(k):

B(k) ≈
(
z(τ c1 , z

−1(τ c2 , k))− k
)(
f̃(k; τ c2)γ(τ c1 , τ

c
2 , k) + f̃(k; τ c1)

)1

2
(24)

which provides a link back to Saez’s suggested measurement procedure where an
estimate of α is obtained by solving:

α
(
z(τ c1 , z

−1(τ c2 , k))− k
)(
f̃(k; τ c2)γ(τ c1 , τ

c
2 , k) + f̃(k; τ c1)

)1

2
=

P[zk < z < zk]− I2 − I1.
(25)

Saez proposes to estimate I2 and I1 from their empirical analog above or below the
kink. Yet, this is difficult to rationalize in the context of imperfect bunching, since
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the extent of the bunching error will be difficult to assess ex-ante. The estimation
of the values of the density functions that appear on the LHS of Equation (25) seem
even less obvious. In principle, the density of the bunching shock will make the
estimation of the density of desired earnings next to the kink difficult, as this is
the place where the density of ”observed” earnings is the least likely to approach
the density of ”desired” earnings. It follows that the typically applied method of
determining the bunching interval visually may not be efficient.

Estimation of the model with imperfect bunching. In the presence of imper-
fect bunching as described above, the solution is to estimate the parameters of the
model using maximum likelihood over a subsample around the kink. With imperfect
bunching, all earnings values have a positive density, and the likelihood is expressed
in terms of h(t) only. The probability to observe a given earnings value in the range
around the kink, i.e., in some interval [z, z̄] such that z < k < z̄, takes the form:

P[z < z < z̄] =

∫ z̄

z

h(t)dt.

In general, the log-likelihood for a sample of n observations of individual earnings,
zoi (in the interval [z, z̄] ) is then simply:

lnLIB,n =
n∑
i=1

lnh(zoi )− n lnP[z < zo < z̄]. (26)

The maximization of the likelihood above relative to its parameters λ1, λ2, s
and ς will provide the MLE estimates λ̂1, λ̂2, and ŝ.19 Using the link between the
statistical model and the economic structure, the estimator for the ETI will take the
form:

α̂IB,norm =
λ̂1 − λ̂2

ln(τ c1)− ln(τ c2)

1

ŝ
. (27)

In this case, we can estimate all the parameters of the model, in particular that of
the variance of the shock to optimal earnings, and fully control for the effects of
the shock ε when estimating the ETI. The ML estimation method is in principle
extendable to settings with more kinks, which would allow the researcher to combine
information of the whole observed income distribution and the tax system to improve
the estimate of α.

19The likelihood in (26) is more difficult to evaluate than the likelihood with perfect bunch-
ing (see Equation 12).In addition to increased model complexity, Equation (26) also necessitates
the estimation of an additional parameter, σε. The latter necessitates, in turn, some density in
an interval around the kink. However, even though the computation of the likelihood in (26) is
less straightforward than in the perfect bunching case, they can nevertheless be implemented and
maximum likelihood estimators for the parameters of the model can be obtained.
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Figure 8. Revisiting Kleven and Waseem (2013),
K=400kPR, α̂ = 0.6(0.03). σ̂ε = 0.006(0.0003)

Note: The figure shows the observed data (blue dots) and the prediction of the distribution of earn-
ings in the interval given the best fit parameters (red dots). The dashed line draws the theoretical
density at the MLE. Although the original data is identical, the scale of this graph is different from
the one in Figure 4, since in the imperfect bunching case the height measures a density everywhere.

As in Section 3, we illustrate the method, by applying the model of imperfect
bunching to (published) binned data of three studies. We first repeat the example
from Section 3 using the data of Kleven and Waseem, (2013) (still not accounting for
the notch), displayed in Figure 8. Then, we use the data of two studies that analyze
imperfect bunching at a kink, and whose results are thus comparable to ours: Bastani
and Selin, (2014), displayed in Figure 9, and Chetty et al., (2009, 2011), displayed
in Figure 10. In all cases, we reproduce the estimate of α̂, using the same estimation
interval [z, z̄] around the kink as the authors, and apply the ML estimator with
imperfect bunching defined in Equation (27) instead of the authors’ original method
based on visual detection of the bunching interval and polynomial smoothing. In the
(illustrative) case of the data used by Kleven and Waseem, (2013), allowing for a
shock increases the MLE estimate α̂ from 0.55(0.02) to 0.67(0.03). We estimate the
standard deviation of the shock σε = 0.006(0.003), and at the tax threshold of 400
this yields a standard deviation of the shock on earning of about 2.4kPR.

The ML estimates for the two studies that estimate bunching at kink points
are in both cases in the same order of magnitude, but slightly higher than the
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Figure 9. Imperfect bunching application 1
Bastani and Selin, (2014)

K = 325kSEK (≈ 35k e), α̂ = 0.028(0.0003), σε = 0.005(0.00007)

Note: The figure shows the observed data displayed in Bastani and Selin, (2014), figure 6a (blue
dots) and the prediction of the distribution of earnings in the interval given the best fit parameters
(red dots) based on the ML estimator in Equation (27). The dashed line draws the theoretical
density at the MLE. The population are all self-employed tax payers in Sweden between 2000 and
2008, whose taxable income is in a range of 75k SEK around the first government tax kink point
(at 325kSEK on average), at which the marginal tax rate increases by 20 percentage points. The
data is grouped in income intervals of 1k. The elasticity estimate in Bastani and Selin, (2014) is
0.024.

original estimate. In the case of Bastani and Selin, (2014), the MLE estimate is
α̂ = 0.028(0.0003), which exceeds the original estimate of 0.024 by 16%. In the case
of Chetty et al., (2009, 2011), the MLE estimate is α̂ = 0.017(0.0002), which exceeds
the original estimate of 0.01 by 73%. Our estimates based on Bastani and Selin,
(2014) data imply a standard deviation of the earnings shock at the tax threshold of
about 1.5kSEK, while for Chetty et al., (2009, 2011) the standard deviation of the
shock is 6.27kDKK. In this last case, Figure 10 illustrates the smaller concentration
around the kink.

5. A statistical model of Bunching in the Presence of a Notch

The presence of a notch, i.e., a discontinuity of the budget constraint such that
the tax due changes suddenly, inducing a spike in the marginal net-of-tax rate that
exceeds 100%, gives an additional feature to bunching: it may create a ”hole” in the
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Figure 10. Imperfect Bunching Application 2
Chetty et al., (2009, 2011)

K = 267.6kDKK (≈ 36ke), α̂ = 0.017(0.0002), σε = 0.023 .

Note: The figure shows the observed data displayed in Chetty, (2009), (blue dots) and the prediction
of the distribution of earnings in the interval given the best fit parameters (red dots) based on the ML
estimator in Equation (27). The dashed line draws the theoretical density based on the maximum
likelihood estimation. The population are all wage earners in Denmark between 1994 and 2001,
whose taxable income is in a range of 50k SEK around the largest tax kink point (at 267.6kDKK
on average), at which the marginal tax rate increases by roughly 13 percentage points. The data
is grouped in income intervals of 1k DKK. The elasticity estimate in Chetty et al., (2009, 2011) is
0.01.

density of observed earnings. A simple example of a notch is the existence of fixed
cost of work associated with the decision to participate in the labor market. Under
such a condition, no individual would be willing to start working if her earnings were
less than the fixed costs associated with working. In fact, because individuals in
general dislike work, we expect that the level of earnings required to start working
is larger than the amount exactly equal to the fixed cost. This suggests that if
all individuals face the same fixed costs, then the lower bound of support of the
earnings distribution is larger than the fixed costs. Below the value of the fixed cost,
the earnings density is equal to 0. The tax and benefit system potentially creates
similar features of the budget constraint although for larger levels of earnings.

Perfect Bunching in the Presence of a Notch. The statistical model of bunch-
ing we present now can be understood as an extension of the model of perfect bunch-
ing we presented in Equation (11). We rely again on a parametric model (based on
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the normal distribution) to describe the distribution of earnings in an interval of
the range of observed earnings [e, ē]. We assume that both the kink k and the re-
gion from k to some value e+ with zero earnings density belong to this interval as
well. Furthermore, the level e+ becomes a parameter of the model which needs to
be estimated. Hence we have: e < k ≤ e+ < ē.

if z ∈ [e, ke−δ), then f1(ln z) = sφ(s ln z − λ1)/P [e, ē],

if z ∈ [ke−δ, k], then F (ln k) = (Φ(s ln e+ − λ2)− Φ(s(ln k − δ)− λ1))/P [e, ē],

if z ∈ (k, e+], then f0(ln z) = 0,

if z ∈ (e+, ē], then f2(ln z) = sφ(s ln z − λ2)/P [e, ē].

(28)
It is easy to verify that the model defined this way is coherent (the probabilities are
positive and sum to 1 over the range) as long as λ1−λ2 > s(ln k− δ−e+). If τ c1 ≥ τ c2
then e+ can take any values greater than k (but less than ē); if instead τ c1 < τ c2 (i.e.,
the net-of-tax rate to the right of the kink is larger than the rate to the left of the
kink), the coherency condition requires that ln k − δ − α ln(τ c1/τ

c
2) < ln e+ < ē. We

can interpret ln e+−ln k+δ as the the ”width of the hole” to the right of the kink and,
when τ c1 < τ c2 , the condition above requires it to be larger than −α ln(τ c1/τ

c
2) > 0.

The parameters of this model may be difficult to identify, since we do not typ-
ically observe a range with zero density. For example, if the data is such that the
smallest earnings observed above the kink is near the kink, then the maximum likeli-
hood estimator of e+ will be that value (or one slightly smaller), and the fitted model
will be nearly identical to the model of perfect bunching in the absence of a notch.20

The model yields a likelihood which shares a similar structure to the likelihood
we describe in Equation (12). The parameters of the model and the ETI in particular
can be estimated using ML, following the same procedure as before.

Imperfect Bunching in the Presence of a Notch: random error. Following
the same approach as we used to analyze imperfect bunching around a kink in Section
4, we can analytically derive the density of observed earnings in the presence of a
notch assuming that the optimization friction takes the log normal form. We proceed
as in the previous section and derive the density of observed earnings from first
principles. Here the definition of the quantities changes to accommodate the hole in
the desired distribution of earnings between k and e+. Define F1(t) = P[z < t] if
t < k; F (k) = P[z = k] and F2(t) = P[e+ < z < t] if t > e+ and let F2(e+) = 0.
Finally note that k < e+ ⇔ t

k
> t

e+
.

The probability that observed earnings zε are less than some level, say t, takes the

20It must be the case that any candidate value for e+ to the right of the smallest value of earnings
that is larger than k yields a likelihood that is infinitely smaller than than the likelihood evaluated
for e+ at or below the smallest value of earnings larger than k.
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form:

H(t) ≡P[zε < t] = E
ε
[P[zε < t|ε]] = E

ε
[P[z <

t

ε
|ε]] =∫ t

e+

0

(
F̃1(k) +B(k) + F̃2(

t

u
)
)
g(u)du+∫ t

k

t
e+

(
F̃1(k) + F (k)

)
g(u)du+

∫ +∞

t
k

F̃1(
t

u
)g(u)du.

(29)

Equation (29) relies on the fact that there are no observations between k and e+

under perfect bunching, and therefore F̃2(e+) = 0. We then deduce the density of
observed earnings in this case:21

h(t) =
1

k
B(k)g(

t

k
) +

∫ t
e+

0

f̃2(
t

u
)g(u)

du

u
+

∫ +∞

t
k

f̃1(
t

u
)g(u)

du

u
. (30)

Our earlier analysis of the imperfect bunching case with log-normal distributions
carries over to this context with a notch, and yields :

h(t) =
ς

t
φ(ς ln t− ς ln k − ν)B(k)+

sς

S2t
φ(

1

S
(ςs ln t− (λ2ς + νs2)))Φ[

1

S
(ς2 ln t− S2 ln e+ + ςν − λ2s)]+

sσ

St
φ(

1

S1

(ςs1 ln t− (λ1ς + νs)))Φ[
1

S
(S2 ln k − ς2 ln t+ λ1s− ςν)],

(31)

whereB(k) = Φ[s ln e+−λ2]−Φ[s ln k−λ1] and we now require s ln k−s ln e+ < λ1−λ2

so that bunching arises with positive probability. Figure 11 illustrates the difference
the notch would create relative to the earnings distribution in the absence of a notch
(all else constant).

Again, let us apply the model to the data used by Kleven and Waseem, (2013),
this time accounting for both imperfect bunching and the notch, and thus producing
comparable estimates to theirs. We present the fit of the homogeneous model with
imperfect bunching in Figure 11. The model clearly attempts to capture the lower
density of earnings to the right of the kink. Our estimate of the first level of earnings
which is chosen after the notch is 406kPR. Kleven and Waseem, (2013) in their paper
calculate the dominated range of earnings to extend up to 410kPR. In our estima-
tion, while we do not impose that restriction, the model discovers a minimum level
of desired earnings which would be consistent with it. The distribution of the shock,
and in particular its variance σ2

ε , plays a substantial role here. It explains the im-
perfect bunching around 400kPR and the reduced density after the kink and around

21Note that the existence of a ”hole” in the support of the density translates into distinct bounds
of integration
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Figure 11. Imperfect Bunching Density with or without
a Notch

Note: The figure shows in dark blue the theoretical density h(t) in the absence of a
notch but with imperfect bunching. The dashed black line corresponds to the same
density with a notch which creates a ”hole” in the density without optimization
friction between k and 1.5k. The green vertical line indicates the position of the
kink (or the discontinuity) at k. The variance of the optimization friction is the
same for both densities. In this particular example, the length of the interval of the
support with zero density is not determined by an optimizing agent (i.e. it is not
consistent with a possible value of α derived from the comparison between λ1 and
λ2). The log normal model of optimization friction means that the bunching reaches
a local mode to the left of the position of the kink.

e+ (the trough of the density to the right of 400kPR). The normality assumption
on the distribution of ε requires that it is symmetric and invariant to the location.
This specifically determines how the density increases before the kink and after e+.
Accounting for the possibility of a notch reduces the estimated value of the ETI to
0.41(0.03) which is substantially smaller than our previous estimate, yet more than
twice as large as the authors’ upper bound estimate of 0.194. As a consequence of the
normality assumption, the size of the variance of the earnings shock σε depends on
the width of the bunching interval (which is narrow in this case). The model predicts
that some density of the population would be observed directly after the kink. The
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Figure 12. Revisiting Kleven and Waseem (2013),
K=400kPR, α̂ = 0.41(0.03), σ̂ε = 0.00(0.0003), ê+ =
406(0.022).

Note: The figure shows the observed data (blue dots) and the prediction of the distribution of earn-
ings in the interval given the best fit parameters (red dots). The dashed line draws the theoretical
density at the MLE. Although the original data is identical, the scale of this graph is different from
the one in Figure 4, since in the imperfect bunching case the height measures a density everywhere.

observed density directly after the kink is therefore interpreted as tax payers who
planned to be at the kink, thereby increasing our elasticity estimate as compared to
Kleven and Waseem, (2013). Also note that our estimate of e+ is lower than the
original estimate, as our model does not put too much weight on the comparatively
low observed density to the right of the kink, given that the data is quite noisy in
the rest of the income distribution.

6. Heterogeneity in the Log-Normal Model

Saez, (2010) argues that the bunching approach applies even when the population
is characterized by both an heterogeneous disutility of work and a heterogeneous ETI.
In this case the bunching estimator measures the average of the ETI among those who
are bunching. The log-normal model can be extended to provide a specific example
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of this case.22 To that effect, we consider the log linear model of optimal earnings
given in Equation (3). In addition, we assume now that the parameter α, the ETI,
is independently (from lnω) and identically normally distributed in the population,
so that α ∼ N (ᾱ, σ2

α), for σ2
α ”small” enough. That is we are assuming that α

is distributed among individuals around a mean value ᾱ but we are requiring that
P[α < 0] is close to zero. In what follows we will set α = ᾱ + α̃, with α̃ ∼ N (0, σ2

α).
Intuitively, since the response to taxation is heterogeneous, more responsive in-

dividuals, i.e., individuals with values of α larger than the average, are likely to be
located below the kink, while individuals with values of α less than the average are
likely to be located above the kink.23 The selection/sorting is not exact since the
disutility of work and the individual wages introduce additional sources of random-
ness that compete to determine the observed level of earnings.

The variability of α modifies the components of the model, and in particular the
expression of the probability to observe a tax payer at the kink, which becomes:

B = P[z = k] = P[z(τ c2 , ω) < k ≤ z(τ c1 , ω)]

= P[u1 ≥ ln k − ᾱ ln τ c1 − µ, u2 < ln k − ᾱ ln τ c2 − µ],

where u1 ≡ α̃ ln τ c1 − lnω − µ and u2 ≡ α̃ ln τ c2 − lnω − µ.
Allowing for some heterogeneity in the parameter α has several consequences: it

generates heteroscedasticity since the variance of the log-earnings vary depending on
whether the observation is to the left or the right of the kink. To the left of the kink,
the variance of the log-earnings is equal to σ2

α(ln τ c1)2 + σ2 while it is σ2
α(ln τ c2)2 + σ2

to the right of the kink. Furthermore, for a given individual the covariance between
(latent log-)earnings to the right and to the left of the kink is σ2

αln τ c1 ln τ c2 +σ2, which
implies that the correlation between log-earnings on either side of the kink is different
from one.

The probability to be at the kink can be expressed in terms of the bivariate
normal distribution.

P[u1 ≥ ln k − ᾱ ln τ c1 − µ, u2 < ln k − ᾱ ln τ c2 − µ] =

Φ[
ln k − ᾱ ln τ c2 − µ√
σ2
α(ln τ c2)2 + σ2

]− Φ2[
ln k − ᾱ ln τ c1 − µ√
σ2
α(ln τ c1)2 + σ2

,
ln k − ᾱ ln τ c2 − µ√
σ2
α(ln τ c2)2 + σ2

, ρ],
(32)

where Φ2 is the distribution function of the bivariate normal distribution, and ρ ≡
σ2
αln τc1 ln τc2+σ2√

σ2
α(ln τc1 )2+σ2

√
σ2
α(ln τc2 )2+σ2

. ρ is positive for all values of the parameters if ln τ c1 and

ln τ c2 share the same sign. Finally observe that the probability given in Equation (32)
is always positive.

22Blomquist and Newey, 2017 show that if α is heterogeneous, the bunching estimator may not
be well-defined if the density of the distribution of unobserved characteristics f(ω) is not smooth.
By assuming a log-normal distribution, we assume away that case here.

23For this intuition to be correct it must be the case that there are individuals on either side of
the kink.
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Thanks to the normality assumptions, much of the analysis we provide earlier
on applies equally to this heteroscedastic model. The model with nearly perfect
bunching developed in Section 3 is easily derived in this heteroscedastic case, allowing
for variances of the unobserved components which vary on either side of the kink
and such that the probability to be at the kink is given exactly by the expression
in Equation (32). Furthermore, the derivation of the density of earnings in the
imperfect bunching case applies directly as it is presented in Appendix A. The term
F (k) which appears in Equation (A.1) is equal to the expression given in (32) and
the parameters λ1, λ2, s1 and s2 are such that:

1

s1

≡
√
σ2
α(ln τ c1)2 + σ2,

1

s2

≡
√
σ2
α(ln τ c2)2 + σ2,

λ1 ≡ s1ᾱ ln τ c1 + s1µ,

λ2 ≡ s2ᾱ ln τ c2 + s2µ.

(33)

Given our model assumptions we deduce that s1 > s2 and s2
s1
≤ ρ < s1

s2
. Hence given

a set of parameter estimates for ᾱ, µ, σ2
α and σ2, we can derive an estimate of the

expected ETI for the individuals attempting to locate exactly at the kink. As such,
we wish to evaluate E[α|u1 ≥ ln k − ᾱ ln τ c1 − µ, u2 < ln k − ᾱ ln τ c2 − µ]. Here we
recognize that α is normally distributed and it is correlated with the unobserved
components u1 and u2 since both depend on α̃. Let

a ≡ ln k − ᾱ ln τ c1 − µ
b ≡ ln k − ᾱ ln τ c2 − µ

In the Appendix C, we show that the mean ETI among those at the kink, E[α|u1 ≥
a, u2 < b], satisfies the expression:{

E[α|u1 ≥ a, u2 < b]− ᾱ
}
P[u1 ≥ a, u2 < b] =

θ

ln τ c1/τ
c
2

{
(

1

s1

− ρ

s2

)φ[s1a]Φ[
s2b− ρs1a√

1− ρ2
] + (

1

s2

− ρ

s1

)φ[s2b]Φ̄[
s1a− ρs2b√

1− ρ2
]
}
,

(34)

with θ ≡ 1 + σ2
α

σ2
ε

ln τ c1 ln τ c2 . We also show that individuals who wish to locate at the

kink are likely to exhibit a larger response than the average in the population, i.e.
we show that E[α|u1 ≥ a, u2 < b] ≥ ᾱ. In the limit, if σ2

α is equal to 0, then ρ = 1
and E[α|u1 ≥ a, u2 < b] = ᾱ which conforms with the homogeneous case .

The two applications that we used to illustrate the analysis, see Figures 9 and
10 , do not leave much space for any sizeable variability of α in the population.
Under the normal model we have developed, for α to take positive value with a large
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probability, we must limit α’s standard deviation so that σα is significantly smaller
than ᾱ, for example if σα ≤ ᾱ/2.5 and ᾱ > 0 more than 99% of the values of α are
positive.

As a further illustration, we estimate the model with heterogeneity using data
from Bastani and Selin, (2014). Starting from the maximum likelihood parame-
ters estimated for the homogenous model with imperfect bunching the likelihood
increases until ·σα = 0.0076 leaving the maximum likelihood estimates of all other
parameters essentially unchanged from their estimated value under the assumption
of homogeneity . Using these parameters values we can then calculate the expected
ETI at the kink, as described in equation (34). We estimate ᾱ at 0.028 and we
calculate that the average of the ETI at the kink is E[α|u1 ≥ ln k− ᾱ ln τ c1 − µ, u2 <
ln k − ᾱ ln τ c2 − µ] = 0.03. Accounting for heterogeneity in this particular instance
does not produce significant differences between the mean ETI and the mean ETI
at the kink. Our findings suggest therefore that there is little evidence supporting
substantial ETI heterogeneity in this case.

7. Summary and Discussion

In this paper, we have presented a structural, parametric alternative to the
bunching approach of measuring the ETI, where the excess mass of observations
close to a tax kink is used for identification. Although the bunching approach is
convenient (as it avoids several difficult problems characterizing the IV-regression
approach to the ETI), the literature to date relies on more or less ad-hoc procedures
of measuring the bunching range and the counter-factual density. The statistical
properties of the prevailing non-parametric methods of identifying the bunching in-
terval are not fully described, and there is no clear distinction between unobserved
behavioral components and measurement/optimization errors. The latter is partic-
ularly problematic since individuals bunch in a neighborhood around the kink (and
not exactly at the kink), and this excess mass around the kink is used for purposes
of identification. Our parametric alternative is related to the model used by Saez
(2010) in his seminal contribution to the bunching estimator (and subsequently used
by other researchers). We use this model to characterize the preferences as well
as the nonlinear budget constraint underlying the formation of income, and show
how the model can accommodate measurement/optimization errors as well as non-
convexities in the budget set (such as those created by notches in the tax system).
The parameters of the model (including the fixed preference parameters as well as
the parameters of the assumed distributions of the unobserved components) can be
estimated simultaneously by using the maximum likelihood method.

Our approach has several advantages compared to the prevailing methodology
of identifying the ETI based on bunching. One is the clear relationship between the
underlying theory of income formation and the statistical problem to be solved. As
such, the behavioral assumptions, functional form assumptions, and distributional
assumptions are clearly stated, and their contributions to the statistical problem are
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easy to describe and understand. This means, among other things, that account
for the presence of measurement/optimization errors when estimating the size of
the bunching interval. Since people seem to bunch in an interval around the tax
threshold, it is key to distinguish between measurement/optimization errors and
random components of the utility function. Furthermore, our parametric approach
appears flexible enough and can be extended to more comprehensive models of income
formation with several behavioral margins.

The take-home message of the paper is that the parametric approach provides
a transparent alternative to the existing non-parametric methods, since the statisti-
cal model is derived from the underlying model of income formation. As such, the
methodological changes proposed here are reminiscent of those in the labor supply
literature in the late 1970s and, of course, motivated by the same desire to under-
stand the various mechanisms behind income formation. Without such information,
which requires a well-specified parametric model, very little can be said about the
consequences of taxation for income formation and welfare. The role of the present
paper is to provide a methodological route through which this is made possible. We
would like to emphasize three results here. First, the maximum likelihood estimates
are less biased and more precise than the bunching estimators based on ad-hoc non-
parametric methods prevailing in the literature. Second, based on data from two
published papers using the excess mass at a kink point for purposes of identification,
our parametric estimates of the ETI are slightly higher than the estimates presented
in these studies. However, by adding a notch to the model and applying the data
presented in Kleven and Waseem (2013), our estimate of the ETI differs quite much
from theirs. Third, by allowing for (unobserved) heterogeneity in the ETI, we find
that individuals whose desired taxable income equals the income at the tax kink have
a higher ETI than average.

Future research may take several directions, and we will briefly discuss two of
them here. First, as mentioned above, it is interesting and arguably relevant to use
the methodology proposed here to estimate more realistic models of income formation
with several behavioral margins. This can be exemplified by a framework where the
labor income and capital income are determined simultaneously through labor supply
and saving behavior. Note that this issue is relevant regardless of whether labor in-
come and capital income are taxed jointly or separately. Second, the methodological
framework developed here is suitable for analyzing the consequences of complex tax
reforms on income formation (as well as from the perspective of economic efficiency).
In our view, this is one of the major advantages of a structural approach to income
formation since a single measure of the ETI may not be a sufficient statistic for tax
policy design.
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Appendix A. Earnings Density with Imperfect Bunching

We develop here the general heteroscedastic distribution of the model with im-
perfect bunching. This means that the variance of (log-) earnings to the left of the
kink is different from the variance to the right of the kink.

Starting point is the density of observed earnings h(t):

h(t) =
1

k
F (k)g(

t

k
) +

∫ t
k

0

f2(
t

u
)g(u)

du

u
+

∫ +∞

t
k

f1(
t

u
)g(u)

du

u
.

The first term corresponds to the distribution of observed earnings t given that
desired earnings are located at the kink precisely. The other two terms correspond
to observations such that desired earnings, i.e. t/u, are below or above the kink, but
the shock is such that observed earnings are t exactly.

The last two terms take the general form:∫ b

a

f(
t

u
)g(u)

du

u
=

∫ t/a

t/b

f(v)g(
t

v
)
dv

v

Given the normality assumptions, f(v) = s
v
φ(s ln v − λ) and g(u) = ς

u
φ(ς lnu −

ν) where φ() is the standard normal density function. In this case the integrand
becomes:

f(v)g(
t

v
)
1

v
=
sς

S

S

vt
φ(S ln v − m

S
))φ(

1

S
(sς ln t− (λς + νs))),

where S2 = s2 + ς2, m = ς2 ln t+ λs− νς. Hence m depends on ln t. Finally we can
integrate: ∫ t/a

t/b

f(v)g(
t

v
)
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v
=
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S
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S
]
]
.

In terms of the standard normal p.d.f. and c.d.f., the second and third components
in the earlier expression become:∫ t

k

0

f2(
t

u
)g(u)

du

u
=

∫ +∞
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,

and ∫ +∞
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u
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v
)
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v
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S1t
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],
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where S2
k = s2

k + ς2, and mk = ς2 ln t + λksk − νς for k = 1, 2. This provides us
with an analytical expression for the observed density of earnings given our model
of imperfect bunching:

h(t) =
1

k
F (k)g(

t

k
) +

∫ t
k

0

f2(
t

u
)g(u)

du

u
+

∫ +∞

t
k

f1(
t

u
)g(u)

du

u

=
ς

t
φ(ς ln t− ς ln k − ν)F (k)+

s2ς

S2t
φ(

1

S2

(ςs2 ln t− (λ2ς + νs2)))Φ[
1

S2

(ς2 ln t− S2
2 ln k + ςν − λ2s2)]+

s1ς

S1t
φ(

1

S1

(ςs1 ln t− (λ1ς + νs1)))Φ[
1

S1

(S2
1 ln k − ς2 ln t+ λ1s1 − ςν)].

(A.1)

Appendix B. The Conditional Expectation of a Truncated Normal
Distribution

This is a technical result that can be found elsewhere in the literature. We
describe it here for completeness sake.

Assume that the component of the vector u = (u1, u2) are distributed according
to a bivariate normal distribution with zero means, unit variances and correlation
ρ. Σ is the matrix which collects all the variance and covariance terms. We wish to
find the expression for the moments:

E[u1|{a1 ≤ u1 < b1} ∩ {a2 ≤ u2 < b2}],
E[u2|{a1 ≤ u1 < b1} ∩ {a2 ≤ u2 < b2}].

Denote Ψu(t) the characteristic function of the conditional distribution of u
given {a1 ≤ u1 < b1} ∩ {a2 ≤ u2 < b2} evaluated at t = (t1, t2). The definition of
Ψu(t) yields:

P[{a1 ≤ u1 < b1} ∩ {a2 ≤ u2 < b2}]Ψu(t) =

exp(t′Σt)

∫ b1

a1

∫ b2

a2

exp(−1

2
(u− iΣt)′Σ−1(u− iΣt))du2du1.

A change in variable such that v(u, t) ≡ u−iΣt, yields a relatively simple expression
in terms of the bivariate normal distribution Φ2(w, z, ρ):

Ψu(t) ∝ exp(t′Σt)
{

Φ2(v1(b1, t), v2(b2, t), ρ)− Φ2(v1(a1, t), v2(b2, t), ρ)−
Φ2(v1(b1, t), v2(a2, t), ρ) + Φ2(v1(a1, t), v2(a2, t), ρ)

}
.

The derivatives of the characteristic function determine the moments of the
distribution since:

∂Ψu(0)

∂t
= iE[u].
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Applying this property to the expression for Ψu, we find that:

P[{a1 ≤ u1 < b1} ∩ {a2 ≤ u2 < b2}]E[u1|{a1 ≤ u1 < b1} ∩ {a2 ≤ u2 < b2}] =

− φ[b1]
{

Φ[
b2 − ρb1√

1− ρ2
]− Φ[

a2 − ρb1√
1− ρ2

]
}

+ φ[a1]
{

Φ[
b2 − ρa1√

1− ρ2
]− Φ[

a2 − ρa1√
1− ρ2

]
}

− ρφ[b2]
{

Φ[
b1 − ρb2√

1− ρ2
]− Φ[

a1 − ρb2√
1− ρ2

]
}

+ ρφ[a2]
{

Φ[
b1 − ρa2√

1− ρ2
]− Φ[

a1 − ρa2√
1− ρ2

]
}
.

(B.1)

The expression can then be specialised to satisfy the bounds on the truncation in-
tervals given in the text.

Appendix C. Conditional Expectation of the ETI in the
Heteroscedastic Case

In this appendix, we give some details about the calculation of the expected
value of the random parameter α as it is given in Equation (34).

We need to describe the the conditional expectation of α̃ given u1 and u2, where
u1 ≡ α̃ ln τ c1 + lnω − µ and u2 ≡ α̃ ln τ c2 + lnω − µ. We set the variance of lnω − µ
to σ2.

Since α̃, u1 and u2 are jointly normally distributed with zero means, the condi-
tional mean of α̃ given u1 and u2 takes the form:

α̃ = δ1u1 + δ2u2,

where the parameters δ1 and δ2 are deduced from the variance covariance matrix of
α̃, u1 and u2.

Given our model assumptions, the latter takes the form:

σ2
α

 1 ln τ c1 ln τ c2
ln τ c1 (ln τ c1)2 + σ2

σ2
α

ln τ c1 ln τ c2 + σ2

σ2
α

ln τ c2 ln τ c2 + σ2

σ2
α

(ln τ c2)2 + σ2

σ2
α

 .
δ1 and δ2 are then such that 24:[

δ1

δ2

]
=

[
(ln τ c1)2 + σ2

σ2
α

ln τ c1 ln τ c2 + σ2

σ2
α

ln τ c2 + σ2

σ2
α

(ln τ c2)2 + σ2

σ2
α

]−1 [
ln τ c1
ln τ c2

]
,

which yields: [
δ1

δ2

]
=

1

ln τ c1 − ln τ c2

[
θ
−θ

]
.

24see for example Property B.43 in Gouriéroux et al., (1995).
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The result in section (B) of the appendix, allows us to determine that:

E[s1u1|u1 ≥ a, u2 < b]P[u1 ≥ a, u2 < b] =

φ[s1a]Φ[
s2b− ρs1a√

1− ρ2
]− ρφ[s2b]Φ̄[

s1a− ρs2b√
1− ρ2

],

and

E[s2u2|u1 ≥ a, u2 < b]P[u1 ≥ a, u2 < b] =

− φ[s2b]Φ̄[
s1a− ρs2b√

1− ρ2
] + ρφ[s1a]Φ[

s2b− ρs1a√
1− ρ2

],

where in our context a ≡ ln k − ᾱ ln τ c1 − µ, b ≡ ln k − ᾱ ln τ c2 − µ, with b > a, and
Φ̄[x] ≡ 1− Φ[x]. These two results together lead to

P[u1 ≥ a, u2 < b]E[α|u1 ≥ a, u2 < b] = P[u1 ≥ a, u2 < b] ᾱ+

1

ln τ c1/τ
c
2

θ

s1

(
φ[s1a]Φ[

s2b− ρs1a√
1− ρ2

]− ρφ[s2b]Φ̄[
s1a− ρs2b√

1− ρ2
]
)
−

1

ln τ c1/τ
c
2

θ

s2

(
ρφ[s1a]Φ[

s2b− ρs1a√
1− ρ2

]− φ[s2b]Φ̄[
s1a− ρs2b√

1− ρ2
]
)
,

(C.1)

with θ ≡ 1 + σ2
α

σ2
ε

ln τ c1 ln τ c2 . This expression then simplifies to the expression given in

the text in equation (34).
Finally we determine the sign of the correction for the selection among indi-

viduals at the kink. From equation (34) it is clear that the following expression
determines the sign of this selection:

C ≡ (
1

s2
1

− ρ

s2s1

)s1φ[s1a]Φ[
s2b− ρs1a√

1− ρ2
] + (

1

s2
2

− ρ

s1s2

)s2φ[s2b]Φ̄[
s1a− ρs2b√

1− ρ2
].

By construction, we know that A ≡ 1
s22
− ρ

s1s2
and B ≡ 1

s21
− ρ

s2s1
are such that:

A > 0 > B and A + B ≥ 0 and therefore A > |B|. Denote κ1 ≡ s1φ[s1a]Φ[ s2b−ρs1a√
1−ρ2

]

and κ2 ≡ s2φ[s2b]Φ̄[ s1a−ρs2b√
1−ρ2

] and both quantities are non negative. Hence we can

rewrite C = Bκ1 + Aκ2.
Observe furthermore that:

dFk
d ln k

= κ2 − κ1,

which describe how the proportion of individuals at the kink varies with the position
of the (log) kink, ln k.

If κ2 > κ1, i.e. dFk
d ln k

> 0 , then C is positive.
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If instead κ2 ≤ κ1 and this is equivalent to:

s2

s1

>
φ[s1a]Φ[ s2b−ρs1a√

1−ρ2
]

φ[s2b]Φ̄[ s1a−ρs2b√
1−ρ2

]
,

and this allows us to find a lower bound for C. Indeed we can express C as:

C = φ[s2b]Φ̄[
s1a− ρs2b√

1− ρ2
]
(
Bs1

φ[s1a]Φ[ s2b−ρs1a√
1−ρ2

]

φ[s2b]Φ̄[ s1a−ρs2b√
1−ρ2

]
+ As2

)
≥ φ[s2b]Φ̄[

s1a− ρs2b√
1− ρ2

]
(
Bs1

s2

s1

+ As2

)
= κ2(A+B) ≥ 0.


