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Abstract

We derive the properties of the periodogram local to the zero frequency for a large

class of spurious long-memory processes. The periodogram is of crucial importance

in this context, since it forms the basis for most commonly used estimation methods

for the memory parameter. The class considered nests a wide range of processes such

as deterministic or stochastic structural breaks and smooth trends as special cases.

Several previous results on these special cases are generalized and extended. All of

the spurious long-memory processes considered share the property that their impact on

the periodogram at the Fourier frequencies local to the origin is different than that of

true long-memory processes. Both types of processes therefore exhibit clearly distinct

empirical features.
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1 Introduction

Long memory is defined by a hyperbolic decay of the autocorrelation function or equiv-

alently by the order of a pole at the origin of the spectral density of a time series. This

behavior is commonly found in data sets from a wide range of subject areas such as eco-

nomics, finance, hydrology, or climatology. However, the applicability of long-memory

time-series models is severely hampered by the fact that a variety of structural-change

and trend processes is known to generate similar empirical behavior such as a pole in the

spectrum at the origin and significant autocorrelations at large lags. This phenomenon

is widely studied and referred to as spurious long memory. However, previous contri-

butions typically focus on specific data generating processes that do not allow to draw

general conclusions.

In this paper, we study the periodogram of a large class of structural-change and

trend processes that can generate spurious long memory. The generality of these results

allows conclusions about the nature of spurious long memory and the different impact of

smooth and abrupt level changes, rare and more frequent level shifts, and accumulative

or non-accumulative level-shift processes.

As examples for the application of these results, we consider a number of spurious

long-memory processes that have been discussed in the previous literature. In particular,

we derive the properties of the periodogram for stationary random level-shift processes,

Markov-switching-mean models, the STOPBREAK process, and quadratic trends. Fur-

thermore, we are able to recover several previous findings on the periodogram of non-

stationary random level-shift processes, deterministic breaks, and fractional and linear

trends that are extended and generalized. For example, we allow for more complex de-

pendence structures in subsequent mean changes, and we can provide exact rates instead

of upper bounds for a number of deterministic trends.

All of these processes are treated within a joint framework that allows for both

– abrupt level shifts and smooth deterministic trends. It is shown how different as-

sumptions on the data generating process can lead to different growth rates of the j-th

periodogram ordinate if j is fixed and the sample size T increases, and to different rates

of decay, as j increases and T is fixed.

The literature on spurious long memory has produced a diverse range of results.

Smooth trends have been studied since Bhattacharya et al. (1983), who show that the

fractional trend model generates a bias in the R/S statistic so that it indicates the

presence of long memory. Further results on the impact of trends (including trends

with structural breaks) on R/S-type statistics are obtained by Giraitis et al. (2001).

Künsch (1986) establishes an upper bound on the impact of monotonous trends on the

periodogram at low frequencies. A similar result is obtained by Iacone (2010), and Qu

(2011) shows that the same upper bound holds for Lipschitz continuous trends.

With respect to abrupt level changes, Lobato and Savin (1998) show that the empiri-

cal autocorrelation function of a structural break process converges to non-zero constants

at all lags. Granger and Teräsvirta (1999) demonstrate that the log-periodogram (GPH)
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estimator of Geweke and Porter-Hudak (1983) is biased for a Markov-switching-mean

model with low switching probabilities. An analytical expression for the bias of the GPH

estimator in presence of mean changes is derived by Smith (2005).

Similar to the results of Lobato and Savin (1998) for a deterministic break, Gourier-

oux and Jasiak (2001) study the empirical autocovariance function for a class of sta-

tionary random level-shift processes, and Granger and Hyung (2004) show that the

autocorrelations of a random level-shift process converge to a constant as the sample

size goes to infinity.

Diebold and Inoue (2001) study the growth rate of the partial sum of a number of

processes including random level shifts, the STOPBREAK process of Engle and Smith

(1999), and a class of Markov-switching processes and show that it can be the same as

that of an Ipdq process given the right conditions.

There are also some contributions that consider the relationship between long mem-

ory and the concept of fractional integration. For example Granger and Ding (1996)

discuss several non-linear processes that have long memory and Haldrup and Valdés

(2017) show that a long-memory process generated by aggregation is not fractionally

integrated. Miller and Park (2010) consider nonlinear transformations of random walks

with heavy tailed innovations. They show that these processes can empirically replicate

characteristics of long-memory processes.

A number of contributions also consider duration-driven long range dependence. This

includes Taqqu et al. (1997), Parke (1999), Liu (2000), Gourieroux and Jasiak (2001),

Davidson and Sibbertsen (2005), and Hsieh et al. (2007). These processes have stationary

random level shifts and heavy tailed regime lengths so that their autocorrelation function

fulfills the long memory definition. Similar results are obtained by Leipus and Surgailis

(2003) for a class of regime switching random coefficient autoregressive processes. Unlike

fractionally integrated processes, however, a number of contributions including Mikosch

et al. (2002), Leipus et al. (2005), and Davidson and Sibbertsen (2005) show that the

partial sums of these processes converge to stable Levy processes with independent

increments.

Most closely related to our paper are those of Mikosch and Stărică (2004), Qu and

Perron (2007), and McCloskey and Perron (2013), who consider the order of the peri-

odogram of processes with abrupt level changes. Mikosch and Stărică (2004) derive the

expectation of the periodogram of a time series consisting of disjoint subsamples gener-

ated by distinct short memory processes and show that it is OpT j´2q at the j-th Fourier

frequency local to the origin, where T is the sample size. Similar results are obtained by

Qu and Perron (2007) for simple non-stationary random level-shift process. McCloskey

and Perron (2013) show that this result also applies to deterministic structural breaks.

The focus on the properties of the periodogram is particularly useful, since this is the

basis for most popular estimation procedures. Based on these findings, Smith (2005),

Iacone (2010), Qu (2011), McCloskey and Perron (2013), Hou and Perron (2014), Chris-

tensen and Varneskov (2017), McCloskey and Hill (2017), and Sibbertsen et al. (2018)
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develop a number of estimation and testing procedures that allow to distinguish true

and spurious long memory.

One important contribution of this paper is to show that the rate OPp j´2q for fixed

T is an upper bound for the periodogram of a much wider class of processes, but the

scaling with T is specific to processes with rare shifts. This finding can be expected to

be useful for the development of future robust methods.

While it is sometimes argued that long-memory and structural-change models can

be used interchangeably, since they model the same data feature, our findings show for

all of the processes discussed above that spurious long memory has a different effect at

the origin of the periodogram than true long memory and is thus empirically distinct. In

general, the effect of structural change tends to be restricted to a smaller neighborhood

of the origin than that of long memory. The only exception are non-accumulative and

relatively frequent level shift processes that affect a larger number of Fourier frequencies.

The rest of the paper is organized as follows. Section 2 gives a short discussion of

the orders of poles in the spectrum for some typical processes. Section 3 discusses our

structural-change model and gives some first results on its discrete Fourier transform

(DFT) and the properties of its components. In Section 4, we use these results to

establish the order of the periodogram for smooth trends, and abrupt level changes are

treated in Section 5. The relationship of these results to other findings in the literature

and their application to several examples is discussed in Section 6. Finally, Section 7

concludes.

2 Long Memory and the Behavior of the Periodogram

It is said that a stochastic process exhibits stationary long memory if the spectral density

local to the origin behaves as

lim
λÑ0

f pλq „G|λ|´2d, (1)

where 0ă dă 1{2 is the memory parameter. There are a number of competing definitions

in the literature that are not in all cases equivalent to the one adopted here. For example,

long memory is often defined through a hyperbolic decay of the autocorrelation function,

the rate of the partial sum, self similarity in the covariance sense, the summability of the

autocovariance function, the boundedness of the spectral density, or the limit process

of the partial sums. An extensive review of these competing definitions is provided by

Guégan (2005) and a recent discussion can be found in Haldrup and Valdés (2017).

Nevertheless, we argue that the definition in (1) is the most prevalent and the one

which is of the highest practical relevance, since it is the basis for most modern estimation

procedures such as the log-periodogram regression of Geweke and Porter-Hudak (1983)

and Robinson (1995a), the local Whittle estimator of Künsch (1987) and Robinson

(1995b), and the Whittle-ML estimator of Fox and Taqqu (1986) and others.

Furthermore, it is one of the main points in the seminal paper of Diebold and Inoue
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Figure 1: Average (rescaled) periodogram of a fractionally integrated Gaussian noise with d“ 0.4
local to the origin. The index j indicates the Fourier frequency.

(2001) that (1) should be used to define long memory, since the definition in terms of the

partial sum is also fulfilled by a range of other processes that should not be considered

to be processes with long-range dependence.

Spurious long memory, on the other hand, is not well defined and we use the term

loosely for the collection of behaviors that are discussed in the related literature. These

typically exhibit long memory according to one of the less restrictive definitions, have a

behavior that is empirically hard to distinguish from that of processes that fulfill one of

the definitions, or cause a positive bias in one of the popular estimators.

The defining property of a long-memory process according to (1) is a pole in the

spectrum that has a specific shape depending on the memory parameter d. Since the

spectral density is not directly observable in practice, it can only be determined from

the periodogram whether a time series has true or spurious long memory. This is the

quantity that is used to draw conclusions about f pλq. We therefore focus on the be-

havior of the periodogram at the Fourier frequencies λ j “ p2π jq{T local to the origin

as λ j Ñ 0`, or equivalently j{T Ñ 0. Denote the Fourier transform of the series zt by

wzpλq “
1?
2πT

řT
t“1 zteiλt. Then the periodogram is given by Izzpλq “ wzpλqw˚z pλq, where

the asterisk denotes the complex conjugate.

From the definition in (1), the periodogram of a true long-memory process is

Izzpλ jq “ OP

´

λ´2d
j

¯

“ OP

˜

ˆ

2π j
T

˙´2d
¸

“ OP

˜

ˆ

T
j

˙2d
¸

. (2)

The long-memory definition therefore has two implications for the expected periodogram

ordinates local to zero. First, for fixed j, the periodogram of a true long-memory process

grows with rate T 2d as the sample size increases. And second, the magnitude of the pole

shrinks with rate j´2d, as the distance from the origin increases.

This is illustrated in Figure 1 that shows the effect of different standardizations on

the average periodogram ordinates local to the origin for different sample sizes. The
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definition of long memory therefore determines the impact of low frequencies and the

relative impact of low frequencies and intermediate frequencies on the variance of the

process.

In contrast to the long memory case, the random level-shift process of Qu and Perron

(2007) and deterministic structural breaks in McCloskey and Perron (2013) are found

to generate periodograms that are of order

OPpT{ j2q, (3)

which means that the peak at the origin grows with T like that of a long-memory process

with d“ 1{2, but the rate of decay for increasing j is like that of a long-memory process

with d “ 1.

In the following, we consider a component model of the form

yt “ µt` xt, (4)

where xt is a zero-mean time-series process that possibly has long memory and µt is a

time-varying mean that can be stochastic or deterministic and t “ 1, ...,T . It is easy to

show that

Iyypλq “ Iµµpλq` Ixxpλq` Iµxpλq` Ixµpλq,

so that

ErIyypλqs “ ErIµµpλqs`ErIxxpλqs,

if xt and µt are assumed to be independent. Since it is known for stationary processes that

ErIxxpλqs “ fxpλq, the remainder of this paper focuses on the behavior of Iµµpλq “ Ipλq,

where we drop the subscripts for notational convenience.

For j“ tT εu, with ε P p0,1q and from (2) and (3) it is clear to see that it depends on

the position parameter ε, whether the periodogram of (4) is dominated by the structural-

change component that is OPpT 1´2εq or the long-memory component that is OPpT 2dp1´εqq.

This is the property used by the procedures of Qu and Perron (2007), Qu (2011), Mc-

Closkey and Perron (2013), Hou and Perron (2014), McCloskey and Hill (2017), and

Sibbertsen et al. (2018) to discriminate between true long memory and random level

shifts. Therefore, the applicability of these procedures depends on whether the order in

(3) is specific to the data generating process (DGP) considered or whether it generalizes

to other structural-change processes.
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3 A General Model of Structural Change and its Fourier Trans-

form

To study the behavior of the periodogram of potential spurious long-memory processes,

we require a versatile representation of the structural-change process µt. Therefore, we

consider structural-change processes that can be expressed as

µt “ µ0`

K
ÿ

k“1

∆µkIpt ě Tkq, (5)

where µ0 is the initial offset of the first mean from the sample mean µ0 “ µ1´ µ and

µ “ T´1řT
t“1µt. The variable K is the number of observations for which there is a

structural change in the mean relative to the previous observation, and Tk is the point

in time at which the k-th change occurs. If we set T0 “ 0, then we can also express µ as

µ“
řK

k“0µkpTk`1´Tkq{T .

The representation in (5) is extremely versatile. For deterministic structural breaks

this representation is obvious and commonly used, albeit µ0 usually represents the mean

of the initial observations and not the offset from the time mean.

If the changes ∆µk and the breakpoints Tk are stochastic, then the process nests a

random level-shift process. Even a random walk is nested in (5) if K “ T , Tk “ t for all

k “ t, and the ∆µk are a martingale difference sequence.

Similarly, deterministic trends can be represented as in (5). Deterministic trends are

usually modeled as functions hpsq on r0,1s. Let st “ t{T for t “ 1, ...,T , then we have

hpstq “ hp0q `
řt

k“1 rhpk{T q´hppk´1q{T qs and obviously µt “ hpstq if ∆µk “ rhpk{T q´

hppk´1q{T qs, K “ T , and Tk “ 1,2, ...,T . Restrictions on hpsq – such as Lipschitz-

continuity – correspond to restrictions on the ∆µk.

It is important to note that the nature of structural change in (5) is accumulative

in the sense that the mean at time t depends on all shifts that occurred before time

t. While this seems appropriate for a wide range of commonly used structural-change

models such as deterministic breaks, random level shifts, and the STOPBREAK process,

there is a number of processes such as stationary random level shifts, Markov-switching

mean models, or duration-driven long-range-dependent processes, for which it is more

convenient to consider the following non-cumulative model of structural change

µt “ µ0`

K
ÿ

k“0

µkIpTk´1 ď t ă Tkq, (6)

where µ0 is the unconditional expectation of µt, T´1 “ 1, and Ip¨q is the indicator func-

tion that takes the value one if its argument is true. Here, the mean in each segment

between two level changes is determined by µk, and the dependence between the means

in neighboring segments is directly determined by the dependence structure in the µk.

Since the mean in each segment between breaks is re-centered around the mean, the
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variance of the process in (6) is independent of t, whereas that of (5) is not.

For the structural-change processes in (5) and (6) we have the following result.

Lemma 1. The discrete Fourier transform (DFT) of the process in (5) can be repre-

sented as

wµpλ jq “ ´
1

?
2πT

K
ÿ

k“1

∆µkDTkpλ jq,

and that of the process in (6) can be represented as

wµpλ jq “ ´
1

?
2πT

K
ÿ

k“0

µk
`

DTk´1pλ jq´DTk´1pλ jq
˘

,

where DTkpλq “
řTk

t“1 eiλt is a version of the Dirichlet kernel.

The proof of this and all following results is given in the appendix. Note that Lemma

1 is completely algebraic and we do not impose any conditions on the ∆µk, µk, or Tk.

It is well known that the DFT of a constant is zero at the Fourier frequencies λ j.

This is the mechanism behind the self-centering property of the periodogram and the

last step in the proof of Lemma 1. However, the DFT of an indicator function is non-

zero at the Fourier frequencies and so is that of a structural-change process that can be

expressed in terms of indicator functions as in (5) or (6).

Lemma 1 shows that the DFT of an accumulative structural-change process can

be represented as a sum of Dirichlet kernels that depends on the location of the mean

changes – each weighted by the magnitude of the corresponding mean change. Similarly,

the DFT of the non-accumulative structural-change process can be represented as a

sum of differences between Dirichlet kernels – each weighted by the magnitude of the

corresponding mean.

Since Lemma 1 implies that the properties of the DFT and thus the periodogram

of a structural-change process are directly related to those of the Dirichlet kernel, the

following lemma provides an approximation for the Dirichlet kernel at frequencies local

to zero.

Lemma 2. We have for Tk{T “ δk P r0,1s and j{T Ñ 0,

DTkpλ jq “ T j´1 sinp2δkπ jq
2π

` sin2pπ jδkq` i

«

T j´1 sin2pπδk jq
π

´
1
2

sinp2πδk jq

ff

`OPp jT´1q.

Clearly, from Lemma 2, both the real and the imaginary part of the Dirichlet kernel

are OpT j´1q for deterministic δk and OppT j´1q if any of the δk is stochastic. Furthermore,

the order is exact. Again, this is an approximation based on a Laurent expansion that

holds irrespective of the stochastic properties of the Tk.

For deterministic structural breaks the result that Ipλq “ OpT{ j2q from McCloskey

and Perron (2013) is obtained as a direct consequence of Lemmas 1 and 2. The same
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holds true for the result that the random level-shift process has a periodogram of order

OppT{ j2q, as derived in Qu and Perron (2007). The full range of admissible processes in

(5) and (6) will be covered in Section 5. Before that, the next section provides detailed

results on the behavior of smooth trends.

4 The Periodogram of Smooth Deterministic Trends

Some of the earliest discussions of spurious long memory in the literature consider the

effect of deterministic trends. Bhattacharya et al. (1983), for example, derive the limit of

the rescaled range statistic for a class of trend processes that is referred to as fractional

trends. For monotonous trends Künsch (1986) showed that Ipλq “ OpT{ j2q – similar

results are later derived by Qu (2011) and Iacone (2010). Based on the difference

between this rate and that of the long-memory process in (2), Künsch (1986) argues

that asymptotically consistent estimates of d in presence of monotonous trends can be

obtained by trimmed log-periodogram regressions, as shown by McCloskey and Perron

(2013).

Based on the representation result from Lemma 1 and the results on the order of the

Dirichlet kernel in Lemma 2, we can now derive the exact order of the periodogram of

a deterministic trend.

Consider a trend function hps,T q : r0,1s ˆNÑ R, such that µt “ hpt{T,T q. Note

that the trend is allowed to depend on both, the sample fraction s and the sample size

T . This means we allow for a triangular array structure, which is necessary to include

examples such as the typical linear trend model µt “ β0` β1t, which is obtained as a

special case for hps,T q “ β0`β1sT .

To establish the behavior of the periodogram of a deterministic trend model, the

trend is required to be bounded, continuous, and sufficiently smooth so that the first

derivative is finite.

Assumption 1. |hps,T q|,
ˇ

ˇ

ˇ

Bhps,Tq
Bs

ˇ

ˇ

ˇ
ă8, for s P r0,1s.

For finite K it is obvious from Lemma 1 that the DFT will have the order of the

Dirichlet kernel when there is a ∆µk ą 0. However, in the case of a Lipschitz continuous

trend, we have |hprq´ hpsq| ď K̃|r´ s| for a finite constant K̃. Therefore, at successive

observations t and t´1, we have ∆µt ď K̃{T Ñ 0 so that the behavior of the DFT is not

obvious. This situation is covered in the following theorem. Here and in the following,

A„ B denotes that the ratio of the real and the imaginary parts of the left and right-hand

side converges to one as T Ñ8.

Theorem 1. If µt “ hpt{T,T q, under Assumptions 1 we have

Ipλ jq „
T

8π3 j2

#

„
ż 1

0

Bhps,T q
Bs

sinp2π jsqds
2

`

„
ż 1

0

Bhps,T q
Bs

p1´ cosp2π jsqqds
2+

.
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Similar to Lemmas 1 and 2, Theorem 1 is an asymptotic approximation, which is

required to replace the sums from the DFT by integrals and the ∆µk by Bhps,T q{Bs, but

no statistical limit theory is required, since the periodogram of a deterministic trend is

itself a deterministic function.

Since the integrals in Theorem 1 are functions of j (and possibly T ), it can be

seen that the exact rate of the periodogram depends on the derivative of the trend

function. Therefore, if the trend function is known and the integrals have a closed form

solution, it is possible to determine the exact order. If this is not the case, we can still

recover the upper bound on the rate of decay for increasing j that was established by

Künsch (1986), Qu (2011), and Iacone (2010). To see this, note that sinp2π jsq ď 1 and

1´cosp2π jsq ď 2 for all j and s. It therefore follows immediately for µt “ hpst,T q “ hpstq

that the periodogram is Ipλ jq “ OpT j´2q.

5 The Periodogram of Processes with Abrupt Level Shifts

We now turn to the behavior of the periodogram of abrupt level-shift processes. To

simplify the exposition, let ζk denote either ∆µk or µk, depending on whether the accu-

mulative structural-change model (5) or the non-accumulative model (6) is considered.

To characterize the behavior of different groups of processes, we require different

groups of assumptions. First, in the case of deterministic structural breaks, we assume:

Assumption 2. |ζk| ă 8 and the δk “ Tk{T are deterministic with 0 ă δk ă 1, for k “

1, ...,K ă8.

For stochastic level shifts we require the following assumptions.

Assumption 3. Erζks “ 0 and Varrζks “ σ2
∆

T´β, for some 0ď βď 1 and 0ă σ2
∆
ă8.

Assumption 4. Ppt P tT1, ...,TKuq “ pt, where 0 ď pt ď 1, and Erpts “ p̃T´α, for some

0 ď α ď 1. Furthermore, the dependence in pt is limited such that ErKs “ p̃T 1´α,

E
“

ppTk´Tk´1q{T q2
‰

“ 2D̃
p̃2 T 2pα´1qq, and E

“

ppTk´Tk´1q{T q4
‰

“ OpT 4pα´1qq, for some 0 ă

p̃, D̃ă8.

Assumption 5. pt is independent of ζk for all k “ 1, ...,K and t “ 1, ...,T . Additionally,
ř8
τ“1

∣∣∣Erζkζk´τs
∣∣∣“ VarrζksC̃, for k “ 1,2, ..., and 0ď C̃ ă8.

The rate T´β in Assumption 3 is required to nest a number of mean-change processes

from the literature, such as the STOPBREAK process of Engle and Smith (1999). For

other processes setting β“ 0 gives the familiar setup with non-degenerate breaks.

Assumption 4 imposes structure on the nature of the mean change process. Assuming

Ppt P tT1, ...,TKuq “ pt means that the regime change process is a generalized Bernoulli

process with time-varying success probability pt. The nature of the dependence in pt

is restricted by the additional requirement that the expected squared length of the kth

regime expressed as a fraction of the sample is 2D̃
p̃2 T 2pα´1q, which means that the second

moment of the regime lengths is still of the same order as that of a geometric distribution.
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In this context, the constant D̃ depends on the dependence in pt, and it is equal to one,

if pt “ p for all t “ 1, ...,T .

Since there are T observations in the sample, the expected number of mean shifts

in the series is ErKs “ p̃T 1´α. The parameter α controls the asymptotic frequency of

level changes. The expected number of shifts remains constant for α “ 1, whereas it

goes to infinity for αă 1. The first case (α“ 1) is referred to as rare shifts asymptotics

or low frequency contaminations. We refer to the second case (α ă 1) as intermediate

frequency contaminations. Here, we have K Ñ8 but K{T Ñ 0, as T Ñ8. That means

we asymptotically have an infinite number of shifts, but also an infinite number of

observations between shifts. Finally, for α ą 1 shifts are so rare that we will no longer

observe any in a sample, asymptotically. The empirically relevant parameter range is

therefore 0ă αď 1.

Even though it may seem unusual to tie the properties of the process to the sample

size, this is a common approach in the related literature. Guégan (2005) refers to this

practice as a thought experiment. The validity of this approach depends on the purpose

of the analysis. Obviously, it is unreasonable to assume that structural changes will

become less common in the future if the objective is to forecast a time series. On the

other hand, if the objective is statistical inference based on a given sample, we argue

that assuming that the frequency of structural change is tied to the sample size T can

be thought of as an asymptotic framework that is better suited to approximate the

statistical properties of the quantities of interest than keeping p fixed. The latter would

imply, for example, that level changes are so frequent that the mean between two shifts

cannot be estimated consistently.

Finally, we require some bound on the degree of dependence between the means or

mean changes ζk in consecutive segments. This is imposed by Assumption 5 according

to which the autocovariance function of the ζk has to be absolutely summable. We then

obtain the following result.

Theorem 2. For j{T Ñ 0 and level-shift processes characterized by (5),

i.) Ipλ jq „
T

4π3 j2Op1q, under Assumption 2.

ii.) Ipλ jq „
σ2
∆

p̃T 1´β

4π3 j2 OPp1q, for α“ 1, and under Assumptions 3 and 4.

iii.) E
“

Ipλ jq
‰

„
σ2
∆

p̃T 2´α´β

4π3 j2
`

1`Op1qC̃
˘

, for αă 1, and under Assumptions 3, 4, and 5.

Theorem 2 establishes the properties of the periodogram of the accumulative mean-

change process in (5). The first case i.) derives the growth rate of the peak near

the origin and the rate of decay for frequencies further away from the zero frequency

for a deterministic structural break process. This order was previously established by

McCloskey and Perron (2013). Interesting is the contrast to case ii.), where rare random

level shifts are considered. In contrast to i.) the periodogram becomes stochastic instead

of deterministic. Furthermore, the scaling factor T´β of the ∆µk influences the scaling of
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Figure 2: Average rescaled periodogram for accumulative and non-accumulative processes with
intermediate frequency contaminations. In the left plot the simulated DGP is µt “ µt´1`πtεt and
in the right plot it is µt “ p1´πtqµt´1`πtεt. In both cases πt „ Bppq, p“ 5{Tα, and εt „ Np0,1q.

the peak local to the origin, which is of order T 1´β instead of T . An important distinction

between the first two cases and iii.) lies in the fact that iii.) makes a statement about

the expectation of the periodogram. In i.) the periodogram is a deterministic function

and in ii.) there is a well defined expectation, but the process is not ergodic since with

α “ 1, the expected number of shifts in the sample is always given by ErKs “ p̃. Case

iii.), on the other hand, covers intermediate frequency contaminations, where α ă 1 so

that the expected number of shifts is ErKs “ p̃T 1´α and the process is ergodic. In this

situation, the scaling of the peak near the origin is determined by both – α and β. Since

αă 1, the growth rate is always faster than that in cases i.) and ii.). The rate of decay

for increasing j, however, is the same for all three types of processes.

Similar results to these can be obtained for the non-accumulative mean-change pro-

cess in (6).

Theorem 3. For j{T Ñ 0 and level-shift processes characterized by (6),

i.) Ipλ jq „
T

2π3 j2Op1q, under Assumption 2.

ii.) Ipλ jq „
σ2
∆

p̃T 1´β

2π3 j2 OPp1q, for α“ 1, and under Assumptions 3 and 4.

iii.) E
“

Ipλ jq
‰

„
σ2
∆

D̃
πp̃ Tα´β

`

1`Op1qC̃
˘

, for αă 1, and under Assumptions 3, 4, and 5.

As one can see, the orders for cases i.) and ii.) in Theorem 3 are identical to those

in Theorem 2. That means that accumulative and non-accumulative structural change

have the same impact on the periodogram local to zero, as long as the mean changes are

deterministic or rare. In contrast to that, case iii.) is remarkably different. In presence

of intermediate frequency contaminations, when the process becomes ergodic, the order

of the peak is reduced to Tα´β, instead of T 2´α´β. Furthermore, the peak local to zero

no longer decays for increasing j.
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Important special cases of both the accumulative and the non-accumulative process

are obtained for α“ 0. In this case the accumulative process boils down to a unit root

process and the non-accumulative process becomes a simple stationary short memory

process. In this situation, case iii.) in Theorems 2 and 3 reduces to the well known result

that the periodogram of the unit root process local to the origin is of order OPpT 2{ j2q

and that of the short memory process is OPp1q.

The precision of the statements in case iii.) of Theorems 2 and 3 in finite sam-

ples is investigated in a small Monte Carlo study. The results are shown in Figure 2.

As examples for accumulative and non-accumulative structural-change processes with

intermediate frequency contaminations, we simulate the random level-shift process

µt “ µt´1`πtεt

and its stationary counterpart

µt “ p1´πtqµt´1`πtεt.

In both cases πt „ Bppq, p“ 5{Tα, and εt
iid
„ Np0,1q.

To analyze the accuracy of the asymptotic approximations in Theorems 2 and 3, we

calculate the average periodogram from 5000 realizations of the respective process for

different sample sizes and standardize it with the rate implied by the theorems. The

resulting rescaled averaged periodogram is expected to be flat, if the theorem applies.

Since the results are obtained under the assumption that j{T Ñ 0, it can be expected

that the accuracy of the approximation is decreasing in j. On the left-hand side of Figure

2, it can be seen that the asymptotic approximation for accumulative structural-change

processes in Theorem 2 iii.) is precise for small as well as for larger samples. On the other

hand, the plot on the right-hand side of Figure 2 shows that the results in Theorem 3 for

non-accumulative structural-change processes hold up well in finite samples for α“ 0.3,

but the approximation seems to be much more imprecise for α“ 0.7.

The explanation for this effect can be seen from (22) in the proof of Theorem 3,

where the first term of order OpTα´βq is the dominating one that drives the asymptotic

result, but there is an approximation error of order OpT´2`3α´βq, whose impact vanishes

only slowly if α is relatively large.

Nevertheless, it can be seen that the average rescaled periodogram converges to its

predicted value as T increases.

6 Examples and Relationship to Other Results

To illustrate the generality and usefulness of the results in Theorems 1 to 3, we discuss

their implications for a number of important spurious long-memory processes. Some of

these processes have already been studied in the literature. Where this is the case, we

discuss how our results extend previous findings. Furthermore, we provide some more
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simulation evidence on the accuracy of our asymptotic approximations in finite samples.

6.1 Examples of Smooth Trends

First consider a linear trend of the form

hpsq “ s. (7)

Obviously,
Bhpsq
Bs “ 1, so that from Theorem 1

Ipλ jq „
T

8π3 j2

$

&

%

«

sin2pπ jq
π j

ff2

`

„

1´
sinp2π jq

2π j

2
,

.

-

“
T

8π3 j2
, (8)

since sinpπ jq “ sinp2π jq “ 0 for j PN. The linear trend is monotonous and generates a

peak that is of the same order as that of discontinuous level changes such as deterministic

structural breaks and random level-shift processes. The typical linear trend model µt “

β0 ` β1t is obtained as a special case of the degenerate trend model for hpt{T,T q “

β0` β1pt{T qT . This leads to Ipλ jq “ pT 2β1q{p8π3 j2q, so that the periodogram is of a

considerably larger magnitude than that in (8), for large T .

Non-monotonic trends can generate peaks that decay faster than those of monotonous

trends as j increases. As an example, consider the quadratic trend

hpsq “ 1{2´p2s´1q2, (9)

with derivative
Bhpsq
Bs “ 4´8s. Then

Ipλ jq „
T

8π3 j2

#

„
ż 1

0
p4´8sqsinp2π jsqds

2

`

„
ż 1

0
p4´8sqp1´ cosp2π jsqqds

2+

“
T

8π3 j2

#

„

4cospπ jqpπ jcospπ jq´ sinpπ jqq
π2 j2

2

`

„

2pπ jsinp2π jq` cosp2π jq´1q
π2 j2

2
+

“
T

8π3 j2

„

4cos2pπ jq
π j

2

“
2T
π5 j4

, (10)

since sinpπ jq “ sinp2π jq “ 0, cosp2π jq “ 1, and cospπ jq “ ´1, for j PN. Obviously, in this

case the number of Fourier frequencies that are meaningfully different from zero is much

lower than in the monotonic case.

Both the linear trend as well as the quadratic trend are shown on the left-hand side

of Figure 3. In analogy to Figure 2, the left-hand side of Figure 3 shows the accuracy of

the result for different sample sizes T . It can be seen, that the accuracy decays slightly

for increasing j if T “ 500, but this is on a very small scale and the effect disappears as

the sample size increases. We therefore find that the result is a reliable approximation

in finite samples.

Simple sinusoidal trends do not cause spurious long memory if there is an integer
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Figure 3: Linear and quadratic trend model as in (7) and (9) (left) and periodogram of the
trends rescaled according to the results in (8) and (10) (right), at the j-th Fourier frequency.

number of cycles in the sample. As an example, we consider

hpsq “ sinp4πsq,

as in the simulation study of Qu (2011). Then

Ipλ jq „
T

8π3 j2

#

„
ż 1

0
4πcosp4πsqsinp2π jsqds

2

`

„
ż 1

0
4πcosp4πsqp1´ cosp2π jsqqds

2+

“
T

8π j2

#

„

cosp2π jq´1
2πp j`1q

´
cosp2π jq´1

2πp j´1q

2

`

„

sinp2π jq
2πp j´1q

`
sinp2π jq
2πp j`1q

2
+

“ 0,

for j‰ 1, since sinp2π jq“ cosp2π jq´1“ 0, for j PN, and by the product-to-sum identities.

The periodic trend does only generate a single peak at the first Fourier frequency. The

spectrum at all other frequencies local to zero is flat. Intuitively, this is obvious from the

regression interpretation of the periodogram, since each periodogram ordinate can be

interpreted as the sum of the squared coefficients on the sine and cosine term with the

respective frequency in the Fourier approximation of the process. This implies exactly

the behavior derived above, since these coefficients are zero for all but one frequency in

the case of the sine trend.

The regression interpretation of the periodogram also leads to an intuitive explana-

tion of the origin of spurious long memory. Since the periodogram ordinates are directly

related to the Fourier coefficients, the impact of the low frequencies (other than zero)

reflects the approximation error between the deterministic trend and the Fourier series.

A case that has received special attention in the literature is the fractional trend

model of Bhattacharya et al. (1983) that is given by

hps,T q “
c1

pc2` sT qγ
, (11)
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where c1,c2 ą 0 and γ P r0,1{2s. For γ P r0,1{2s, Bhattacharya et al. (1983) show, that

according to the rescaled range statistic d “ 1{2´γ. This monotonous trend model is

degenerate in the sense that asymptotically all of the mean change of the process is

concentrated in the immediate neighborhood of the sample origin.

It is obvious that
Bhps,Tq
Bs “´

c1γT
pc2`sTqγ`1 . Therefore, we have from Theorem 1 that

Ipλ jq „
T

8π3 j2

#

„
ż 1

0

c1γT
pc2` sT qγ`1 sinp2π jsqds

2

`

„
ż 1

0

c1γT
pc2` sT qγ`1 p1´ cosp2π jsqqds

2+

.

(12)

Unfortunately, the expressions in (12) are not readily integrable. However, as dis-

cussed in Section 4, we can still recover the result in Künsch (1986) and show that

limTÑ8 Ipλ jqT´1 “ Op j´2q. If we set sinp2π jsq ă 1 and 1´ cosp2π jsq ă 2, we obtain

lim
TÑ8

Ipλ jq

γ2T 3
”

ş1
0pc2` sT q´γ´1ds

ı2 ď
5c2

1

8π3 j2
.

Furthermore, solving the integral in the denominator gives

lim
TÑ8

Ipλ jq

γ2T 3

„

c´γ
2 ´pc2`Tq´γ

Tγ

2 “ lim
TÑ8

Ipλ jq

T
”

c´γ2 ´pc2`T q´γ
ı2 “ lim

TÑ8
Ipλ jqT´1c2γ

2 ,

so that

lim
TÑ8

Ipλ jqT´1 ď
5c2

1

8π3 j2c2γ
2

.

Consequently, the effect of the fractional trend on the periodogram is at most as large

as that of a random or deterministic level-shift process and therefore concentrated more

heavily at the origin than that of a true long-memory process.

6.2 Examples of Abrupt Level Changes

Like Theorem 1, Theorems 2 and 3 cover many prominent special cases from the previous

literature. As discussed above, the order of deterministic structural breaks is directly

covered by part i.) of both theorems. Theorem 3 underlines that this result is not

dependent on the exact formulation of the deterministic structural break process so that

it applies to the non-accumulative case as well.

The non-stationary (rare) random level-shift process given by µt “ µt´1`πtεt, with

εt
iid
„ Np0,σ2

εq, πt
iid
„ Bp1, pq, and p“ OpT´1q as studied in Perron and Qu (2010), Diebold

and Inoue (2001), and Qu (2011), among others, is directly covered by case ii.) of
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Figure 4: Average rescaled periodogram for examples from the spurious long-memory literature.
STOP stands for the STOPBREAK process of Engle and Smith (1999), MS for the Markov-
switching process as specified in Diebold and Inoue (2001), and SRLS stands for the stationary
random level-shift process as considered in the simulation studies of Qu (2011).

Theorem 2, so that

Ipλ jq „
OPpT q
4π3 j2

.

Different from Breidt and Hsu (2002), we obtain from Theorem 3 for the stationary

random level-shift process given by µt “ µt´1p1´πtq`πtεt that it is of the same order

as the non-stationary case for p “ p̃T´1, but it is OP

´

σ2
∆

p̃πTα´β
¯

, for p “ OpT´αq and

0ď αă 1.

Another example is the STOPBREAK process proposed by Engle and Smith (1999)

that is given by µt “ µt´1 `
ε2

t´1

γT`ε
2
t´1
εt´1. Here, the scaling factor γT determines the

variance of the mean changes so that δ{2 corresponds to β in Assumption 3.

For this process Diebold and Inoue (2001) show that γT “ OpT δq implies Ip1´ δq-

behavior of the partial sums. Assuming Gaussian innovations, we obtain

Ipλq „
15σ6

ε

4π3 j2
T 2p1´δq,

directly from case (ii.) of Theorem 2 with α“ 0.

Guégan (2005) mentions that for this process and all the other processes in Diebold

and Inoue (2001) so far there has only been empirical evidence that they are not long

memory in a spectral density sense. Our results now give a proof for this claim.

The accuracy of our results for these example processes is demonstrated in Figure 4
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that shows the average rescaled periodograms for different sample sizes.

Finally, Markov-switching mean models have been considered as examples of spurious

long-memory processes by Diebold and Inoue (2001) and Gourieroux and Jasiak (2001).

Gourieroux and Jasiak (2001) focus on the autocovariance function of the Markov-

switching models with rare shifts where α “ 1. Diebold and Inoue (2001) allow for

more flexible dynamics and show for a process where the shift probability is of order

T´α that the variance of the partial sum process behaves like that of a process that

is Ipα{2q. Obviously, the mean-change process in the Markov-switching model is non-

accumulative so that the special cases of Gourieroux and Jasiak (2001) and Diebold and

Inoue (2001) are covered by cases ii.) and iii.) in Theorem 3. For α “ 1, the Markov

switching mean model therefore causes the same behavior of the periodogram local to

the origin as stationary or non-stationary random level-shift processes with rare shifts.

For α ă 1, the peak local to the origin is of order OppTαq, but flat – and not decaying

as j increases. Granger and Teräsvirta (1999) consider Markov-switching mean models

with small but fixed switching probabilities. Technically, these processes fall into case

(ii.) of Theorem 3, with α “ 0. However, in finite samples and when the probabilities

for a regime change are very small, assuming α ą 0, or even α “ 1 might give a better

approximation for the behavior of the periodogram.

7 Conclusion

We provide results on the behavior of a large class of spurious long-memory processes

that nests a wide range of special cases previously discussed in the literature. In particu-

lar, we conduct the first comprehensive analysis of the different impact of low and inter-

mediate frequency contaminations and accumulative and non-accumulative structural-

change processes.

As can be seen from Theorems 1 to 3, with exception of case iii.) in Theorem 3, the

impact of these processes on the periodogram is concentrated more heavily around the

origin compared to true long-memory processes. This is the case as long as shifts are

sufficiently rare or their effect is accumulative. While the peak generated by abrupt level

changes decays with rate j´2 as the distance 2π j{T from the pole increases, the effect of

trends can be even more local to the zero frequency, as can be seen for the example of

the quadratic trend in the previous section, that is of order Op j´4q.

It is true that many of the spurious long-memory processes generate patterns such

as non-zero autocorrelations at large lags or poles in the spectrum that are similar to

true long-memory processes according to the definition in (1). However, we show that

both types of processes have empirical features that are clearly distinct.

Furthermore, there are important differences in the effect of more or less frequent

level changes. The rate of structural change modulates the effect of the sample size T on

the scale of the peak in the periodogram and if structural changes are non-accumulative

and of an intermediate frequency so that 0ă αă 1, then the effect on the periodogram
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is less localized to zero than that of true long-memory processes.

The differences between the behavior of accumulative rare level changes and true

long-memory processes was previously derived by Perron and Qu (2010), among oth-

ers, and it is the basis for many robust estimation procedures such as those of Iacone

(2010), McCloskey and Perron (2013), Hou and Perron (2014), Christensen and Var-

neskov (2017), and McCloskey and Hill (2017). These methods use trimming or an

augmented pseudo-spectral density that assumes the situation in case ii.) of Theorem 2.

As our results show, the necessary amount of trimming, or the form of correction needed,

depends on the structural-change model so that the domain on which these methods are

valid could be extended.

Furthermore, these results show that the test for the null hypothesis of true long

memory according to (1) proposed by Qu (2011) and extended by Sibbertsen et al.

(2018) is applicable against the full range of structural-change processes nested in the

class considered here.

We therefore believe that our results contribute to the development of a deeper

understanding of the relationship between true and spurious long memory and to the

applicability of robust methods for the estimation of the memory parameter in presence

of structural change.
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Appendix

Proof of Lemma 1

Proof. From (5), we have

wµpλq “
1

?
2πT

T
ÿ

t“1

µteiλt

“
1

?
2πT

T
ÿ

t“1

#

µ0`

K
ÿ

k“1

Ipt ě Tkq∆µk

+

eiλt

“
1

?
2πT

#

µ0

T
ÿ

t“1

eiλt`

T
ÿ

t“1

K
ÿ

k“1

Ipt ě Tkq∆µkeiλt

+

“
1

?
2πT

#

µ0

T
ÿ

t“1

eiλt`

K
ÿ

k“1

∆µk

T
ÿ

t“1

Ipt ě Tkqeiλt

+

.

Here,

T
ÿ

t“1

Ipt ě Tkqeiλt “

T
ÿ

t“Tk

eiλt “

T
ÿ

t“1

eiλt´

Tk
ÿ

t“1

eiλt “ DT pλq´DTkpλq.

Therefore,

wµpλq “
1

?
2πT

#

DT pλqµ0`

K
ÿ

k“1

∆µk
“

DT pλq´DTkpλq
‰

+

“
1

?
2πT

#

DT pλqµ0`

K
ÿ

k“1

∆µkDT pλq´
K
ÿ

k“1

∆µkDTkpλq

+

“
1

?
2πT

#«

µ0`

K
ÿ

k“1

∆µk

ff

DT pλq´
K
ÿ

k“1

∆µkDTkpλq

+

.

Furthermore, we have

DT pλ jq “
eipT`1qλ j ´ eiλ j

eiλ j ´1
“ eipT´1qλ j{2

sinpTλ j{2q
sinpλ j{2q

, (13)

cf. Beran et al. (2013), p. 327. Note that λ jT “ 2π j, eipT`1qλ j “ eiλ jT eiλ j , and ei2π j “ cosp2π jq`

isinp2π jq “ cosp2πq` isinp2πq “ 1. Therefore, DT pλ jq “
eiλ j´eiλ j

eiλ j´1
“ 0, which proves the first part

of the theorem.

Similarly, for the second part of the theorem, we have from (6) that

wµpλq “
1

?
2πT

T
ÿ

t“1

#

µ0`

K
ÿ

k“0

µkIpTk´1 ď t ă Tkq

+

eiλt

“
1

?
2πT

#

µ0

T
ÿ

t“1

eiλt`

K
ÿ

k“0

µk

T
ÿ

t“1

IpTk´1 ď t ă Tkqeiλt

+

.
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Here,

T
ÿ

t“1

IpTk´1 ď t ă Tkqeiλt “

T
ÿ

t“1

tIpTk ą tq´ IpTk´1 ě tqueiλt

“

T
ÿ

t“1

IpTk ą tqeiλt´

T
ÿ

t“1

IpTk´1 ě tqeiλt

“

Tk´1
ÿ

t“1

eiλt´

Tk´1
ÿ

t“1

eiλt

“ DTk´1pλq´DTk´1pλq.

Therefore, since DT pλ jq “ 0, we have

wµpλ jq “
1

?
2πT

K
ÿ

k“0

µk
 

DTk´1pλ jq´DTk´1pλ jq
(

.

�

Proof of Lemma 2

Proof. From the second expression in (13) in the proof of Lemma 1 we can decompose the real

and the imaginary parts of the DFT at the Fourier frequencies λ j “ 2π j{T as follows

DTkpλ jq “
eipTk´1qλ j{2 sinpTkλ j{2q

sinpλ j{2q

“

“

cosppTk´1qλ j{2q` isinppTk´1qλ j{2q
‰

sinpTkλ j{2q
sinpλ j{2q

“
cosppTk´1qλ j{2qsinpTkλ j{2q

sinpλ j{2q
` i

sinppTk´1qλ j{2qsinpTkλ j{2q
sinpλ j{2q

“
cospTk´1

T π jqsinpTk
T π jq

sinp π j
T q

` i
sinpTk´1

T π jqsinpTk
T π jq

sinp π j
T q

.

It follows by the sum-to-product identities that

DTkpλ jq “
sinpTk´1

T π j` Tk
T π jq´ sinpTk´1

T π j´ Tk
T π jq

2sinp π j
T q

` i
cospTk´1

T π j´ Tk
T π jq´ cospTk´1

T π j` Tk
T π jq

2sinp π j
T q

“
sinp2δkπ j´ π j

T q` sinp π j
T q

2sinp π j
T q

` i
cosp π j

T q´ cosp2δkπ j´ π j
T q

2sinp π j
T q

.

By a Laurent series approximation around λ j “ 0, we obtain

DTkpλ jq “ T j´1 sinp2δkπ jq
2π

` sin2pπ jδkq`OPp jT´1q

` i

«

T j´1 sin2pπδk jq
π

´
1
2

sinp2πδk jq`OPp jT´1q

ff

,

where the Laurent series is obtained from separate Taylor approximations for each of the trigono-

metric functions. This proves the lemma. �
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Proof of Theorem 1

Proof. For µt “ hpt{T,T q by Lemma 1 we have wµpλ jq “
´1
?

2πT

řT
t“1∆µtDtpλ jq. Furthermore, from

Lemma 2, we have

DTkpλ jq “ T j´1 sinp2δkπ jq
2π

` sin2pπ jδkq`OPp jT´1q` i

«

T j´1 sin2pπδk jq
π

´
1
2

sinp2πδk jq`OPp jT´1q

ff

.

Therefore,

Ipλ jq “

ˇ

ˇ

ˇ

ˇ

ˇ

´
1

?
2πT

T
ÿ

t“1

∆µtDtpλ jq

ˇ

ˇ

ˇ

ˇ

ˇ

2

“ p2πT q´1

ˇ

ˇ

ˇ

ˇ

ˇ

T
ÿ

t“1

∆µt

"

T j´1 sinp2π jt{T q
2π

` sin2pπ jt{T q`OPp jT´1q

`i

«

T j´1 sin2pπ jt{T q
π

´1{2sinp2π jt{T q`OPp jT´1q

ff+
ˇ

ˇ

ˇ

ˇ

ˇ

2

“ p2πT q´1

$

&

%

«

T
ÿ

t“1

∆µt

ˆ

T j´1 sinp2π jt{T q
2π

` sin2pπ jt{T q`OPp jT´1q

˙

ff2

`

«

T
ÿ

t“1

∆µt

˜

T j´1 sin2pπ jt{T q
2π

¸

´1{2sinp2π jt{T q`OPp jT´1q

ff2
,

.

-

“ p2πT q´1

$

&

%

«

T
T
ÿ

t“1

∆µt sinp2π jt{T q
2π j

`

T
ÿ

t“1

∆µt sin2pπ jt{T q`T´1
T
ÿ

t“1

∆µtOPp jq

ff2

`

«

T
T
ÿ

t“1

∆µt
sin2pπ jt{T q

π j
´1{2

T
ÿ

t“1

∆µt sinp2π jt{T q`T´1
T
ÿ

t“1

∆µtOPp jq

ff2
,

.

-

Factoring out T from the square brackets gives

2πIpλ jqT´1 “

$

&

%

«

T
ÿ

t“1

∆µt sinp2π jt{T q
2π j

`T´1
T
ÿ

t“1

∆µt sin2pπ jt{T q`T´2
T
ÿ

t“1

∆µtOPp jq

ff2

`

«

T
ÿ

t“1

∆µt
sin2pπ jt{T q

π j
´

1
2T

T
ÿ

t“1

∆µt sinp2π jt{T q`T´2
T
ÿ

t“1

∆µtOPp jq

ff2
,

.

-

.

Now, using ∆µt “ hpt{T,T q´hppt´1q{T,T q, we have

lim
TÑ8

∆µtT “
Bhpt{T,T q
Bpt{T q

,
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so that

2πIpλ jqT´1 „

$

&

%

«

1
2π jT

T
ÿ

t“1

Bhpt{T,T q
Bpt{T q

sinp2π jt{T q`
T
ÿ

t“1

Bhpt{T,T q
Bpt{T q

1
T 2 sin2pπ jt{T q`

1
T 3

T
ÿ

t“1

Bhpt{T,T q
Bpt{T q

OPp jq

ff2

`

«

T
ÿ

t“1

Bhpt{T,T q
Bpt{T q

sin2pπ jt{T q
π jT

´
1
2

T
ÿ

t“1

Bhpt{T,T q
Bpt{T q

1
T 2 sinp2π jt{T q`

1
T 3

T
ÿ

t“1

Bhpt{T,T q
Bpt{T q

OPp jq

ff2
,

.

-

,

where a„ b means that the ratio of a and b converge to 1, as T Ñ8. Here and in the following

this shorthand notation is used to improve the readability of the proof.

By the definition of a Riemann integral

2πIpλ jqT´1 „

#

„

1
2π j

ż 1

0

Bhps,T q
Bs

sinp2π jsqds`
1
T

ż 1

0

Bhps,T q
Bs

sin2pπ jsqds`T´2
ż 1

0

Bhps,T q
Bs

OPp jqds
2

`

«

ż 1

0

Bhps,T q
Bs

sin2pπ jsq
π j

ds´
1

2T

ż 1

0

Bhps,T q
Bs

sinp2π jsqds`T´2
ż 1

0

Bhps,T q
Bs

OPp jqds

ff2
,

.

-

.

Clearly, both parts of this expression are dominated by the first term in the respective square

bracket, such that

Ipλ jq „
T

8π3 j2

#

„
ż 1

0

Bhps,T q
Bs

sinp2π jsqds
2

`

„
ż 1

0

Bhps,T q
Bs

p1´ cosp2π jsqqds
2+

,

which finishes our proof. �

Proof of Theorem 2

Proof. First, by (13) in the proof of Lemma 1 we have

DTkpλ jqD˚Tl
pλ jq “ eipTk´1qλ j{2

sinpTkλ j{2q
sinpλ j{2q

e´ipTl´1qλ j{2
sinpTlλ j{2q
sinpλ j{2q

“ eipTk´Tlqλ j{2
sinpTkλ j{2qsinpTlλ j{2q

sin2pλ j{2q

“ 2
eiλ jpTk´Tlq{2 sinpTkλ j{2qsinpTlλ j{2q

1´ cospλ jq

“ 2eiπ jpδk´δlq
sinpδkπ jqsinpδlπ jq

1´ cospλ jq
.

By a Laurent expansion around λ j “ 0, we have

DTkpλ jqD˚Tl
pλ jq “ 2eiπ jpδk´δlq

sinpδkπ jqsinpδlπ jq
1´r1´2π2p j{T q2`Opp j{T q4qs

“ 2eiπ jpδk´δlq
sinpδkπ jqsinpδlπ jq

2π2p j{T q2`Opp j{T q4q

“
T 2

π2 j2
eiπ jpδk´δlq sinpδkπ jqsinpδlπ jq`OPp1q. (14)
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In particular, for the case when Tk “ Tl “ t, we obtain

Dtpλ jqD˚t pλ jq “
T 2

2π2 j2
p1´ cosp2πt j{T qq`Op1q. (15)

Furthermore, we have

K
ÿ

k“1

∆µkDTkpλ jq “

T
ÿ

t“1

∆µtDtpλ jq, where ∆µt “

$

’

&

’

%

∆µk, if t “ Tk

0, otherwise.

In addition to that,

Ipλq “
1

2πT

T
ÿ

t“1

T
ÿ

s“1

∆µt∆µsDtpλqD˚s pλq

“
1

2πT

T
ÿ

t“1

p∆µtq
2DtpλqD˚t pλq`

1
2πT

ÿ

t‰s
∆µt∆µsDtpλqD˚s pλq

“ A`B.

Consequently, we have for term A and from (15) above

A“
1

2πT

T
ÿ

t“1

p∆µtq
2Dtpλ jqD˚t pλ jq

“
T

4π3 j2

T
ÿ

t“1

p∆µtq
2p1´ cosp2π jt{T qq`

Op1q
2πT

T
ÿ

t“1

p∆µtq
2

“
T

4π3 j2

#

T
ÿ

t“1

p∆µtq
2´

T
ÿ

t“1

p∆µtq
2 cosp2π jt{T q

+

`OPp1q. (16)

“
T

4π3 j2

#

K
ÿ

k“1

p∆µkq
2´

K
ÿ

k“1

p∆µkq
2 cosp2π jδkq

+

`OPp1q. (17)

To deal with term B, we revert back to the original representation in which the sum is random

and write

B“
1

2πT

ÿ

t‰s
∆µt∆µsDtpλ jqD˚s pλ jq

“
1

2πT

ÿ

k‰l

∆µk∆µlDTkpλ jqD˚Tl
pλ jq,

where k, l“ 1, ...,K. Similar to the approach above, we have from (14)

B“
T

2π3 j2
ÿ

k‰l

∆µk∆µleiπ jpδk´δlq sinpδkπ jqsinpδlπ jq`
1

2πT

ÿ

k‰l

∆µk∆µlOPp1q (18)

The first part of the theorem i.) follows immediately from (17) and (18). Similarly, ii.) is also

a direct consequence of (16) and (18), since for α“ 1, from Assumption 4 we have ErKs “ p̃, so

that the process is not ergodic and the sums in (17) and (18) are finite in probability.

For the third part of the theorem, from Assumption 4 we have ErKs “ ErptT s “ p̃T 1´α and, from
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(16) and (17)

ErAs “
T

4π3 j2

#

E

«

K
ÿ

k“1

p∆µkq
2

ff

´Er∆µ2
t s

T
ÿ

t“1

cosp2π jt{T q

+

`Op1q

“
T

4π3 j2
E

«

K
ÿ

k“1

p∆µkq
2

ff

`Op1q,

since
řT

t“1 cosp2π jt{T q “ 0.

Now, from Assumption 3 we have Erp∆µkq
2s “ σ2

∆
T´β, so that by the generalized Wald identity

of Brown (1974) and Assumption 4

ErAs “
T

4π3 j2
ErKsErp∆µkq

2s “
p̃σ2
∆

T 2´α´β

4π3 j2
`op1q.

Similarly, from (18)

ErBs “
T

2π3 j2
E

«

ÿ

k‰l

∆µk∆µleiπ jpδk´δlq sinpδkπ jqsinpδlπ jq

ff

`
Op1q
2πT

E

«

ÿ

k‰l

∆µk∆µl

ff

and by the generalized Wald identity of Brown (1974) in conjunction with Assumption 5

ErBs “
T

2π3 j2
E

«

ÿ

k‰l

E r∆µk∆µlsE
”

eiπ jpδk´δlq sinpδkπ jqsinpδlπ jq
ı

ff

`
Op1q
2πT

E

«

ÿ

k‰l

E r∆µk∆µls

ff

.

Therefore,

∣∣∣ErBs∣∣∣ď T
2π3 j2

E

«

ÿ

k‰l

∣∣∣E r∆µk∆µls
∣∣∣ ∣∣∣∣E ”

eiπ jpδk´δlq sinpδkπ jqsinpδlπ jq
ı∣∣∣∣
ff

`

∣∣∣∣∣∣∣Op1q2πT
E

«

ÿ

k‰l

E r∆µk∆µls

ff∣∣∣∣∣∣∣
ď

T
2π3 j2

E

«

ÿ

k‰l

∣∣∣E r∆µk∆µls
∣∣∣ff` |Op1q|

2πT
E

«

ÿ

k‰l

∣∣∣E r∆µk∆µlss

∣∣∣∣∣∣∣ .
Assumption 5 combined with Assumptions 3 and 4 implies that

E

«

ÿ

k‰l

∣∣∣Er∆µk∆µls
∣∣∣ff“ 2E

«

K
ÿ

k“2

k´1
ÿ

τ“1

∣∣∣Er∆µk∆µk´τs
∣∣∣ff

ď 2E rKsVarp∆µkqC̃

“ 2 p̃C̃σ2
∆T 1´α´β,

so that

∣∣∣ErBs∣∣∣ď p̃σ2
∆

C̃

π3 j2
T 2´α´β`

∣∣∣OpT´α´βq∣∣∣ .
�
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Proof of Theorem 3

Proof. From wµpλq “ ´
1?
2πT

řK
k“0 µkrDTk´1pλq´DTk´1pλqs, as shown in Lemma 1, we have

Ipλq “
1

2πT

K
ÿ

k“0

K
ÿ

l“0

µkµlrDTk´1pλq´DTk´1pλqsrD
˚
Tl´1pλq´D˚Tl´1

pλqs

“
1

2πT

K
ÿ

k“0

K
ÿ

l“0

µkµlrDTk´1pλqD˚Tl´1pλq´DTk´1pλqD˚Tl´1
pλq´DTk´1pλqD

˚
Tl´1pλq`DTk´1pλqD

˚
Tl´1

pλqs

“
1

2πT

K
ÿ

k“0

µ2
krDTk´1pλqD˚Tk´1pλq´DTk´1pλqD˚Tk´1

pλq´DTk´1pλqD
˚
Tk´1pλq`DTk´1pλqD

˚
Tk´1

pλqs

`
1

2πT

ÿ

k‰l

µkµlrDTk´1pλqD˚Tl´1pλq´DTk´1pλqD˚Tl´1
pλq´DTk´1pλqD

˚
Tl´1pλq`DTk´1pλqD

˚
Tl´1

pλqs

“ Ã` B̃. (19)

Denoting pTk´1q{T “ δ̃k, we have from (14) for the term in square brackets in Ã

ãk “rDTk´1pλqD˚Tk´1pλq´DTk´1pλqD˚Tk´1
pλq´DTk´1pλqD

˚
Tk´1pλq`DTk´1pλqD

˚
Tk´1

pλqs

“
T 2

π2 j2
rsin2pδ̃kπ jq` sin2pδk´1π jq´ eiπ jpδ̃k´δk´1q sinpδ̃kπ jqsinpδk´1π jq´ eiπ jpδk´1´δ̃kq sinpδ̃kπ jqsinpδk´1π jqs`OPp1q

“
T 2

π2 j2
r1´

1
2

cosp2δ̃kπ jq´
1
2

cosp2δk´1π jq´2sinpδ̃kπ jqsinpδk´1π jqcospπ jpδ̃k´δk´1qqs`OPp1q

“
T 2

π2 j2
r1´

1
2

“

cosp2δ̃kπ jq` cosp2δk´1π jq
‰

´2sinpδ̃kπ jqsinpδk´1π jqcospπ jpδ̃k´δk´1qqs`OPp1q,

from Euler’s formula. As in the proof of Theorem 1, the notation A„ B is used as a shorthand

for limTÑ8 A{B“ 1. By the sum-to-product identity for the cosine, it follows

ãk “
T 2

π2 j2

„

1´
1
2

“

2cospπ jpδ̃k`δk´1qqcospπ jpδ̃k´δk´1qq
‰

´2sinpδ̃kπ jqsinpδk´1π jqcospπ jpδ̃k´δk´1qq



`OPp1q

“
T 2

π2 j2
“

1´ cospπ jpδ̃k´δk´1qq
“

cospπ jpδ̃k`δk´1qq`2sinpδ̃kπ jqsinpδk´1π jq
‰‰

`OPp1q.

Now, by the product-to-sum identity of the sine

ãk “
T 2

π2 j2
“

1´ cospπ jpδ̃k´δk´1qq
“

cospπ jpδ̃k`δk´1qq` cospπ jpδ̃k´δk´1qq´ cospπ jpδ̃k`δk´1qq
‰‰

`OPp1q

“
T 2

π2 j2
“

1´ cos2pπ jpδ̃k´δk´1qq
‰

`OPp1q.

Therefore, we have

Ã“
1

2πT

K
ÿ

k“0

µ2
k ãk

“
T

2π3 j2

K
ÿ

k“0

µ2
kr1´ cos2pπ jpδ̃k´δk´1qqs`

pK`1qOPp1q
2πT

(20)
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For αă 1, by a Taylor expansion of the squared cosine at zero

ãk “
T 2

π2 j2
“

1´
“

1´π2 j2pδ̃k´δk´1q
2`π4 j4Oppδ̃k´δk´1q

4q
‰‰

`OPp1q

“ T 2 “pδ̃k´δk´1q
2´π2 j2Oppδ̃k´δk´1q

4q
‰

`OPp1q.

Therefore, we obtain

Ã“
1

2πT

K
ÿ

k“0

µ2
k

 

T 2 “pδ̃k´δk´1q
2´π2 j2Oppδ̃k´δk´1q

4q
‰

`OPp1q
(

“
T
2π

K
ÿ

k“0

 

µ2
kpδ̃k´δk´1q

2(´
Tπ j2

4

K
ÿ

k“0

µ2
kO

`

pδ̃k´δk´1q
4˘`

OPp1q
2πT

K
ÿ

k“0

µ2
k . (21)

By applying the Wald identity for dependent random sums of Brown (1974) and then using

Assumption 5, we obtain

ErÃs “ ErK`1sErµ2
ks

"

T
2π

Erpδ̃k´δk´1q
2s´

Tπ j2

4
ErOppδ̃k´δk´1q

4qs`
Op1q
2πT

*

“ p p̃T 1´α`1qσ2
∆T´β

"

T
π

D̃
p̃2 T 2pα´1q´

Tπ j2

2
OpT 4pα´1qq`OpT´1q

*

“
σ2
∆

D̃

π p̃
Tα´β´

σ2
∆

p̃π j2

2
OpT´2`3α´βq`σ2

∆ p̃OpT´α´βq

`
σ2
∆

D̃

π p̃
T´1`2α´β´π j2OpT´3`4α´βq`OpT´1´βq. (22)

For B̃, we have from (14),

B̃“
T

2π2 j2
ÿ

k‰l

µkµl

”

eiπ jpδk´δlq sinpδkπ jqsinpδlπ jq´ eiπ jpδk´δl´1q sinpδkπ jqsinpδl´1π jq

´eiπ jpδk´1´δlq sinpδk´1π jqsinpδlπ jq` eiπ jpδk´1´δl´1q sinpδk´1π jqsinpδl´1π jq
ı

`
OPp1q
2πT

ÿ

k‰l

µkµl. (23)

Denote the term in the square bracket by b̃, and let b̃1 denote the first two summands and b̃2

the last two summands, so that b̃“ b̃1` b̃2. We have

b̃1 “ eiπ jpδk´δlq sinpδkπ jqsinpδlπ jq´ eiπ jpδk´δl´1q sinpδkπ jqsinpδl´1π jq

“ sinpδkπ jq
”

eiπ jpδk´δlq sinpδlπ jq´ eiπ jpδk´δl´1q sinpδl´1π jq
ı

“ sinpδkπ jq rcospπ jpδk´δlqqsinpδlπ jq´ cospπ jpδk´δl´1qqsinpδl´1π jq

`itsinpπ jpδk´δlqqsinpπ jδlq´ sinpπ jpδk´δl´1qqsinpπ jδl´1qus .

Now, let γl “ δl´δl´1. Then, by a Taylor approximation at γl “ 0

b̃1 “ sinpδkπ jq
“

´π jγl cospπ jpδk´2δlqq`OPpγ
2
l q` i

 

´π jγl sinpπ jpδk´2δlqq`OPpγ
2
l q
(‰

“ π jγl sinpδkπ jqeiπ jpδk´2δlq`OPpγ
2
l q.
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Similarly, we have for the third and fourth term in the square bracket

b̃2 “´eiπ jpδk´1´δlq sinpδk´1π jqsinpδlπ jq` eiπ jpδk´1´δl´1q sinpδk´1π jqsinpδl´1π jq

“ ´sinpδk´1π jq
”

eiπ jpδk´1´δlq sinpδlπ jq´ eipi jpδk´1´δl´1q sinpδl´1π jq
ı

,

and by a Taylor approximation at γl “ 0,

b̃2 “´π jγl sinpδk´1π jqeiπ jpδk´1´2δlq`OPpγ
2
l q.

Therefore, we have

b̃“´π jγl

”

sinpδkπ jqeiπ jpδk´2δlq´ sinpδk´1π jqeiπ jpδk´1´2δlq
ı

.

Defining γk “ δk´δk´1, and approximating at γk “ 0, we obtain

b̃“ π2 j2γlγke2iπ jpδk´δlq`OPpγ
2
l q`OPpγ

2
kq,

so that

B̃“
T

2π2 j2
ÿ

k‰l

µkµl

”

π2 j2γlγke2iπ jpδk´δlq`OPpγ
2
l q`OPpγ

2
kq

ı

`
OPp1q
2πT

ÿ

k‰l

µkµl

“
T
2

ÿ

k‰l

µkµlγlγke2iπ jpδk´δlq`
T

2π2 j2
ÿ

k‰l

µkµlOPpγ
2
l q`

T
2π2 j2

ÿ

k‰l

µkµlOPpγ
2
kq`
OPp1q
2πT

ÿ

k‰l

µkµl. (24)

Similar to the proof of Theorem 2, we have from the Wald identity of Brown (1974) and As-

sumption 5

ErB̃s “
T
2

E

«

ÿ

k‰l

E rµkµlsE
”

γlγke2iπ jpδk´δlq
ı

ff

`
T

2π2 j2
E

«

ÿ

k‰l

E rµkµlsErOPpγ
2
kqs

ff

`
Op1q
2πT

E

«

ÿ

k‰l

Erµkµls

ff

“ B̃1` B̃2` B̃3.

For the first term

∣∣∣ErB̃1s
∣∣∣ď T

2
E

«

ÿ

k‰l

∣∣∣∣E rµkµlsE
”

γlγke2iπ jpδk´δlq
ı∣∣∣∣
ff

ď
T
2

E

«

ÿ

k‰l

∣∣∣E rµkµls
∣∣∣ ∣∣∣∣E ”

γlγke2iπ jpδk´δlq
ı∣∣∣∣
ff

ď
T
2

E

«

ÿ

k‰l

∣∣∣E rµkµls
∣∣∣ ∣∣∣E rγlγks

∣∣∣ff

“ T E

«

K
ÿ

k“1

k´1
ÿ

τ“1

∣∣∣E rµkµk´τs
∣∣∣ ∣∣∣E rγkγk´τs

∣∣∣ff

ď T E

«

K
ÿ

k“1

∣∣∣E “

γ2
k

‰

∣∣∣ k´1
ÿ

τ“1

∣∣∣E rµkµk´τs
∣∣∣ff .
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Therefore, by Assumptions 4 and 5

∣∣∣ErB̃1s
∣∣∣ď T E

«

K
ÿ

k“1

∣∣∣E “

γ2
k

‰

∣∣∣VarpµkqC̃

ff

“ T ErKsE
“

γ2
k

‰

VarpµkqC̃

“ C̃σ2
∆T 1´β

"

2D̃
p̃2 T 2pα´1q`OpTα´2q

*

ErKs

“
2C̃D̃σ2

∆

p̃
Tα´β` C̃

“

OpT 2α´1´βq`OpT´βq`OpTα´β´1q
‰

. (25)

Similarly, for the second term

∣∣∣ErB̃2s
∣∣∣ď T

π2 j2
E

«

ÿ

k‰l

∣∣∣E rµkµlsE
“

OPpγ
2
kq
‰

∣∣∣ff

“
2T
π2 j2

E

«

K
ÿ

k“1

k´1
ÿ

τ“1

∣∣∣E rµkµk´τsE
“

OPpγ
2
kq
‰

∣∣∣ff

ď
2T
π2 j2

E

«

K
ÿ

k“1

E
“

OPpγ
2
kq
‰

k´1
ÿ

τ“1

∣∣∣E rµkµk´τs
∣∣∣ff

ď
2C̃σ2

∆

π2 j2
T 1´βE

«

K
ÿ

k“1

OPpγ
2
kq

ff

“
2C̃σ2

∆
p̃

π2 j2
T 2´α´β

”

OpT 2pα´1qq`OpTα´2q

ı

“
2C̃σ2

∆
p̃

π2 j2
“

OpTα´βq`OpT´βq
‰

. (26)

The term B̃3 is of order OpT´α´βq by the same arguments as in the proof of Theorem 2. Conse-

quently, parts i.) and ii.) of the Theorem follow directly from Equations (20) and (23). Similarly,

part iii.) is the direct consequence of Equation (22) and Equations (25) and (26). �
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